1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/sparse_control.h"
10 #include "base/format_macros.h"
11 #include "base/location.h"
12 #include "base/logging.h"
13 #include "base/single_thread_task_runner.h"
14 #include "base/strings/string_util.h"
15 #include "base/strings/stringprintf.h"
16 #include "base/thread_task_runner_handle.h"
17 #include "base/time/time.h"
18 #include "net/base/io_buffer.h"
19 #include "net/base/net_errors.h"
20 #include "net/disk_cache/blockfile/backend_impl.h"
21 #include "net/disk_cache/blockfile/entry_impl.h"
22 #include "net/disk_cache/blockfile/file.h"
23 #include "net/disk_cache/net_log_parameters.h"
29 // Stream of the sparse data index.
30 const int kSparseIndex
= 2;
32 // Stream of the sparse data.
33 const int kSparseData
= 1;
35 // We can have up to 64k children.
36 const int kMaxMapSize
= 8 * 1024;
38 // The maximum number of bytes that a child can store.
39 const int kMaxEntrySize
= 0x100000;
41 // The size of each data block (tracked by the child allocation bitmap).
42 const int kBlockSize
= 1024;
44 // Returns the name of a child entry given the base_name and signature of the
45 // parent and the child_id.
46 // If the entry is called entry_name, child entries will be named something
47 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
48 // number of the particular child.
49 std::string
GenerateChildName(const std::string
& base_name
, int64 signature
,
51 return base::StringPrintf("Range_%s:%" PRIx64
":%" PRIx64
, base_name
.c_str(),
55 // This class deletes the children of a sparse entry.
57 : public base::RefCounted
<ChildrenDeleter
>,
58 public disk_cache::FileIOCallback
{
60 ChildrenDeleter(disk_cache::BackendImpl
* backend
, const std::string
& name
)
61 : backend_(backend
->GetWeakPtr()), name_(name
), signature_(0) {}
63 void OnFileIOComplete(int bytes_copied
) override
;
65 // Two ways of deleting the children: if we have the children map, use Start()
66 // directly, otherwise pass the data address to ReadData().
67 void Start(char* buffer
, int len
);
68 void ReadData(disk_cache::Addr address
, int len
);
71 friend class base::RefCounted
<ChildrenDeleter
>;
72 ~ChildrenDeleter() override
{}
74 void DeleteChildren();
76 base::WeakPtr
<disk_cache::BackendImpl
> backend_
;
78 disk_cache::Bitmap children_map_
;
80 scoped_ptr
<char[]> buffer_
;
81 DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter
);
84 // This is the callback of the file operation.
85 void ChildrenDeleter::OnFileIOComplete(int bytes_copied
) {
86 char* buffer
= buffer_
.release();
87 Start(buffer
, bytes_copied
);
90 void ChildrenDeleter::Start(char* buffer
, int len
) {
91 buffer_
.reset(buffer
);
92 if (len
< static_cast<int>(sizeof(disk_cache::SparseData
)))
95 // Just copy the information from |buffer|, delete |buffer| and start deleting
97 disk_cache::SparseData
* data
=
98 reinterpret_cast<disk_cache::SparseData
*>(buffer
);
99 signature_
= data
->header
.signature
;
101 int num_bits
= (len
- sizeof(disk_cache::SparseHeader
)) * 8;
102 children_map_
.Resize(num_bits
, false);
103 children_map_
.SetMap(data
->bitmap
, num_bits
/ 32);
109 void ChildrenDeleter::ReadData(disk_cache::Addr address
, int len
) {
110 DCHECK(address
.is_block_file());
114 disk_cache::File
* file(backend_
->File(address
));
118 size_t file_offset
= address
.start_block() * address
.BlockSize() +
119 disk_cache::kBlockHeaderSize
;
121 buffer_
.reset(new char[len
]);
123 if (!file
->Read(buffer_
.get(), len
, file_offset
, this, &completed
))
127 OnFileIOComplete(len
);
129 // And wait until OnFileIOComplete gets called.
