Merge Chromium + Blink git repositories
[chromium-blink-merge.git] / base / message_loop / message_loop_unittest.cc
blob89f9a40a5efc40aab515686d291ec1a6a596ba9a
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <vector>
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/compiler_specific.h"
10 #include "base/logging.h"
11 #include "base/memory/ref_counted.h"
12 #include "base/message_loop/message_loop.h"
13 #include "base/message_loop/message_loop_test.h"
14 #include "base/pending_task.h"
15 #include "base/posix/eintr_wrapper.h"
16 #include "base/run_loop.h"
17 #include "base/synchronization/waitable_event.h"
18 #include "base/test/test_simple_task_runner.h"
19 #include "base/thread_task_runner_handle.h"
20 #include "base/threading/platform_thread.h"
21 #include "base/threading/thread.h"
22 #include "testing/gtest/include/gtest/gtest.h"
24 #if defined(OS_WIN)
25 #include "base/message_loop/message_pump_dispatcher.h"
26 #include "base/message_loop/message_pump_win.h"
27 #include "base/process/memory.h"
28 #include "base/strings/string16.h"
29 #include "base/win/scoped_handle.h"
30 #endif
32 namespace base {
34 // TODO(darin): Platform-specific MessageLoop tests should be grouped together
35 // to avoid chopping this file up with so many #ifdefs.
37 namespace {
39 scoped_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
40 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
43 scoped_ptr<MessagePump> TypeIOMessagePumpFactory() {
44 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
47 scoped_ptr<MessagePump> TypeUIMessagePumpFactory() {
48 return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
51 class Foo : public RefCounted<Foo> {
52 public:
53 Foo() : test_count_(0) {
56 void Test1ConstRef(const std::string& a) {
57 ++test_count_;
58 result_.append(a);
61 int test_count() const { return test_count_; }
62 const std::string& result() const { return result_; }
64 private:
65 friend class RefCounted<Foo>;
67 ~Foo() {}
69 int test_count_;
70 std::string result_;
73 #if defined(OS_WIN)
75 // This function runs slowly to simulate a large amount of work being done.
76 static void SlowFunc(TimeDelta pause, int* quit_counter) {
77 PlatformThread::Sleep(pause);
78 if (--(*quit_counter) == 0)
79 MessageLoop::current()->QuitWhenIdle();
82 // This function records the time when Run was called in a Time object, which is
83 // useful for building a variety of MessageLoop tests.
84 static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
85 *run_time = Time::Now();
87 // Cause our Run function to take some time to execute. As a result we can
88 // count on subsequent RecordRunTimeFunc()s running at a future time,
89 // without worry about the resolution of our system clock being an issue.
90 SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
93 void SubPumpFunc() {
94 MessageLoop::current()->SetNestableTasksAllowed(true);
95 MSG msg;
96 while (GetMessage(&msg, NULL, 0, 0)) {
97 TranslateMessage(&msg);
98 DispatchMessage(&msg);
100 MessageLoop::current()->QuitWhenIdle();
103 void RunTest_PostDelayedTask_SharedTimer_SubPump() {
104 MessageLoop loop(MessageLoop::TYPE_UI);
106 // Test that the interval of the timer, used to run the next delayed task, is
107 // set to a value corresponding to when the next delayed task should run.
109 // By setting num_tasks to 1, we ensure that the first task to run causes the
110 // run loop to exit.
111 int num_tasks = 1;
112 Time run_time;
114 loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
116 // This very delayed task should never run.
117 loop.PostDelayedTask(
118 FROM_HERE,
119 Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
120 TimeDelta::FromSeconds(1000));
122 // This slightly delayed task should run from within SubPumpFunc.
123 loop.PostDelayedTask(
124 FROM_HERE,
125 Bind(&PostQuitMessage, 0),
126 TimeDelta::FromMilliseconds(10));
128 Time start_time = Time::Now();
130 loop.Run();
131 EXPECT_EQ(1, num_tasks);
133 // Ensure that we ran in far less time than the slower timer.
