1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "courgette/disassembler_win32_x86.h"
11 #include "base/basictypes.h"
12 #include "base/logging.h"
14 #include "courgette/assembly_program.h"
15 #include "courgette/courgette.h"
16 #include "courgette/encoded_program.h"
18 // COURGETTE_HISTOGRAM_TARGETS prints out a histogram of how frequently
19 // different target addresses are referenced. Purely for debugging.
20 #define COURGETTE_HISTOGRAM_TARGETS 0
24 DisassemblerWin32X86::DisassemblerWin32X86(const void* start
, size_t length
)
25 : Disassembler(start
, length
),
26 incomplete_disassembly_(false),
28 optional_header_(NULL
),
29 size_of_optional_header_(0),
30 offset_of_data_directories_(0),
32 number_of_sections_(0),
34 has_text_section_(false),
36 size_of_initialized_data_(0),
37 size_of_uninitialized_data_(0),
42 number_of_data_directories_(0) {
45 // ParseHeader attempts to match up the buffer with the Windows data
46 // structures that exist within a Windows 'Portable Executable' format file.
47 // Returns 'true' if the buffer matches, and 'false' if the data looks
48 // suspicious. Rather than try to 'map' the buffer to the numerous windows
49 // structures, we extract the information we need into the courgette::PEInfo
52 bool DisassemblerWin32X86::ParseHeader() {
53 if (length() < kOffsetOfFileAddressOfNewExeHeader
+ 4 /*size*/)
54 return Bad("Too small");
56 // Have 'MZ' magic for a DOS header?
57 if (start()[0] != 'M' || start()[1] != 'Z')
60 // offset from DOS header to PE header is stored in DOS header.
61 uint32 offset
= ReadU32(start(),
62 kOffsetOfFileAddressOfNewExeHeader
);
64 if (offset
>= length())
65 return Bad("Bad offset to PE header");
67 const uint8
* const pe_header
= OffsetToPointer(offset
);
68 const size_t kMinPEHeaderSize
= 4 /*signature*/ + kSizeOfCoffHeader
;
69 if (pe_header
<= start() ||
70 pe_header
>= end() - kMinPEHeaderSize
)
71 return Bad("Bad offset to PE header");
74 return Bad("Misaligned PE header");
76 // The 'PE' header is an IMAGE_NT_HEADERS structure as defined in WINNT.H.
77 // See http://msdn.microsoft.com/en-us/library/ms680336(VS.85).aspx
79 // The first field of the IMAGE_NT_HEADERS is the signature.
80 if (!(pe_header
[0] == 'P' &&
81 pe_header
[1] == 'E' &&
84 return Bad("no PE signature");
86 // The second field of the IMAGE_NT_HEADERS is the COFF header.
87 // The COFF header is also called an IMAGE_FILE_HEADER
88 // http://msdn.microsoft.com/en-us/library/ms680313(VS.85).aspx
89 const uint8
* const coff_header
= pe_header
+ 4;
90 machine_type_
= ReadU16(coff_header
, 0);
91 number_of_sections_
= ReadU16(coff_header
, 2);
92 size_of_optional_header_
= ReadU16(coff_header
, 16);
94 // The rest of the IMAGE_NT_HEADERS is the IMAGE_OPTIONAL_HEADER(32|64)
95 const uint8
* const optional_header
= coff_header
+ kSizeOfCoffHeader
;
96 optional_header_
= optional_header
;
98 if (optional_header
+ size_of_optional_header_
>= end())
99 return Bad("optional header past end of file");
101 // Check we can read the magic.
102 if (size_of_optional_header_
< 2)
103 return Bad("optional header no magic");
105 uint16 magic
= ReadU16(optional_header
, 0);
107 if (magic
== kImageNtOptionalHdr32Magic
) {
108 is_PE32_plus_
= false;
109 offset_of_data_directories_
=
110 kOffsetOfDataDirectoryFromImageOptionalHeader32
;
111 } else if (magic
== kImageNtOptionalHdr64Magic
) {
112 is_PE32_plus_
= true;
113 offset_of_data_directories_
=
114 kOffsetOfDataDirectoryFromImageOptionalHeader64
;
116 return Bad("unrecognized magic");
119 // Check that we can read the rest of the the fixed fields. Data directories
120 // directly follow the fixed fields of the IMAGE_OPTIONAL_HEADER.