132 void ChildrenDeleter::DeleteChildren() {
134 if (!children_map_
.FindNextSetBit(&child_id
) || !backend_
.get()) {
135 // We are done. Just delete this object.
138 std::string child_name
= GenerateChildName(name_
, signature_
, child_id
);
139 backend_
->SyncDoomEntry(child_name
);
140 children_map_
.Set(child_id
, false);
142 // Post a task to delete the next child.
143 base::ThreadTaskRunnerHandle::Get()->PostTask(
144 FROM_HERE
, base::Bind(&ChildrenDeleter::DeleteChildren
, this));
147 // Returns the NetLog event type corresponding to a SparseOperation.
148 net::NetLog::EventType
GetSparseEventType(
149 disk_cache::SparseControl::SparseOperation operation
) {
151 case disk_cache::SparseControl::kReadOperation
:
152 return net::NetLog::TYPE_SPARSE_READ
;
153 case disk_cache::SparseControl::kWriteOperation
:
154 return net::NetLog::TYPE_SPARSE_WRITE
;
155 case disk_cache::SparseControl::kGetRangeOperation
:
156 return net::NetLog::TYPE_SPARSE_GET_RANGE
;
159 return net::NetLog::TYPE_CANCELLED
;
163 // Logs the end event for |operation| on a child entry. Range operations log
164 // no events for each child they search through.
165 void LogChildOperationEnd(const net::BoundNetLog
& net_log
,
166 disk_cache::SparseControl::SparseOperation operation
,
168 if (net_log
.IsCapturing()) {
169 net::NetLog::EventType event_type
;
171 case disk_cache::SparseControl::kReadOperation
:
172 event_type
= net::NetLog::TYPE_SPARSE_READ_CHILD_DATA
;
174 case disk_cache::SparseControl::kWriteOperation
:
175 event_type
= net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA
;
177 case disk_cache::SparseControl::kGetRangeOperation
:
183 net_log
.EndEventWithNetErrorCode(event_type
, result
);
189 namespace disk_cache
{
191 SparseControl::SparseControl(EntryImpl
* entry
)
194 operation_(kNoOperation
),
200 child_map_(child_data_
.bitmap
, kNumSparseBits
, kNumSparseBits
/ 32),
206 memset(&sparse_header_
, 0, sizeof(sparse_header_
));
207 memset(&child_data_
, 0, sizeof(child_data_
));
210 SparseControl::~SparseControl() {
217 int SparseControl::Init() {
220 // We should not have sparse data for the exposed entry.
221 if (entry_
->GetDataSize(kSparseData
))
222 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
224 // Now see if there is something where we store our data.
226 int data_len
= entry_
->GetDataSize(kSparseIndex
);
228 rv
= CreateSparseEntry();
230 rv
= OpenSparseEntry(data_len
);
238 bool SparseControl::CouldBeSparse() const {
241 if (entry_
->GetDataSize(kSparseData
))
244 // We don't verify the data, just see if it could be there.
245 return (entry_
->GetDataSize(kSparseIndex
) != 0);
248 int SparseControl::StartIO(SparseOperation op
, int64 offset
, net::IOBuffer
* buf
,
249 int buf_len
, const CompletionCallback
& callback
) {
251 // We don't support simultaneous IO for sparse data.
252 if (operation_
!= kNoOperation
)
253 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
255 if (offset
< 0 || buf_len
< 0)
256 return net::ERR_INVALID_ARGUMENT
;
258 // We only support up to 64 GB.
259 if (static_cast<uint64
>(offset
) + static_cast<unsigned int>(buf_len
) >=
260 UINT64_C(0x1000000000)) {
261 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
264 DCHECK(!user_buf_
.get());
265 DCHECK(user_callback_
.is_null());
267 if (!buf
&& (op
== kReadOperation
|| op
== kWriteOperation
))
270 // Copy the operation parameters.