134 TimeDelta total_time = Time::Now() - start_time;
135 EXPECT_GT(5000, total_time.InMilliseconds());
137 // In case both timers somehow run at nearly the same time, sleep a little
138 // and then run all pending to force them both to have run. This is just
139 // encouraging flakiness if there is any.
140 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
141 RunLoop().RunUntilIdle();
143 EXPECT_TRUE(run_time.is_null());
146 const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
148 enum TaskType {
149 MESSAGEBOX,
150 ENDDIALOG,
151 RECURSIVE,
152 TIMEDMESSAGELOOP,
153 QUITMESSAGELOOP,
154 ORDERED,
155 PUMPS,
156 SLEEP,
157 RUNS,
160 // Saves the order in which the tasks executed.
161 struct TaskItem {
162 TaskItem(TaskType t, int c, bool s)
163 : type(t),
164 cookie(c),
165 start(s) {
168 TaskType type;
169 int cookie;
170 bool start;
172 bool operator == (const TaskItem& other) const {
173 return type == other.type && cookie == other.cookie && start == other.start;
177 std::ostream& operator <<(std::ostream& os, TaskType type) {
178 switch (type) {
179 case MESSAGEBOX: os << "MESSAGEBOX"; break;
180 case ENDDIALOG: os << "ENDDIALOG"; break;
181 case RECURSIVE: os << "RECURSIVE"; break;
182 case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
183 case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
184 case ORDERED: os << "ORDERED"; break;
185 case PUMPS: os << "PUMPS"; break;
186 case SLEEP: os << "SLEEP"; break;
187 default:
188 NOTREACHED();
189 os << "Unknown TaskType";
190 break;
192 return os;
195 std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
196 if (item.start)
197 return os << item.type << " " << item.cookie << " starts";
198 else
199 return os << item.type << " " << item.cookie << " ends";
202 class TaskList {
203 public:
204 void RecordStart(TaskType type, int cookie) {
205 TaskItem item(type, cookie, true);
206 DVLOG(1) << item;
207 task_list_.push_back(item);
210 void RecordEnd(TaskType type, int cookie) {
211 TaskItem item(type, cookie, false);
212 DVLOG(1) << item;
213 task_list_.push_back(item);
216 size_t Size() {
217 return task_list_.size();
220 TaskItem Get(int n) {
221 return task_list_[n];
224 private:
225 std::vector<TaskItem> task_list_;
228 // MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
229 // common controls (like OpenFile) and StartDoc printing function can cause
230 // implicit message loops.
231 void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
232 order->RecordStart(MESSAGEBOX, cookie);
233 if (is_reentrant)
234 MessageLoop::current()->SetNestableTasksAllowed(true);
235 MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
236 order->RecordEnd(MESSAGEBOX, cookie);
239 // Will end the MessageBox.
240 void EndDialogFunc(TaskList* order, int cookie) {
241 order->RecordStart(ENDDIALOG, cookie);
242 HWND window = GetActiveWindow();
243 if (window != NULL) {
244 EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
245 // Cheap way to signal that the window wasn't found if RunEnd() isn't
246 // called.
247 order->RecordEnd(ENDDIALOG, cookie);
251 void RecursiveFunc(TaskList* order, int cookie, int depth,
252 bool is_reentrant) {
253 order->RecordStart(RECURSIVE, cookie);
254 if (depth > 0) {
255 if (is_reentrant)
256 MessageLoop::current()->SetNestableTasksAllowed(true);
257 MessageLoop::current()->PostTask(
258 FROM_HERE,
259 Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
261 order->RecordEnd(RECURSIVE, cookie);
264 void QuitFunc(TaskList* order, int cookie) {
265 order->RecordStart(QUITMESSAGELOOP, cookie);
266 MessageLoop::current()->QuitWhenIdle();
267 order->RecordEnd(QUITMESSAGELOOP, cookie);
270 void RecursiveFuncWin(MessageLoop* target,
271 HANDLE event,
272 bool expect_window,
273 TaskList* order,
274 bool is_reentrant) {
275 target->PostTask(FROM_HERE,
276 Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
277 target->PostTask(FROM_HERE,
278 Bind(&MessageBoxFunc, order, 2, is_reentrant));
279 target->PostTask(FROM_HERE,
280 Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
281 // The trick here is that for recursive task processing, this task will be
282 // ran _inside_ the MessageBox message loop, dismissing the MessageBox
283 // without a chance.