121 if (size_of_optional_header_
< offset_of_data_directories_
)
122 return Bad("optional header too short");
124 // The optional header is either an IMAGE_OPTIONAL_HEADER32 or
125 // IMAGE_OPTIONAL_HEADER64
126 // http://msdn.microsoft.com/en-us/library/ms680339(VS.85).aspx
128 // Copy the fields we care about.
129 size_of_code_
= ReadU32(optional_header
, 4);
130 size_of_initialized_data_
= ReadU32(optional_header
, 8);
131 size_of_uninitialized_data_
= ReadU32(optional_header
, 12);
132 base_of_code_
= ReadU32(optional_header
, 20);
135 image_base_
= ReadU64(optional_header
, 24);
137 base_of_data_
= ReadU32(optional_header
, 24);
138 image_base_
= ReadU32(optional_header
, 28);
140 size_of_image_
= ReadU32(optional_header
, 56);
141 number_of_data_directories_
=
142 ReadU32(optional_header
, (is_PE32_plus_
? 108 : 92));
144 if (size_of_code_
>= length() ||
145 size_of_initialized_data_
>= length() ||
146 size_of_code_
+ size_of_initialized_data_
>= length()) {
147 // This validation fires on some perfectly fine executables.
148 // return Bad("code or initialized data too big");
151 // TODO(sra): we can probably get rid of most of the data directories.
153 // 'b &= ...' could be short circuit 'b = b && ...' but it is not necessary
154 // for correctness and it compiles smaller this way.
155 b
&= ReadDataDirectory(0, &export_table_
);
156 b
&= ReadDataDirectory(1, &import_table_
);
157 b
&= ReadDataDirectory(2, &resource_table_
);
158 b
&= ReadDataDirectory(3, &exception_table_
);
159 b
&= ReadDataDirectory(5, &base_relocation_table_
);
160 b
&= ReadDataDirectory(11, &bound_import_table_
);
161 b
&= ReadDataDirectory(12, &import_address_table_
);
162 b
&= ReadDataDirectory(13, &delay_import_descriptor_
);
163 b
&= ReadDataDirectory(14, &clr_runtime_header_
);
165 return Bad("malformed data directory");
168 // Sections follow the optional header.
170 reinterpret_cast<const Section
*>(optional_header
+
171 size_of_optional_header_
);
172 size_t detected_length
= 0;
174 for (int i
= 0; i
< number_of_sections_
; ++i
) {
175 const Section
* section
= §ions_
[i
];
177 // TODO(sra): consider using the 'characteristics' field of the section
178 // header to see if the section contains instructions.
179 if (memcmp(section
->name
, ".text", 6) == 0)
180 has_text_section_
= true;
183 section
->file_offset_of_raw_data
+ section
->size_of_raw_data
;
184 if (section_end
> detected_length
)
185 detected_length
= section_end
;
188 // Pretend our in-memory copy is only as long as our detected length.
189 ReduceLength(detected_length
);
192 return Bad("64 bit executables are not yet supported");
195 if (!has_text_section()) {
196 return Bad("Resource-only executables are not yet supported");
202 bool DisassemblerWin32X86::Disassemble(AssemblyProgram
* target
) {
206 target
->set_image_base(image_base());
208 if (!ParseAbs32Relocs())
211 ParseRel32RelocsFromSections();
213 if (!ParseFile(target
))
216 target
->DefaultAssignIndexes();
221 ////////////////////////////////////////////////////////////////////////////////
223 bool DisassemblerWin32X86::ParseRelocs(std::vector
<RVA
> *relocs
) {
226 size_t relocs_size
= base_relocation_table_
.size_
;
227 if (relocs_size
== 0)
230 // The format of the base relocation table is a sequence of variable sized
231 // IMAGE_BASE_RELOCATION blocks. Search for
232 // "The format of the base relocation data is somewhat quirky"
233 // at http://msdn.microsoft.com/en-us/library/ms809762.aspx
235 const uint8
* relocs_start
= RVAToPointer(base_relocation_table_
.address_
);
236 const uint8
* relocs_end
= relocs_start
+ relocs_size
;
238 // Make sure entire base relocation table is within the buffer.
