1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/basictypes.h"
7 #include "base/bind_helpers.h"
8 #include "base/files/file.h"
9 #include "base/files/file_util.h"
10 #include "base/strings/string_util.h"
11 #include "base/strings/stringprintf.h"
12 #include "base/threading/platform_thread.h"
13 #include "net/base/completion_callback.h"
14 #include "net/base/io_buffer.h"
15 #include "net/base/net_errors.h"
16 #include "net/base/test_completion_callback.h"
17 #include "net/disk_cache/blockfile/backend_impl.h"
18 #include "net/disk_cache/blockfile/entry_impl.h"
19 #include "net/disk_cache/disk_cache_test_base.h"
20 #include "net/disk_cache/disk_cache_test_util.h"
21 #include "net/disk_cache/memory/mem_entry_impl.h"
22 #include "net/disk_cache/simple/simple_entry_format.h"
23 #include "net/disk_cache/simple/simple_entry_impl.h"
24 #include "net/disk_cache/simple/simple_synchronous_entry.h"
25 #include "net/disk_cache/simple/simple_test_util.h"
26 #include "net/disk_cache/simple/simple_util.h"
27 #include "testing/gtest/include/gtest/gtest.h"
30 using disk_cache::ScopedEntryPtr
;
32 // Tests that can run with different types of caches.
33 class DiskCacheEntryTest
: public DiskCacheTestWithCache
{
35 void InternalSyncIOBackground(disk_cache::Entry
* entry
);
36 void ExternalSyncIOBackground(disk_cache::Entry
* entry
);
39 void InternalSyncIO();
40 void InternalAsyncIO();
41 void ExternalSyncIO();
42 void ExternalAsyncIO();
43 void ReleaseBuffer(int stream_index
);
46 void GetTimes(int stream_index
);
47 void GrowData(int stream_index
);
48 void TruncateData(int stream_index
);
49 void ZeroLengthIO(int stream_index
);
52 void SizeChanges(int stream_index
);
53 void ReuseEntry(int size
, int stream_index
);
54 void InvalidData(int stream_index
);
55 void ReadWriteDestroyBuffer(int stream_index
);
56 void DoomNormalEntry();
57 void DoomEntryNextToOpenEntry();
58 void DoomedEntry(int stream_index
);
61 void GetAvailableRange();
63 void UpdateSparseEntry();
64 void DoomSparseEntry();
65 void PartialSparseEntry();
66 bool SimpleCacheMakeBadChecksumEntry(const std::string
& key
, int* data_size
);
67 bool SimpleCacheThirdStreamFileExists(const char* key
);
68 void SyncDoomEntry(const char* key
);
71 // This part of the test runs on the background thread.
72 void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry
* entry
) {
73 const int kSize1
= 10;
74 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
75 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
78 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
79 base::strlcpy(buffer1
->data(), "the data", kSize1
);
82 0, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
83 memset(buffer1
->data(), 0, kSize1
);
86 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
87 EXPECT_STREQ("the data", buffer1
->data());
89 const int kSize2
= 5000;
90 const int kSize3
= 10000;
91 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
92 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
93 memset(buffer3
->data(), 0, kSize3
);
94 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
95 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
99 1, 1500, buffer2
.get(), kSize2
, net::CompletionCallback(), false));
100 memset(buffer2
->data(), 0, kSize2
);
103 1, 1511, buffer2
.get(), kSize2
, net::CompletionCallback()));
104 EXPECT_STREQ("big data goes here", buffer2
->data());
107 entry
->ReadData(1, 0, buffer2
.get(), kSize2
, net::CompletionCallback()));
108 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 1500));
111 1, 5000, buffer2
.get(), kSize2
, net::CompletionCallback()));
115 1, 6500, buffer2
.get(), kSize2
, net::CompletionCallback()));
118 entry
->ReadData(1, 0, buffer3
.get(), kSize3
, net::CompletionCallback()));
121 1, 0, buffer3
.get(), 8192, net::CompletionCallback(), false));
124 entry
->ReadData(1, 0, buffer3
.get(), kSize3
, net::CompletionCallback()));
125 EXPECT_EQ(8192, entry
->GetDataSize(1));
127 // We need to delete the memory buffer on this thread.