284 // For non-recursive task processing, this will be executed _after_ the
285 // MessageBox will have been dismissed by the code below, where
286 // expect_window_ is true.
287 target->PostTask(FROM_HERE,
288 Bind(&EndDialogFunc, order, 4));
289 target->PostTask(FROM_HERE,
290 Bind(&QuitFunc, order, 5));
292 // Enforce that every tasks are sent before starting to run the main thread
293 // message loop.
294 ASSERT_TRUE(SetEvent(event));
296 // Poll for the MessageBox. Don't do this at home! At the speed we do it,
297 // you will never realize one MessageBox was shown.
298 for (; expect_window;) {
299 HWND window = FindWindow(L"#32770", kMessageBoxTitle);
300 if (window) {
301 // Dismiss it.
302 for (;;) {
303 HWND button = FindWindowEx(window, NULL, L"Button", NULL);
304 if (button != NULL) {
305 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
306 EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
307 break;
310 break;
315 // TODO(darin): These tests need to be ported since they test critical
316 // message loop functionality.
318 // A side effect of this test is the generation a beep. Sorry.
319 void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
320 MessageLoop loop(message_loop_type);
322 Thread worker("RecursiveDenial2_worker");
323 Thread::Options options;
324 options.message_loop_type = message_loop_type;
325 ASSERT_EQ(true, worker.StartWithOptions(options));
326 TaskList order;
327 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
328 worker.message_loop()->PostTask(FROM_HERE,
329 Bind(&RecursiveFuncWin,
330 MessageLoop::current(),
331 event.Get(),
332 true,
333 &order,
334 false));
335 // Let the other thread execute.
336 WaitForSingleObject(event.Get(), INFINITE);
337 MessageLoop::current()->Run();
339 ASSERT_EQ(order.Size(), 17);
340 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
341 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
342 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
343 EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
344 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
345 EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
346 // When EndDialogFunc is processed, the window is already dismissed, hence no
347 // "end" entry.
348 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
349 EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
350 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
351 EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
352 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
353 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
354 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
355 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
356 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
357 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
358 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
361 // A side effect of this test is the generation a beep. Sorry. This test also
362 // needs to process windows messages on the current thread.
363 void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
364 MessageLoop loop(message_loop_type);
366 Thread worker("RecursiveSupport2_worker");
367 Thread::Options options;
368 options.message_loop_type = message_loop_type;
369 ASSERT_EQ(true, worker.StartWithOptions(options));
370 TaskList order;
371 win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
372 worker.message_loop()->PostTask(FROM_HERE,
373 Bind(&RecursiveFuncWin,
374 MessageLoop::current(),
375 event.Get(),
376 false,
377 &order,
378 true));
379 // Let the other thread execute.
380 WaitForSingleObject(event.Get(), INFINITE);
381 MessageLoop::current()->Run();
383 ASSERT_EQ(order.Size(), 18);
384 EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
385 EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
386 EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
387 // Note that this executes in the MessageBox modal loop.
388 EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
389 EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
390 EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
391 EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
392 EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
393 /* The order can subtly change here. The reason is that when RecursiveFunc(1)
394 is called in the main thread, if it is faster than getting to the
395 PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
396 execution can change. We don't care anyway that the order isn't correct.