239 if (relocs_start
< start() ||
240 relocs_start
>= end() ||
241 relocs_end
<= start() ||
242 relocs_end
> end()) {
243 return Bad(".relocs outside image");
246 const uint8
* block
= relocs_start
;
248 // Walk the variable sized blocks.
249 while (block
+ 8 < relocs_end
) {
250 RVA page_rva
= ReadU32(block
, 0);
251 uint32 size
= ReadU32(block
, 4);
252 if (size
< 8 || // Size includes header ...
253 size
% 4 != 0) // ... and is word aligned.
254 return Bad("unreasonable relocs block");
256 const uint8
* end_entries
= block
+ size
;
258 if (end_entries
<= block
||
259 end_entries
<= start() ||
261 return Bad(".relocs block outside image");
263 // Walk through the two-byte entries.
264 for (const uint8
* p
= block
+ 8; p
< end_entries
; p
+= 2) {
265 uint16 entry
= ReadU16(p
, 0);
266 int type
= entry
>> 12;
267 int offset
= entry
& 0xFFF;
269 RVA rva
= page_rva
+ offset
;
270 if (type
== 3) { // IMAGE_REL_BASED_HIGHLOW
271 relocs
->push_back(rva
);
272 } else if (type
== 0) { // IMAGE_REL_BASED_ABSOLUTE
273 // Ignore, used as padding.
275 // Does not occur in Windows x86 executables.
276 return Bad("unknown type of reloc");
283 std::sort(relocs
->begin(), relocs
->end());
288 const Section
* DisassemblerWin32X86::RVAToSection(RVA rva
) const {
289 for (int i
= 0; i
< number_of_sections_
; i
++) {
290 const Section
* section
= §ions_
[i
];
291 uint32 offset
= rva
- section
->virtual_address
;
292 if (offset
< section
->virtual_size
) {
299 int DisassemblerWin32X86::RVAToFileOffset(RVA rva
) const {
300 const Section
* section
= RVAToSection(rva
);
302 uint32 offset
= rva
- section
->virtual_address
;
303 if (offset
< section
->size_of_raw_data
) {
304 return section
->file_offset_of_raw_data
+ offset
;
306 return kNoOffset
; // In section but not in file (e.g. uninit data).
310 // Small RVA values point into the file header in the loaded image.
311 // RVA 0 is the module load address which Windows uses as the module handle.
312 // RVA 2 sometimes occurs, I'm not sure what it is, but it would map into the
314 if (rva
== 0 || rva
== 2)
321 const uint8
* DisassemblerWin32X86::RVAToPointer(RVA rva
) const {
322 int file_offset
= RVAToFileOffset(rva
);
323 if (file_offset
== kNoOffset
)
326 return OffsetToPointer(file_offset
);
329 std::string
DisassemblerWin32X86::SectionName(const Section
* section
) {
333 memcpy(name
, section
->name
, 8);
334 name
[8] = '\0'; // Ensure termination.
338 CheckBool
DisassemblerWin32X86::ParseFile(AssemblyProgram
* program
) {
339 // Walk all the bytes in the file, whether or not in a section.
340 uint32 file_offset
= 0;
341 while (file_offset
< length()) {
342 const Section
* section
= FindNextSection(file_offset
);
343 if (section
== NULL
) {
344 // No more sections. There should not be extra stuff following last
346 // ParseNonSectionFileRegion(file_offset, pe_info().length(), program);
349 if (file_offset
< section
->file_offset_of_raw_data
) {
350 uint32 section_start_offset
= section
->file_offset_of_raw_data
;
351 if(!ParseNonSectionFileRegion(file_offset
, section_start_offset
,
355 file_offset
= section_start_offset
;
357 uint32 end
= file_offset
+ section
->size_of_raw_data
;
358 if (!ParseFileRegion(section
, file_offset
, end
, program
))
363 #if COURGETTE_HISTOGRAM_TARGETS
364 HistogramTargets("abs32 relocs", abs32_target_rvas_
);
365 HistogramTargets("rel32 relocs", rel32_target_rvas_
);
371 bool DisassemblerWin32X86::ParseAbs32Relocs() {
372 abs32_locations_
.clear();
373 if (!ParseRelocs(&abs32_locations_
))
376 std::sort(abs32_locations_
.begin(), abs32_locations_
.end());
378 #if COURGETTE_HISTOGRAM_TARGETS
379 for (size_t i
= 0; i
< abs32_locations_
.size(); ++i
) {
380 RVA rva
= abs32_locations_
[i
];
381 // The 4 bytes at the relocation are a reference to some address.