128 EXPECT_EQ(0, entry
->WriteData(
129 0, 0, NULL
, 0, net::CompletionCallback(), true));
130 EXPECT_EQ(0, entry
->WriteData(
131 1, 0, NULL
, 0, net::CompletionCallback(), true));
134 // We need to support synchronous IO even though it is not a supported operation
135 // from the point of view of the disk cache's public interface, because we use
136 // it internally, not just by a few tests, but as part of the implementation
137 // (see sparse_control.cc, for example).
138 void DiskCacheEntryTest::InternalSyncIO() {
139 disk_cache::Entry
* entry
= NULL
;
140 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
141 ASSERT_TRUE(NULL
!= entry
);
143 // The bulk of the test runs from within the callback, on the cache thread.
144 RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground
,
145 base::Unretained(this),
152 EXPECT_EQ(0, cache_
->GetEntryCount());
155 TEST_F(DiskCacheEntryTest
, InternalSyncIO
) {
160 TEST_F(DiskCacheEntryTest
, MemoryOnlyInternalSyncIO
) {
166 void DiskCacheEntryTest::InternalAsyncIO() {
167 disk_cache::Entry
* entry
= NULL
;
168 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
169 ASSERT_TRUE(NULL
!= entry
);
171 // Avoid using internal buffers for the test. We have to write something to
172 // the entry and close it so that we flush the internal buffer to disk. After
173 // that, IO operations will be really hitting the disk. We don't care about
174 // the content, so just extending the entry is enough (all extensions zero-
176 EXPECT_EQ(0, WriteData(entry
, 0, 15 * 1024, NULL
, 0, false));
177 EXPECT_EQ(0, WriteData(entry
, 1, 15 * 1024, NULL
, 0, false));
179 ASSERT_EQ(net::OK
, OpenEntry("the first key", &entry
));
181 MessageLoopHelper helper
;
182 // Let's verify that each IO goes to the right callback object.
183 CallbackTest
callback1(&helper
, false);
184 CallbackTest
callback2(&helper
, false);
185 CallbackTest
callback3(&helper
, false);
186 CallbackTest
callback4(&helper
, false);
187 CallbackTest
callback5(&helper
, false);
188 CallbackTest
callback6(&helper
, false);
189 CallbackTest
callback7(&helper
, false);
190 CallbackTest
callback8(&helper
, false);
191 CallbackTest
callback9(&helper
, false);
192 CallbackTest
callback10(&helper
, false);
193 CallbackTest
callback11(&helper
, false);
194 CallbackTest
callback12(&helper
, false);
195 CallbackTest
callback13(&helper
, false);
197 const int kSize1
= 10;
198 const int kSize2
= 5000;
199 const int kSize3
= 10000;
200 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
201 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
202 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
203 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
204 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
205 CacheTestFillBuffer(buffer3
->data(), kSize3
, false);
213 base::Bind(&CallbackTest::Run
, base::Unretained(&callback1
))));
214 base::strlcpy(buffer1
->data(), "the data", kSize1
);
216 int ret
= entry
->WriteData(
221 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)),
223 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
224 if (net::ERR_IO_PENDING
== ret
)
227 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
228 memset(buffer2
->data(), 0, kSize2
);
229 ret
= entry
->ReadData(
234 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
)));
235 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
236 if (net::ERR_IO_PENDING
== ret
)
239 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
240 EXPECT_STREQ("the data", buffer2
->data());
242 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
243 ret
= entry
->WriteData(
248 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)),
250 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
251 if (net::ERR_IO_PENDING
== ret
)