397 EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
398 EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
399 EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
400 EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
402 EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
403 EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
404 EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
405 EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
406 EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
407 EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
410 #endif // defined(OS_WIN)
412 void PostNTasksThenQuit(int posts_remaining) {
413 if (posts_remaining > 1) {
414 MessageLoop::current()->PostTask(
415 FROM_HERE,
416 Bind(&PostNTasksThenQuit, posts_remaining - 1));
417 } else {
418 MessageLoop::current()->QuitWhenIdle();
422 #if defined(OS_WIN)
424 class DispatcherImpl : public MessagePumpDispatcher {
425 public:
426 DispatcherImpl() : dispatch_count_(0) {}
428 uint32_t Dispatch(const NativeEvent& msg) override {
429 ::TranslateMessage(&msg);
430 ::DispatchMessage(&msg);
431 // Do not count WM_TIMER since it is not what we post and it will cause
432 // flakiness.
433 if (msg.message != WM_TIMER)
434 ++dispatch_count_;
435 // We treat WM_LBUTTONUP as the last message.
436 return msg.message == WM_LBUTTONUP ? POST_DISPATCH_QUIT_LOOP
437 : POST_DISPATCH_NONE;
440 int dispatch_count_;
443 void MouseDownUp() {
444 PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
445 PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
448 void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
449 MessageLoop loop(message_loop_type);
451 MessageLoop::current()->PostDelayedTask(
452 FROM_HERE,
453 Bind(&MouseDownUp),
454 TimeDelta::FromMilliseconds(100));
455 DispatcherImpl dispatcher;
456 RunLoop run_loop(&dispatcher);
457 run_loop.Run();
458 ASSERT_EQ(2, dispatcher.dispatch_count_);
461 LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
462 if (code == MessagePumpForUI::kMessageFilterCode) {
463 MSG* msg = reinterpret_cast<MSG*>(lparam);
464 if (msg->message == WM_LBUTTONDOWN)
465 return TRUE;
467 return FALSE;
470 void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
471 MessageLoop loop(message_loop_type);
473 MessageLoop::current()->PostDelayedTask(
474 FROM_HERE,
475 Bind(&MouseDownUp),
476 TimeDelta::FromMilliseconds(100));
477 HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
478 MsgFilterProc,
479 NULL,
480 GetCurrentThreadId());
481 DispatcherImpl dispatcher;
482 RunLoop run_loop(&dispatcher);
483 run_loop.Run();
484 ASSERT_EQ(1, dispatcher.dispatch_count_);
485 UnhookWindowsHookEx(msg_hook);
488 class TestIOHandler : public MessageLoopForIO::IOHandler {
489 public:
490 TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
492 void OnIOCompleted(MessageLoopForIO::IOContext* context,
493 DWORD bytes_transfered,
494 DWORD error) override;
496 void Init();
497 void WaitForIO();
498 OVERLAPPED* context() { return &context_.overlapped; }
499 DWORD size() { return sizeof(buffer_); }
501 private:
502 char buffer_[48];
503 MessageLoopForIO::IOContext context_;
504 HANDLE signal_;
505 win::ScopedHandle file_;
506 bool wait_;
509 TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
510 : signal_(signal), wait_(wait) {
511 memset(buffer_, 0, sizeof(buffer_));
512 memset(&context_, 0, sizeof(context_));
513 context_.handler = this;
515 file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
516 FILE_FLAG_OVERLAPPED, NULL));
517 EXPECT_TRUE(file_.IsValid());
520 void TestIOHandler::Init() {
521 MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
523 DWORD read;
524 EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
525 EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
526 if (wait_)
527 WaitForIO();
530 void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
531 DWORD bytes_transfered, DWORD error) {
532 ASSERT_TRUE(context == &context_);
533 ASSERT_TRUE(SetEvent(signal_));
536 void TestIOHandler::WaitForIO() {
537 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
538 EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
541 void RunTest_IOHandler() {
542 win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
543 ASSERT_TRUE(callback_called.IsValid());
545 const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
546 win::ScopedHandle server(
547 CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
548 ASSERT_TRUE(server.IsValid());
550 Thread thread("IOHandler test");
551 Thread::Options options;
552 options.message_loop_type = MessageLoop::TYPE_IO;
553 ASSERT_TRUE(thread.StartWithOptions(options));
555 MessageLoop* thread_loop = thread.message_loop();
556 ASSERT_TRUE(NULL != thread_loop);
558 TestIOHandler handler(kPipeName, callback_called.Get(), false);
559 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
560 Unretained(&handler)));
561 // Make sure the thread runs and sleeps for lack of work.