273 user_buf_
= buf
? new net::DrainableIOBuffer(buf
, buf_len
) : NULL
;
275 user_callback_
= callback
;
282 if (entry_
->net_log().IsCapturing()) {
283 entry_
->net_log().BeginEvent(
284 GetSparseEventType(operation_
),
285 CreateNetLogSparseOperationCallback(offset_
, buf_len_
));
290 // Everything was done synchronously.
291 operation_
= kNoOperation
;
293 user_callback_
.Reset();
297 return net::ERR_IO_PENDING
;
300 int SparseControl::GetAvailableRange(int64 offset
, int len
, int64
* start
) {
302 // We don't support simultaneous IO for sparse data.
303 if (operation_
!= kNoOperation
)
304 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
308 range_found_
= false;
309 int result
= StartIO(
310 kGetRangeOperation
, offset
, NULL
, len
, CompletionCallback());
316 // This is a failure. We want to return a valid start value in any case.
318 return result
< 0 ? result
: 0; // Don't mask error codes to the caller.
321 void SparseControl::CancelIO() {
322 if (operation_
== kNoOperation
)
327 int SparseControl::ReadyToUse(const CompletionCallback
& callback
) {
331 // We'll grab another reference to keep this object alive because we just have
332 // one extra reference due to the pending IO operation itself, but we'll
333 // release that one before invoking user_callback_.
334 entry_
->AddRef(); // Balanced in DoAbortCallbacks.
335 abort_callbacks_
.push_back(callback
);
336 return net::ERR_IO_PENDING
;
340 void SparseControl::DeleteChildren(EntryImpl
* entry
) {
341 DCHECK(entry
->GetEntryFlags() & PARENT_ENTRY
);
342 int data_len
= entry
->GetDataSize(kSparseIndex
);
343 if (data_len
< static_cast<int>(sizeof(SparseData
)) ||
344 entry
->GetDataSize(kSparseData
))
347 int map_len
= data_len
- sizeof(SparseHeader
);
348 if (map_len
> kMaxMapSize
|| map_len
% 4)
353 entry
->GetData(kSparseIndex
, &buffer
, &address
);
354 if (!buffer
&& !address
.is_initialized())
357 entry
->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN
);
359 DCHECK(entry
->backend_
.get());
360 ChildrenDeleter
* deleter
= new ChildrenDeleter(entry
->backend_
.get(),
362 // The object will self destruct when finished.
366 base::ThreadTaskRunnerHandle::Get()->PostTask(
368 base::Bind(&ChildrenDeleter::Start
, deleter
, buffer
, data_len
));
370 base::ThreadTaskRunnerHandle::Get()->PostTask(
372 base::Bind(&ChildrenDeleter::ReadData
, deleter
, address
, data_len
));
376 // We are going to start using this entry to store sparse data, so we have to
377 // initialize our control info.
378 int SparseControl::CreateSparseEntry() {
379 if (CHILD_ENTRY
& entry_
->GetEntryFlags())
380 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
382 memset(&sparse_header_
, 0, sizeof(sparse_header_
));
383 sparse_header_
.signature
= Time::Now().ToInternalValue();
384 sparse_header_
.magic
= kIndexMagic
;
385 sparse_header_
.parent_key_len
= entry_
->GetKey().size();
386 children_map_
.Resize(kNumSparseBits
, true);
388 // Save the header. The bitmap is saved in the destructor.
389 scoped_refptr
<net::IOBuffer
> buf(
390 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_
)));
392 int rv
= entry_
->WriteData(kSparseIndex
, 0, buf
.get(), sizeof(sparse_header_
),
393 CompletionCallback(), false);
394 if (rv
!= sizeof(sparse_header_
)) {
395 DLOG(ERROR
) << "Unable to save sparse_header_";
396 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
399 entry_
->SetEntryFlags(PARENT_ENTRY
);
403 // We are opening an entry from disk. Make sure that our control data is there.