382 uint32 target_address
= Read32LittleEndian(RVAToPointer(rva
));
383 ++abs32_target_rvas_
[target_address
- image_base()];
389 void DisassemblerWin32X86::ParseRel32RelocsFromSections() {
390 uint32 file_offset
= 0;
391 while (file_offset
< length()) {
392 const Section
* section
= FindNextSection(file_offset
);
395 if (file_offset
< section
->file_offset_of_raw_data
)
396 file_offset
= section
->file_offset_of_raw_data
;
397 ParseRel32RelocsFromSection(section
);
398 file_offset
+= section
->size_of_raw_data
;
400 std::sort(rel32_locations_
.begin(), rel32_locations_
.end());
402 #if COURGETTE_HISTOGRAM_TARGETS
403 VLOG(1) << "abs32_locations_ " << abs32_locations_
.size()
404 << "\nrel32_locations_ " << rel32_locations_
.size()
405 << "\nabs32_target_rvas_ " << abs32_target_rvas_
.size()
406 << "\nrel32_target_rvas_ " << rel32_target_rvas_
.size();
409 std::map
<RVA
, int>::iterator abs32_iter
= abs32_target_rvas_
.begin();
410 std::map
<RVA
, int>::iterator rel32_iter
= rel32_target_rvas_
.begin();
411 while (abs32_iter
!= abs32_target_rvas_
.end() &&
412 rel32_iter
!= rel32_target_rvas_
.end()) {
413 if (abs32_iter
->first
< rel32_iter
->first
)
415 else if (rel32_iter
->first
< abs32_iter
->first
)
423 VLOG(1) << "common " << common
;
427 void DisassemblerWin32X86::ParseRel32RelocsFromSection(const Section
* section
) {
428 // TODO(sra): use characteristic.
429 bool isCode
= strcmp(section
->name
, ".text") == 0;
433 uint32 start_file_offset
= section
->file_offset_of_raw_data
;
434 uint32 end_file_offset
= start_file_offset
+ section
->size_of_raw_data
;
435 RVA relocs_start_rva
= base_relocation_table().address_
;
437 const uint8
* start_pointer
= OffsetToPointer(start_file_offset
);
438 const uint8
* end_pointer
= OffsetToPointer(end_file_offset
);
440 RVA start_rva
= FileOffsetToRVA(start_file_offset
);
441 RVA end_rva
= start_rva
+ section
->virtual_size
;
443 // Quick way to convert from Pointer to RVA within a single Section is to
444 // subtract 'pointer_to_rva'.
445 const uint8
* const adjust_pointer_to_rva
= start_pointer
- start_rva
;
447 std::vector
<RVA
>::iterator abs32_pos
= abs32_locations_
.begin();
449 // Find the rel32 relocations.
450 const uint8
* p
= start_pointer
;
451 while (p
< end_pointer
) {
452 RVA current_rva
= static_cast<RVA
>(p
- adjust_pointer_to_rva
);
453 if (current_rva
== relocs_start_rva
) {
454 uint32 relocs_size
= base_relocation_table().size_
;
461 //while (abs32_pos != abs32_locations_.end() && *abs32_pos < current_rva)
464 // Heuristic discovery of rel32 locations in instruction stream: are the
465 // next few bytes the start of an instruction containing a rel32
467 const uint8
* rel32
= NULL
;
469 if (p
+ 5 <= end_pointer
) {
470 if (*p
== 0xE8 || *p
== 0xE9) { // jmp rel32 and call rel32
474 if (p
+ 6 <= end_pointer
) {
475 if (*p
== 0x0F && (*(p
+1) & 0xF0) == 0x80) { // Jcc long form
476 if (p
[1] != 0x8A && p
[1] != 0x8B) // JPE/JPO unlikely
481 RVA rel32_rva
= static_cast<RVA
>(rel32
- adjust_pointer_to_rva
);
483 // Is there an abs32 reloc overlapping the candidate?