562 PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
564 const char buffer[] = "Hello there!";
565 DWORD written;
566 EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
568 DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
569 EXPECT_EQ(WAIT_OBJECT_0, result);
571 thread.Stop();
574 void RunTest_WaitForIO() {
575 win::ScopedHandle callback1_called(
576 CreateEvent(NULL, TRUE, FALSE, NULL));
577 win::ScopedHandle callback2_called(
578 CreateEvent(NULL, TRUE, FALSE, NULL));
579 ASSERT_TRUE(callback1_called.IsValid());
580 ASSERT_TRUE(callback2_called.IsValid());
582 const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
583 const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
584 win::ScopedHandle server1(
585 CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
586 win::ScopedHandle server2(
587 CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
588 ASSERT_TRUE(server1.IsValid());
589 ASSERT_TRUE(server2.IsValid());
591 Thread thread("IOHandler test");
592 Thread::Options options;
593 options.message_loop_type = MessageLoop::TYPE_IO;
594 ASSERT_TRUE(thread.StartWithOptions(options));
596 MessageLoop* thread_loop = thread.message_loop();
597 ASSERT_TRUE(NULL != thread_loop);
599 TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
600 TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
601 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
602 Unretained(&handler1)));
603 // TODO(ajwong): Do we really need such long Sleeps in this function?
604 // Make sure the thread runs and sleeps for lack of work.
605 TimeDelta delay = TimeDelta::FromMilliseconds(100);
606 PlatformThread::Sleep(delay);
607 thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
608 Unretained(&handler2)));
609 PlatformThread::Sleep(delay);
611 // At this time handler1 is waiting to be called, and the thread is waiting
612 // on the Init method of handler2, filtering only handler2 callbacks.
614 const char buffer[] = "Hello there!";
615 DWORD written;
616 EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
617 PlatformThread::Sleep(2 * delay);
618 EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called.Get(), 0)) <<
619 "handler1 has not been called";
621 EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
623 HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
624 DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
625 EXPECT_EQ(WAIT_OBJECT_0, result);
627 thread.Stop();
630 #endif // defined(OS_WIN)
632 } // namespace
634 //-----------------------------------------------------------------------------
635 // Each test is run against each type of MessageLoop. That way we are sure
636 // that message loops work properly in all configurations. Of course, in some
637 // cases, a unit test may only be for a particular type of loop.
639 RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
640 RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
641 RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
643 #if defined(OS_WIN)
644 TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
645 RunTest_PostDelayedTask_SharedTimer_SubPump();
648 // This test occasionally hangs. See http://crbug.com/44567.
649 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
650 RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
651 RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
652 RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
655 TEST(MessageLoopTest, RecursiveSupport2) {
656 // This test requires a UI loop.