404 int SparseControl::OpenSparseEntry(int data_len
) {
405 if (data_len
< static_cast<int>(sizeof(SparseData
)))
406 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
408 if (entry_
->GetDataSize(kSparseData
))
409 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
411 if (!(PARENT_ENTRY
& entry_
->GetEntryFlags()))
412 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
414 // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
415 int map_len
= data_len
- sizeof(sparse_header_
);
416 if (map_len
> kMaxMapSize
|| map_len
% 4)
417 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
419 scoped_refptr
<net::IOBuffer
> buf(
420 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_
)));
423 int rv
= entry_
->ReadData(kSparseIndex
, 0, buf
.get(), sizeof(sparse_header_
),
424 CompletionCallback());
425 if (rv
!= static_cast<int>(sizeof(sparse_header_
)))
426 return net::ERR_CACHE_READ_FAILURE
;
428 // The real validation should be performed by the caller. This is just to
430 if (sparse_header_
.magic
!= kIndexMagic
||
431 sparse_header_
.parent_key_len
!=
432 static_cast<int>(entry_
->GetKey().size()))
433 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED
;
435 // Read the actual bitmap.
436 buf
= new net::IOBuffer(map_len
);
437 rv
= entry_
->ReadData(kSparseIndex
, sizeof(sparse_header_
), buf
.get(),
438 map_len
, CompletionCallback());
440 return net::ERR_CACHE_READ_FAILURE
;
442 // Grow the bitmap to the current size and copy the bits.
443 children_map_
.Resize(map_len
* 8, false);
444 children_map_
.SetMap(reinterpret_cast<uint32
*>(buf
->data()), map_len
);
448 bool SparseControl::OpenChild() {
449 DCHECK_GE(result_
, 0);
451 std::string key
= GenerateChildKey();
453 // Keep using the same child or open another one?.
454 if (key
== child_
->GetKey())
459 // See if we are tracking this child.
461 return ContinueWithoutChild(key
);
463 if (!entry_
->backend_
.get())
466 child_
= entry_
->backend_
->OpenEntryImpl(key
);
468 return ContinueWithoutChild(key
);
470 EntryImpl
* child
= static_cast<EntryImpl
*>(child_
);
471 if (!(CHILD_ENTRY
& child
->GetEntryFlags()) ||
472 child
->GetDataSize(kSparseIndex
) <
473 static_cast<int>(sizeof(child_data_
)))
474 return KillChildAndContinue(key
, false);
476 scoped_refptr
<net::WrappedIOBuffer
> buf(
477 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_
)));
480 int rv
= child_
->ReadData(kSparseIndex
, 0, buf
.get(), sizeof(child_data_
),
481 CompletionCallback());
482 if (rv
!= sizeof(child_data_
))
483 return KillChildAndContinue(key
, true); // This is a fatal failure.
485 if (child_data_
.header
.signature
!= sparse_header_
.signature
||
486 child_data_
.header
.magic
!= kIndexMagic
)
487 return KillChildAndContinue(key
, false);
489 if (child_data_
.header
.last_block_len
< 0 ||
490 child_data_
.header
.last_block_len
>= kBlockSize
) {
491 // Make sure these values are always within range.
492 child_data_
.header
.last_block_len
= 0;
493 child_data_
.header
.last_block
= -1;
499 void SparseControl::CloseChild() {
500 scoped_refptr
<net::WrappedIOBuffer
> buf(
501 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_
)));
503 // Save the allocation bitmap before closing the child entry.
504 int rv
= child_
->WriteData(kSparseIndex
, 0, buf
.get(), sizeof(child_data_
),
505 CompletionCallback(), false);
506 if (rv
!= sizeof(child_data_
))
507 DLOG(ERROR
) << "Failed to save child data";
512 std::string
SparseControl::GenerateChildKey() {
513 return GenerateChildName(entry_
->GetKey(), sparse_header_
.signature
,
517 // We are deleting the child because something went wrong.
518 bool SparseControl::KillChildAndContinue(const std::string
& key
, bool fatal
) {
524 result_
= net::ERR_CACHE_READ_FAILURE
;
527 return ContinueWithoutChild(key
);
530 // We were not able to open this child; see what we can do.