254 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
255 memset(buffer3
->data(), 0, kSize3
);
256 ret
= entry
->ReadData(
261 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
)));
262 EXPECT_TRUE(4989 == ret
|| net::ERR_IO_PENDING
== ret
);
263 if (net::ERR_IO_PENDING
== ret
)
266 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
267 EXPECT_STREQ("big data goes here", buffer3
->data());
268 ret
= entry
->ReadData(
273 base::Bind(&CallbackTest::Run
, base::Unretained(&callback6
)));
274 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
275 if (net::ERR_IO_PENDING
== ret
)
278 memset(buffer3
->data(), 0, kSize3
);
280 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
281 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 1500));
282 ret
= entry
->ReadData(
287 base::Bind(&CallbackTest::Run
, base::Unretained(&callback7
)));
288 EXPECT_TRUE(1500 == ret
|| net::ERR_IO_PENDING
== ret
);
289 if (net::ERR_IO_PENDING
== ret
)
292 ret
= entry
->ReadData(
297 base::Bind(&CallbackTest::Run
, base::Unretained(&callback9
)));
298 EXPECT_TRUE(6500 == ret
|| net::ERR_IO_PENDING
== ret
);
299 if (net::ERR_IO_PENDING
== ret
)
302 ret
= entry
->WriteData(
307 base::Bind(&CallbackTest::Run
, base::Unretained(&callback10
)),
309 EXPECT_TRUE(8192 == ret
|| net::ERR_IO_PENDING
== ret
);
310 if (net::ERR_IO_PENDING
== ret
)
313 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
314 ret
= entry
->ReadData(
319 base::Bind(&CallbackTest::Run
, base::Unretained(&callback11
)));
320 EXPECT_TRUE(8192 == ret
|| net::ERR_IO_PENDING
== ret
);
321 if (net::ERR_IO_PENDING
== ret
)
324 EXPECT_EQ(8192, entry
->GetDataSize(1));
326 ret
= entry
->ReadData(
331 base::Bind(&CallbackTest::Run
, base::Unretained(&callback12
)));
332 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
333 if (net::ERR_IO_PENDING
== ret
)
336 ret
= entry
->ReadData(
341 base::Bind(&CallbackTest::Run
, base::Unretained(&callback13
)));
342 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
343 if (net::ERR_IO_PENDING
== ret
)
346 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
348 EXPECT_FALSE(helper
.callback_reused_error());
353 EXPECT_EQ(0, cache_
->GetEntryCount());
356 TEST_F(DiskCacheEntryTest
, InternalAsyncIO
) {
361 TEST_F(DiskCacheEntryTest
, MemoryOnlyInternalAsyncIO
) {
367 // This part of the test runs on the background thread.
368 void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry
* entry
) {
369 const int kSize1
= 17000;
370 const int kSize2
= 25000;
371 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
372 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
373 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
374 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
375 base::strlcpy(buffer1
->data(), "the data", kSize1
);
378 0, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
379 memset(buffer1
->data(), 0, kSize1
);
382 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
383 EXPECT_STREQ("the data", buffer1
->data());
385 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
389 1, 10000, buffer2
.get(), kSize2
, net::CompletionCallback(), false));
390 memset(buffer2
->data(), 0, kSize2
);
393 1, 10011, buffer2
.get(), kSize2
, net::CompletionCallback()));
394 EXPECT_STREQ("big data goes here", buffer2
->data());
397 entry
->ReadData(1, 0, buffer2
.get(), kSize2
, net::CompletionCallback()));
400 1, 30000, buffer2
.get(), kSize2
, net::CompletionCallback()));
404 1, 35000, buffer2
.get(), kSize2
, net::CompletionCallback()));
407 entry
->ReadData(1, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
411 1, 20000, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
412 EXPECT_EQ(37000, entry
->GetDataSize(1));
414 // We need to delete the memory buffer on this thread.