484 while (abs32_pos
!= abs32_locations_
.end() && *abs32_pos
< rel32_rva
- 3)
486 // Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
487 // region that could overlap rel32_rva.
488 if (abs32_pos
!= abs32_locations_
.end()) {
489 if (*abs32_pos
< rel32_rva
+ 4) {
490 // Beginning of abs32 reloc is before end of rel32 reloc so they
491 // overlap. Skip four bytes past the abs32 reloc.
492 p
+= (*abs32_pos
+ 4) - current_rva
;
497 RVA target_rva
= rel32_rva
+ 4 + Read32LittleEndian(rel32
);
498 // To be valid, rel32 target must be within image, and within this
500 if (IsValidRVA(target_rva
) &&
501 start_rva
<= target_rva
&& target_rva
< end_rva
) {
502 rel32_locations_
.push_back(rel32_rva
);
503 #if COURGETTE_HISTOGRAM_TARGETS
504 ++rel32_target_rvas_
[target_rva
];
514 CheckBool
DisassemblerWin32X86::ParseNonSectionFileRegion(
515 uint32 start_file_offset
,
516 uint32 end_file_offset
,
517 AssemblyProgram
* program
) {
518 if (incomplete_disassembly_
)
521 const uint8
* start
= OffsetToPointer(start_file_offset
);
522 const uint8
* end
= OffsetToPointer(end_file_offset
);
524 const uint8
* p
= start
;
527 if (!program
->EmitByteInstruction(*p
))
535 CheckBool
DisassemblerWin32X86::ParseFileRegion(
536 const Section
* section
,
537 uint32 start_file_offset
, uint32 end_file_offset
,
538 AssemblyProgram
* program
) {
539 RVA relocs_start_rva
= base_relocation_table().address_
;
541 const uint8
* start_pointer
= OffsetToPointer(start_file_offset
);
542 const uint8
* end_pointer
= OffsetToPointer(end_file_offset
);
544 RVA start_rva
= FileOffsetToRVA(start_file_offset
);
545 RVA end_rva
= start_rva
+ section
->virtual_size
;
547 // Quick way to convert from Pointer to RVA within a single Section is to
548 // subtract 'pointer_to_rva'.
549 const uint8
* const adjust_pointer_to_rva
= start_pointer
- start_rva
;
551 std::vector
<RVA
>::iterator rel32_pos
= rel32_locations_
.begin();
552 std::vector
<RVA
>::iterator abs32_pos
= abs32_locations_
.begin();
554 if (!program
->EmitOriginInstruction(start_rva
))
557 const uint8
* p
= start_pointer
;
559 while (p
< end_pointer
) {
560 RVA current_rva
= static_cast<RVA
>(p
- adjust_pointer_to_rva
);
562 // The base relocation table is usually in the .relocs section, but it could
563 // actually be anywhere. Make sure we skip it because we will regenerate it
565 if (current_rva
== relocs_start_rva
) {
566 if (!program
->EmitPeRelocsInstruction())
568 uint32 relocs_size
= base_relocation_table().size_
;
575 while (abs32_pos
!= abs32_locations_
.end() && *abs32_pos
< current_rva
)
578 if (abs32_pos
!= abs32_locations_
.end() && *abs32_pos
== current_rva
) {
579 uint32 target_address
= Read32LittleEndian(p
);
580 RVA target_rva
= target_address
- image_base();
581 // TODO(sra): target could be Label+offset. It is not clear how to guess
582 // which it might be. We assume offset==0.
583 if (!program
->EmitAbs32(program
->FindOrMakeAbs32Label(target_rva
)))
589 while (rel32_pos
!= rel32_locations_
.end() && *rel32_pos
< current_rva
)
592 if (rel32_pos
!= rel32_locations_
.end() && *rel32_pos
== current_rva
) {
593 RVA target_rva
= current_rva
+ 4 + Read32LittleEndian(p
);
594 if (!program
->EmitRel32(program
->FindOrMakeRel32Label(target_rva
)))
600 if (incomplete_disassembly_
) {
601 if ((abs32_pos
== abs32_locations_
.end() || end_rva
<= *abs32_pos
) &&
602 (rel32_pos
== rel32_locations_
.end() || end_rva
<= *rel32_pos
) &&
603 (end_rva
<= relocs_start_rva
|| current_rva
>= relocs_start_rva
)) {
604 // No more relocs in this section, don't bother encoding bytes.