531 bool SparseControl::ContinueWithoutChild(const std::string
& key
) {
532 if (kReadOperation
== operation_
)
534 if (kGetRangeOperation
== operation_
)
537 if (!entry_
->backend_
.get())
540 child_
= entry_
->backend_
->CreateEntryImpl(key
);
543 result_
= net::ERR_CACHE_READ_FAILURE
;
551 bool SparseControl::ChildPresent() {
552 int child_bit
= static_cast<int>(offset_
>> 20);
553 if (children_map_
.Size() <= child_bit
)
556 return children_map_
.Get(child_bit
);
559 void SparseControl::SetChildBit(bool value
) {
560 int child_bit
= static_cast<int>(offset_
>> 20);
562 // We may have to increase the bitmap of child entries.
563 if (children_map_
.Size() <= child_bit
)
564 children_map_
.Resize(Bitmap::RequiredArraySize(child_bit
+ 1) * 32, true);
566 children_map_
.Set(child_bit
, value
);
569 void SparseControl::WriteSparseData() {
570 scoped_refptr
<net::IOBuffer
> buf(new net::WrappedIOBuffer(
571 reinterpret_cast<const char*>(children_map_
.GetMap())));
573 int len
= children_map_
.ArraySize() * 4;
574 int rv
= entry_
->WriteData(kSparseIndex
, sizeof(sparse_header_
), buf
.get(),
575 len
, CompletionCallback(), false);
577 DLOG(ERROR
) << "Unable to save sparse map";
581 bool SparseControl::VerifyRange() {
582 DCHECK_GE(result_
, 0);
584 child_offset_
= static_cast<int>(offset_
) & (kMaxEntrySize
- 1);
585 child_len_
= std::min(buf_len_
, kMaxEntrySize
- child_offset_
);
587 // We can write to (or get info from) anywhere in this child.
588 if (operation_
!= kReadOperation
)
591 // Check that there are no holes in this range.
592 int last_bit
= (child_offset_
+ child_len_
+ 1023) >> 10;
593 int start
= child_offset_
>> 10;
594 if (child_map_
.FindNextBit(&start
, last_bit
, false)) {
595 // Something is not here.
596 DCHECK_GE(child_data_
.header
.last_block_len
, 0);
597 DCHECK_LT(child_data_
.header
.last_block_len
, kBlockSize
);
598 int partial_block_len
= PartialBlockLength(start
);
599 if (start
== child_offset_
>> 10) {
600 // It looks like we don't have anything.
601 if (partial_block_len
<= (child_offset_
& (kBlockSize
- 1)))
605 // We have the first part.
606 child_len_
= (start
<< 10) - child_offset_
;
607 if (partial_block_len
) {
608 // We may have a few extra bytes.
609 child_len_
= std::min(child_len_
+ partial_block_len
, buf_len_
);
611 // There is no need to read more after this one.
612 buf_len_
= child_len_
;
617 void SparseControl::UpdateRange(int result
) {
618 if (result
<= 0 || operation_
!= kWriteOperation
)
621 DCHECK_GE(child_data_
.header
.last_block_len
, 0);
622 DCHECK_LT(child_data_
.header
.last_block_len
, kBlockSize
);
625 int first_bit
= child_offset_
>> 10;
626 int block_offset
= child_offset_
& (kBlockSize
- 1);
627 if (block_offset
&& (child_data_
.header
.last_block
!= first_bit
||
628 child_data_
.header
.last_block_len
< block_offset
)) {
629 // The first block is not completely filled; ignore it.
633 int last_bit
= (child_offset_
+ result
) >> 10;
634 block_offset
= (child_offset_
+ result
) & (kBlockSize
- 1);
636 // This condition will hit with the following criteria:
637 // 1. The first byte doesn't follow the last write.
638 // 2. The first byte is in the middle of a block.
639 // 3. The first byte and the last byte are in the same block.
640 if (first_bit
> last_bit
)
643 if (block_offset
&& !child_map_
.Get(last_bit
)) {
644 // The last block is not completely filled; save it for later.