415 EXPECT_EQ(0, entry
->WriteData(
416 0, 0, NULL
, 0, net::CompletionCallback(), true));
417 EXPECT_EQ(0, entry
->WriteData(
418 1, 0, NULL
, 0, net::CompletionCallback(), true));
421 void DiskCacheEntryTest::ExternalSyncIO() {
422 disk_cache::Entry
* entry
;
423 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
425 // The bulk of the test runs from within the callback, on the cache thread.
426 RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground
,
427 base::Unretained(this),
433 EXPECT_EQ(0, cache_
->GetEntryCount());
436 TEST_F(DiskCacheEntryTest
, ExternalSyncIO
) {
441 TEST_F(DiskCacheEntryTest
, ExternalSyncIONoBuffer
) {
443 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
447 TEST_F(DiskCacheEntryTest
, MemoryOnlyExternalSyncIO
) {
453 void DiskCacheEntryTest::ExternalAsyncIO() {
454 disk_cache::Entry
* entry
;
455 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
459 MessageLoopHelper helper
;
460 // Let's verify that each IO goes to the right callback object.
461 CallbackTest
callback1(&helper
, false);
462 CallbackTest
callback2(&helper
, false);
463 CallbackTest
callback3(&helper
, false);
464 CallbackTest
callback4(&helper
, false);
465 CallbackTest
callback5(&helper
, false);
466 CallbackTest
callback6(&helper
, false);
467 CallbackTest
callback7(&helper
, false);
468 CallbackTest
callback8(&helper
, false);
469 CallbackTest
callback9(&helper
, false);
471 const int kSize1
= 17000;
472 const int kSize2
= 25000;
473 const int kSize3
= 25000;
474 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
475 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
476 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
477 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
478 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
479 CacheTestFillBuffer(buffer3
->data(), kSize3
, false);
480 base::strlcpy(buffer1
->data(), "the data", kSize1
);
481 int ret
= entry
->WriteData(
486 base::Bind(&CallbackTest::Run
, base::Unretained(&callback1
)),
488 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
489 if (net::ERR_IO_PENDING
== ret
)
492 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
494 memset(buffer2
->data(), 0, kSize1
);
495 ret
= entry
->ReadData(
500 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)));
501 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
502 if (net::ERR_IO_PENDING
== ret
)
505 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
506 EXPECT_STREQ("the data", buffer2
->data());
508 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
509 ret
= entry
->WriteData(
514 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
)),
516 EXPECT_TRUE(25000 == ret
|| net::ERR_IO_PENDING
== ret
);
517 if (net::ERR_IO_PENDING
== ret
)
520 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
522 memset(buffer3
->data(), 0, kSize3
);
523 ret
= entry
->ReadData(
528 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)));
529 EXPECT_TRUE(24989 == ret
|| net::ERR_IO_PENDING
== ret
);
530 if (net::ERR_IO_PENDING
== ret
)
533 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
534 EXPECT_STREQ("big data goes here", buffer3
->data());
535 ret
= entry
->ReadData(
540 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
)));
541 EXPECT_TRUE(25000 == ret
|| net::ERR_IO_PENDING
== ret
);
542 if (net::ERR_IO_PENDING
== ret
)
545 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
546 memset(buffer3
->data(), 0, kSize3
);
547 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 10000));
548 ret
= entry
->ReadData(
553 base::Bind(&CallbackTest::Run
, base::Unretained(&callback6
)));
554 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
555 if (net::ERR_IO_PENDING
== ret
)
564 base::Bind(&CallbackTest::Run
, base::Unretained(&callback7
))));
565 ret
= entry
->ReadData(
570 base::Bind(&CallbackTest::Run
, base::Unretained(&callback8
)));
571 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
572 if (net::ERR_IO_PENDING
== ret
)
574 ret
= entry
->WriteData(
579 base::Bind(&CallbackTest::Run
, base::Unretained(&callback9
)),
581 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
582 if (net::ERR_IO_PENDING
== ret
)
585 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
586 EXPECT_EQ(37000, entry
->GetDataSize(1));
588 EXPECT_FALSE(helper
.callback_reused_error());
593 EXPECT_EQ(0, cache_
->GetEntryCount());
596 TEST_F(DiskCacheEntryTest
, ExternalAsyncIO
) {
601 TEST_F(DiskCacheEntryTest
, ExternalAsyncIONoBuffer
) {
603 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
607 TEST_F(DiskCacheEntryTest
, MemoryOnlyExternalAsyncIO
) {
613 // Tests that IOBuffers are not referenced after IO completes.