657 RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
659 #endif // defined(OS_WIN)
661 class DummyTaskObserver : public MessageLoop::TaskObserver {
662 public:
663 explicit DummyTaskObserver(int num_tasks)
664 : num_tasks_started_(0),
665 num_tasks_processed_(0),
666 num_tasks_(num_tasks) {}
668 ~DummyTaskObserver() override {}
670 void WillProcessTask(const PendingTask& pending_task) override {
671 num_tasks_started_++;
672 EXPECT_LE(num_tasks_started_, num_tasks_);
673 EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
676 void DidProcessTask(const PendingTask& pending_task) override {
677 num_tasks_processed_++;
678 EXPECT_LE(num_tasks_started_, num_tasks_);
679 EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
682 int num_tasks_started() const { return num_tasks_started_; }
683 int num_tasks_processed() const { return num_tasks_processed_; }
685 private:
686 int num_tasks_started_;
687 int num_tasks_processed_;
688 const int num_tasks_;
690 DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
693 TEST(MessageLoopTest, TaskObserver) {
694 const int kNumPosts = 6;
695 DummyTaskObserver observer(kNumPosts);
697 MessageLoop loop;
698 loop.AddTaskObserver(&observer);
699 loop.PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
700 loop.Run();
701 loop.RemoveTaskObserver(&observer);
703 EXPECT_EQ(kNumPosts, observer.num_tasks_started());
704 EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
707 #if defined(OS_WIN)
708 TEST(MessageLoopTest, Dispatcher) {
709 // This test requires a UI loop
710 RunTest_Dispatcher(MessageLoop::TYPE_UI);
713 TEST(MessageLoopTest, DispatcherWithMessageHook) {
714 // This test requires a UI loop
715 RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
718 TEST(MessageLoopTest, IOHandler) {
719 RunTest_IOHandler();
722 TEST(MessageLoopTest, WaitForIO) {
723 RunTest_WaitForIO();
726 TEST(MessageLoopTest, HighResolutionTimer) {
727 MessageLoop loop;
728 Time::EnableHighResolutionTimer(true);
730 const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
731 const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
733 EXPECT_FALSE(loop.HasHighResolutionTasks());
734 // Post a fast task to enable the high resolution timers.
735 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
736 kFastTimer);
737 EXPECT_TRUE(loop.HasHighResolutionTasks());
738 loop.Run();
739 EXPECT_FALSE(loop.HasHighResolutionTasks());
740 EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
741 // Check that a slow task does not trigger the high resolution logic.
742 loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
743 kSlowTimer);
744 EXPECT_FALSE(loop.HasHighResolutionTasks());
745 loop.Run();
746 EXPECT_FALSE(loop.HasHighResolutionTasks());
747 Time::EnableHighResolutionTimer(false);
750 #endif // defined(OS_WIN)
752 #if defined(OS_POSIX) && !defined(OS_NACL)
754 namespace {
756 class QuitDelegate : public MessageLoopForIO::Watcher {
757 public:
758 void OnFileCanWriteWithoutBlocking(int fd) override {
759 MessageLoop::current()->QuitWhenIdle();
761 void OnFileCanReadWithoutBlocking(int fd) override {
762 MessageLoop::current()->QuitWhenIdle();
766 TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
767 // Simulate a MessageLoop that dies before an FileDescriptorWatcher.
768 // This could happen when people use the Singleton pattern or atexit.
770 // Create a file descriptor. Doesn't need to be readable or writable,
771 // as we don't need to actually get any notifications.
772 // pipe() is just the easiest way to do it.
773 int pipefds[2];
774 int err = pipe(pipefds);
775 ASSERT_EQ(0, err);
776 int fd = pipefds[1];
778 // Arrange for controller to live longer than message loop.
779 MessageLoopForIO::FileDescriptorWatcher controller;
781 MessageLoopForIO message_loop;
783 QuitDelegate delegate;
784 message_loop.WatchFileDescriptor(fd,
785 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
786 // and don't run the message loop, just destroy it.
789 if (IGNORE_EINTR(close(pipefds[0])) < 0)
790 PLOG(ERROR) << "close";
791 if (IGNORE_EINTR(close(pipefds[1])) < 0)
792 PLOG(ERROR) << "close";
795 TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
796 // Verify that it's ok to call StopWatchingFileDescriptor().
797 // (Errors only showed up in valgrind.)