645 child_data_
.header
.last_block
= last_bit
;
646 child_data_
.header
.last_block_len
= block_offset
;
648 child_data_
.header
.last_block
= -1;
651 child_map_
.SetRange(first_bit
, last_bit
, true);
654 int SparseControl::PartialBlockLength(int block_index
) const {
655 if (block_index
== child_data_
.header
.last_block
)
656 return child_data_
.header
.last_block_len
;
658 // This is really empty.
662 void SparseControl::InitChildData() {
663 // We know the real type of child_.
664 EntryImpl
* child
= static_cast<EntryImpl
*>(child_
);
665 child
->SetEntryFlags(CHILD_ENTRY
);
667 memset(&child_data_
, 0, sizeof(child_data_
));
668 child_data_
.header
= sparse_header_
;
670 scoped_refptr
<net::WrappedIOBuffer
> buf(
671 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_
)));
673 int rv
= child_
->WriteData(kSparseIndex
, 0, buf
.get(), sizeof(child_data_
),
674 CompletionCallback(), false);
675 if (rv
!= sizeof(child_data_
))
676 DLOG(ERROR
) << "Failed to save child data";
680 void SparseControl::DoChildrenIO() {
681 while (DoChildIO()) continue;
683 // Range operations are finished synchronously, often without setting
684 // |finished_| to true.
685 if (kGetRangeOperation
== operation_
&& entry_
->net_log().IsCapturing()) {
686 entry_
->net_log().EndEvent(
687 net::NetLog::TYPE_SPARSE_GET_RANGE
,
688 CreateNetLogGetAvailableRangeResultCallback(offset_
, result_
));
691 if (kGetRangeOperation
!= operation_
&& entry_
->net_log().IsCapturing()) {
692 entry_
->net_log().EndEvent(GetSparseEventType(operation_
));
695 DoUserCallback(); // Don't touch this object after this point.
699 bool SparseControl::DoChildIO() {
701 if (!buf_len_
|| result_
< 0)
710 // We have more work to do. Let's not trigger a callback to the caller.
712 CompletionCallback callback
;
713 if (!user_callback_
.is_null()) {
715 base::Bind(&SparseControl::OnChildIOCompleted
, base::Unretained(this));
719 switch (operation_
) {
721 if (entry_
->net_log().IsCapturing()) {
722 entry_
->net_log().BeginEvent(
723 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA
,
724 CreateNetLogSparseReadWriteCallback(child_
->net_log().source(),
727 rv
= child_
->ReadDataImpl(kSparseData
, child_offset_
, user_buf_
.get(),
728 child_len_
, callback
);
730 case kWriteOperation
:
731 if (entry_
->net_log().IsCapturing()) {
732 entry_
->net_log().BeginEvent(
733 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA
,
734 CreateNetLogSparseReadWriteCallback(child_
->net_log().source(),
737 rv
= child_
->WriteDataImpl(kSparseData
, child_offset_
, user_buf_
.get(),
738 child_len_
, callback
, false);
740 case kGetRangeOperation
:
741 rv
= DoGetAvailableRange();
747 if (rv
== net::ERR_IO_PENDING
) {
750 // The child will protect himself against closing the entry while IO is in
751 // progress. However, this entry can still be closed, and that would not
752 // be a good thing for us, so we increase the refcount until we're
753 // finished doing sparse stuff.
754 entry_
->AddRef(); // Balanced in DoUserCallback.
761 DoChildIOCompleted(rv
);
765 int SparseControl::DoGetAvailableRange() {
767 return child_len_
; // Move on to the next child.
769 // Bits on the bitmap should only be set when the corresponding block was
770 // fully written (it's really being used). If a block is partially used, it
771 // has to start with valid data, the length of the valid data is saved in
772 // |header.last_block_len| and the block itself should match
773 // |header.last_block|.