609 if (!program
->EmitByteInstruction(*p
))
617 #if COURGETTE_HISTOGRAM_TARGETS
618 // Histogram is printed to std::cout. It is purely for debugging the algorithm
619 // and is only enabled manually in 'exploration' builds. I don't want to add
620 // command-line configuration for this feature because this code has to be
621 // small, which means compiled-out.
622 void DisassemblerWin32X86::HistogramTargets(const char* kind
,
623 const std::map
<RVA
, int>& map
) {
625 std::map
<int, std::vector
<RVA
> > h
;
626 for (std::map
<RVA
, int>::const_iterator p
= map
.begin();
629 h
[p
->second
].push_back(p
->first
);
633 std::cout
<< total
<< " " << kind
<< " to "
634 << map
.size() << " unique targets" << std::endl
;
636 std::cout
<< "indegree: #targets-with-indegree (example)" << std::endl
;
637 const int kFirstN
= 15;
638 bool someSkipped
= false;
640 for (std::map
<int, std::vector
<RVA
> >::reverse_iterator p
= h
.rbegin();
644 if (index
<= kFirstN
|| p
->first
<= 3) {
646 std::cout
<< "..." << std::endl
;
648 size_t count
= p
->second
.size();
649 std::cout
<< std::dec
<< p
->first
<< ": " << count
;
651 for (size_t i
= 0; i
< count
; ++i
)
652 std::cout
<< " " << DescribeRVA(p
->second
[i
]);
654 std::cout
<< std::endl
;
661 #endif // COURGETTE_HISTOGRAM_TARGETS
664 // DescribeRVA is for debugging only. I would put it under #ifdef DEBUG except
665 // that during development I'm finding I need to call it when compiled in
666 // Release mode. Hence:
667 // TODO(sra): make this compile only for debug mode.
668 std::string
DisassemblerWin32X86::DescribeRVA(RVA rva
) const {
669 const Section
* section
= RVAToSection(rva
);
670 std::ostringstream s
;
671 s
<< std::hex
<< rva
;
674 s
<< SectionName(section
) << "+"
675 << std::hex
<< (rva
- section
->virtual_address
)
681 const Section
* DisassemblerWin32X86::FindNextSection(uint32 fileOffset
) const {
682 const Section
* best
= 0;
683 for (int i
= 0; i
< number_of_sections_
; i
++) {
684 const Section
* section
= §ions_
[i
];
685 if (section
->size_of_raw_data
> 0) { // i.e. has data in file.
686 if (fileOffset
<= section
->file_offset_of_raw_data
) {
688 section
->file_offset_of_raw_data
< best
->file_offset_of_raw_data
) {
697 RVA
DisassemblerWin32X86::FileOffsetToRVA(uint32 file_offset
) const {
698 for (int i
= 0; i
< number_of_sections_
; i
++) {
699 const Section
* section
= §ions_
[i
];
700 uint32 offset
= file_offset
- section
->file_offset_of_raw_data
;
701 if (offset
< section
->size_of_raw_data
) {
702 return section
->virtual_address
+ offset
;
708 bool DisassemblerWin32X86::ReadDataDirectory(
710 ImageDataDirectory
* directory
) {
712 if (index
< number_of_data_directories_
) {
713 size_t offset
= index
* 8 + offset_of_data_directories_
;
714 if (offset
>= size_of_optional_header_
)
715 return Bad("number of data directories inconsistent");
716 const uint8
* data_directory
= optional_header_
+ offset
;
717 if (data_directory
< start() ||
718 data_directory
+ 8 >= end())
719 return Bad("data directory outside image");
720 RVA rva
= ReadU32(data_directory
, 0);
721 size_t size
= ReadU32(data_directory
, 4);
722 if (size
> size_of_image_
)
723 return Bad("data directory size too big");
725 // TODO(sra): validate RVA.
726 directory
->address_
= rva
;
727 directory
->size_
= static_cast<uint32
>(size
);
730 directory
->address_
= 0;
731 directory
->size_
= 0;
736 } // namespace courgette