798 int pipefds[2];
799 int err = pipe(pipefds);
800 ASSERT_EQ(0, err);
801 int fd = pipefds[1];
803 // Arrange for message loop to live longer than controller.
804 MessageLoopForIO message_loop;
806 MessageLoopForIO::FileDescriptorWatcher controller;
808 QuitDelegate delegate;
809 message_loop.WatchFileDescriptor(fd,
810 true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
811 controller.StopWatchingFileDescriptor();
814 if (IGNORE_EINTR(close(pipefds[0])) < 0)
815 PLOG(ERROR) << "close";
816 if (IGNORE_EINTR(close(pipefds[1])) < 0)
817 PLOG(ERROR) << "close";
820 } // namespace
822 #endif // defined(OS_POSIX) && !defined(OS_NACL)
824 namespace {
825 // Inject a test point for recording the destructor calls for Closure objects
826 // send to MessageLoop::PostTask(). It is awkward usage since we are trying to
827 // hook the actual destruction, which is not a common operation.
828 class DestructionObserverProbe :
829 public RefCounted<DestructionObserverProbe> {
830 public:
831 DestructionObserverProbe(bool* task_destroyed,
832 bool* destruction_observer_called)
833 : task_destroyed_(task_destroyed),
834 destruction_observer_called_(destruction_observer_called) {
836 virtual void Run() {
837 // This task should never run.
838 ADD_FAILURE();
840 private:
841 friend class RefCounted<DestructionObserverProbe>;
843 virtual ~DestructionObserverProbe() {
844 EXPECT_FALSE(*destruction_observer_called_);
845 *task_destroyed_ = true;
848 bool* task_destroyed_;
849 bool* destruction_observer_called_;
852 class MLDestructionObserver : public MessageLoop::DestructionObserver {
853 public:
854 MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
855 : task_destroyed_(task_destroyed),
856 destruction_observer_called_(destruction_observer_called),
857 task_destroyed_before_message_loop_(false) {
859 void WillDestroyCurrentMessageLoop() override {
860 task_destroyed_before_message_loop_ = *task_destroyed_;
861 *destruction_observer_called_ = true;
863 bool task_destroyed_before_message_loop() const {
864 return task_destroyed_before_message_loop_;
866 private:
867 bool* task_destroyed_;
868 bool* destruction_observer_called_;
869 bool task_destroyed_before_message_loop_;
872 } // namespace
874 TEST(MessageLoopTest, DestructionObserverTest) {
875 // Verify that the destruction observer gets called at the very end (after
876 // all the pending tasks have been destroyed).
877 MessageLoop* loop = new MessageLoop;
878 const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
880 bool task_destroyed = false;
881 bool destruction_observer_called = false;
883 MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
884 loop->AddDestructionObserver(&observer);
885 loop->PostDelayedTask(
886 FROM_HERE,
887 Bind(&DestructionObserverProbe::Run,
888 new DestructionObserverProbe(&task_destroyed,
889 &destruction_observer_called)),
890 kDelay);
891 delete loop;
892 EXPECT_TRUE(observer.task_destroyed_before_message_loop());
893 // The task should have been destroyed when we deleted the loop.
894 EXPECT_TRUE(task_destroyed);
895 EXPECT_TRUE(destruction_observer_called);
899 // Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
900 // posts tasks on that message loop.