775 // In other words, (|header.last_block| + |header.last_block_len|) is the
776 // offset where the last write ended, and data in that block (which is not
777 // marked as used because it is not full) will only be reused if the next
778 // write continues at that point.
780 // This code has to find if there is any data between child_offset_ and
781 // child_offset_ + child_len_.
782 int last_bit
= (child_offset_
+ child_len_
+ kBlockSize
- 1) >> 10;
783 int start
= child_offset_
>> 10;
784 int partial_start_bytes
= PartialBlockLength(start
);
786 int bits_found
= child_map_
.FindBits(&found
, last_bit
, true);
787 bool is_last_block_in_range
= start
< child_data_
.header
.last_block
&&
788 child_data_
.header
.last_block
< last_bit
;
790 int block_offset
= child_offset_
& (kBlockSize
- 1);
791 if (!bits_found
&& partial_start_bytes
<= block_offset
) {
792 if (!is_last_block_in_range
)
794 found
= last_bit
- 1; // There are some bytes here.
797 // We are done. Just break the loop and reset result_ to our real result.
800 int bytes_found
= bits_found
<< 10;
801 bytes_found
+= PartialBlockLength(found
+ bits_found
);
803 // found now points to the first bytes. Lets see if we have data before it.
804 int empty_start
= std::max((found
<< 10) - child_offset_
, 0);
805 if (empty_start
>= child_len_
)
808 // At this point we have bytes_found stored after (found << 10), and we want
809 // child_len_ bytes after child_offset_. The first empty_start bytes after
810 // child_offset_ are invalid.
813 bytes_found
-= block_offset
;
815 // If the user is searching past the end of this child, bits_found is the
816 // right result; otherwise, we have some empty space at the start of this
817 // query that we have to subtract from the range that we searched.
818 result_
= std::min(bytes_found
, child_len_
- empty_start
);
820 if (partial_start_bytes
) {
821 result_
= std::min(partial_start_bytes
- block_offset
, child_len_
);
825 // Only update offset_ when this query found zeros at the start.
827 offset_
+= empty_start
;
829 // This will actually break the loop.
834 void SparseControl::DoChildIOCompleted(int result
) {
835 LogChildOperationEnd(entry_
->net_log(), operation_
, result
);
837 // We fail the whole operation if we encounter an error.
848 // We'll be reusing the user provided buffer for the next chunk.
849 if (buf_len_
&& user_buf_
.get())
850 user_buf_
->DidConsume(result
);
853 void SparseControl::OnChildIOCompleted(int result
) {
854 DCHECK_NE(net::ERR_IO_PENDING
, result
);
855 DoChildIOCompleted(result
);
858 // We'll return the current result of the operation, which may be less than
859 // the bytes to read or write, but the user cancelled the operation.
861 if (entry_
->net_log().IsCapturing()) {
862 entry_
->net_log().AddEvent(net::NetLog::TYPE_CANCELLED
);
863 entry_
->net_log().EndEvent(GetSparseEventType(operation_
));
865 // We have an indirect reference to this object for every callback so if
866 // there is only one callback, we may delete this object before reaching
868 bool has_abort_callbacks
= !abort_callbacks_
.empty();
870 if (has_abort_callbacks
)
875 // We are running a callback from the message loop. It's time to restart what
876 // we were doing before.
880 void SparseControl::DoUserCallback() {
881 DCHECK(!user_callback_
.is_null());
882 CompletionCallback cb
= user_callback_
;
883 user_callback_
.Reset();
886 operation_
= kNoOperation
;
888 entry_
->Release(); // Don't touch object after this line.
892 void SparseControl::DoAbortCallbacks() {
893 for (size_t i
= 0; i
< abort_callbacks_
.size(); i
++) {
894 // Releasing all references to entry_ may result in the destruction of this
895 // object so we should not be touching it after the last Release().
896 CompletionCallback cb
= abort_callbacks_
[i
];
897 if (i
== abort_callbacks_
.size() - 1)
898 abort_callbacks_
.clear();
900 entry_
->Release(); // Don't touch object after this line.
905 } // namespace disk_cache