901 TEST(MessageLoopTest, ThreadMainTaskRunner) {
902 MessageLoop loop;
904 scoped_refptr<Foo> foo(new Foo());
905 std::string a("a");
906 ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
907 &Foo::Test1ConstRef, foo.get(), a));
909 // Post quit task;
910 MessageLoop::current()->PostTask(FROM_HERE, Bind(
911 &MessageLoop::Quit, Unretained(MessageLoop::current())));
913 // Now kick things off
914 MessageLoop::current()->Run();
916 EXPECT_EQ(foo->test_count(), 1);
917 EXPECT_EQ(foo->result(), "a");
920 TEST(MessageLoopTest, IsType) {
921 MessageLoop loop(MessageLoop::TYPE_UI);
922 EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
923 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
924 EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
927 #if defined(OS_WIN)
928 void EmptyFunction() {}
930 void PostMultipleTasks() {
931 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
932 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
935 static const int kSignalMsg = WM_USER + 2;
937 void PostWindowsMessage(HWND message_hwnd) {
938 PostMessage(message_hwnd, kSignalMsg, 0, 2);
941 void EndTest(bool* did_run, HWND hwnd) {
942 *did_run = true;
943 PostMessage(hwnd, WM_CLOSE, 0, 0);
946 int kMyMessageFilterCode = 0x5002;
948 LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
949 WPARAM wparam, LPARAM lparam) {
950 if (message == WM_CLOSE)
951 EXPECT_TRUE(DestroyWindow(hwnd));
952 if (message != kSignalMsg)
953 return DefWindowProc(hwnd, message, wparam, lparam);
955 switch (lparam) {
956 case 1:
957 // First, we post a task that will post multiple no-op tasks to make sure
958 // that the pump's incoming task queue does not become empty during the
959 // test.
960 MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&PostMultipleTasks));
961 // Next, we post a task that posts a windows message to trigger the second
962 // stage of the test.
963 MessageLoop::current()->PostTask(FROM_HERE,
964 base::Bind(&PostWindowsMessage, hwnd));
965 break;
966 case 2:
967 // Since we're about to enter a modal loop, tell the message loop that we
968 // intend to nest tasks.
969 MessageLoop::current()->SetNestableTasksAllowed(true);
970 bool did_run = false;
971 MessageLoop::current()->PostTask(FROM_HERE,
972 base::Bind(&EndTest, &did_run, hwnd));
973 // Run a nested windows-style message loop and verify that our task runs. If
974 // it doesn't, then we'll loop here until the test times out.
975 MSG msg;
976 while (GetMessage(&msg, 0, 0, 0)) {
977 if (!CallMsgFilter(&msg, kMyMessageFilterCode))
978 DispatchMessage(&msg);
979 // If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
980 // a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
981 // WM_QUIT messages even when running inside a modal loop.
982 if (msg.message == WM_CLOSE)
983 break;
985 EXPECT_TRUE(did_run);
986 MessageLoop::current()->Quit();
987 break;
989 return 0;
992 TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
993 MessageLoop loop(MessageLoop::TYPE_UI);
994 HINSTANCE instance = GetModuleFromAddress(&TestWndProcThunk);
995 WNDCLASSEX wc = {0};
996 wc.cbSize = sizeof(wc);
997 wc.lpfnWndProc = TestWndProcThunk;
998 wc.hInstance = instance;
999 wc.lpszClassName = L"MessageLoopTest_HWND";
1000 ATOM atom = RegisterClassEx(&wc);
1001 ASSERT_TRUE(atom);
1003 HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
1004 HWND_MESSAGE, 0, instance, 0);
1005 ASSERT_TRUE(message_hwnd) << GetLastError();
1007 ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
1009 loop.Run();
1011 ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
1013 #endif // defined(OS_WIN)
1015 TEST(MessageLoopTest, SetTaskRunner) {
1016 MessageLoop loop;
1017 scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
1019 loop.SetTaskRunner(new_runner);
1020 EXPECT_EQ(new_runner, loop.task_runner());
1021 EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
1024 TEST(MessageLoopTest, OriginalRunnerWorks) {
1025 MessageLoop loop;
1026 scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
1027 scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
1028 loop.SetTaskRunner(new_runner);
1030 scoped_refptr<Foo> foo(new Foo());
1031 original_runner->PostTask(FROM_HERE,
1032 Bind(&Foo::Test1ConstRef, foo.get(), "a"));
1033 loop.RunUntilIdle();
1034 EXPECT_EQ(1, foo->test_count());
1037 } // namespace base