614 void DiskCacheEntryTest::ReleaseBuffer(int stream_index
) {
615 disk_cache::Entry
* entry
= NULL
;
616 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
617 ASSERT_TRUE(NULL
!= entry
);
619 const int kBufferSize
= 1024;
620 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kBufferSize
));
621 CacheTestFillBuffer(buffer
->data(), kBufferSize
, false);
623 net::ReleaseBufferCompletionCallback
cb(buffer
.get());
624 int rv
= entry
->WriteData(
625 stream_index
, 0, buffer
.get(), kBufferSize
, cb
.callback(), false);
626 EXPECT_EQ(kBufferSize
, cb
.GetResult(rv
));
630 TEST_F(DiskCacheEntryTest
, ReleaseBuffer
) {
632 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
636 TEST_F(DiskCacheEntryTest
, MemoryOnlyReleaseBuffer
) {
642 void DiskCacheEntryTest::StreamAccess() {
643 disk_cache::Entry
* entry
= NULL
;
644 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
645 ASSERT_TRUE(NULL
!= entry
);
647 const int kBufferSize
= 1024;
648 const int kNumStreams
= 3;
649 scoped_refptr
<net::IOBuffer
> reference_buffers
[kNumStreams
];
650 for (int i
= 0; i
< kNumStreams
; i
++) {
651 reference_buffers
[i
] = new net::IOBuffer(kBufferSize
);
652 CacheTestFillBuffer(reference_buffers
[i
]->data(), kBufferSize
, false);
654 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kBufferSize
));
655 for (int i
= 0; i
< kNumStreams
; i
++) {
658 WriteData(entry
, i
, 0, reference_buffers
[i
].get(), kBufferSize
, false));
659 memset(buffer1
->data(), 0, kBufferSize
);
660 EXPECT_EQ(kBufferSize
, ReadData(entry
, i
, 0, buffer1
.get(), kBufferSize
));
662 0, memcmp(reference_buffers
[i
]->data(), buffer1
->data(), kBufferSize
));
664 EXPECT_EQ(net::ERR_INVALID_ARGUMENT
,
665 ReadData(entry
, kNumStreams
, 0, buffer1
.get(), kBufferSize
));
668 // Open the entry and read it in chunks, including a read past the end.
669 ASSERT_EQ(net::OK
, OpenEntry("the first key", &entry
));
670 ASSERT_TRUE(NULL
!= entry
);
671 const int kReadBufferSize
= 600;
672 const int kFinalReadSize
= kBufferSize
- kReadBufferSize
;
673 static_assert(kFinalReadSize
< kReadBufferSize
,
674 "should be exactly two reads");
675 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kReadBufferSize
));
676 for (int i
= 0; i
< kNumStreams
; i
++) {
677 memset(buffer2
->data(), 0, kReadBufferSize
);
678 EXPECT_EQ(kReadBufferSize
,
679 ReadData(entry
, i
, 0, buffer2
.get(), kReadBufferSize
));
682 memcmp(reference_buffers
[i
]->data(), buffer2
->data(), kReadBufferSize
));
684 memset(buffer2
->data(), 0, kReadBufferSize
);
687 ReadData(entry
, i
, kReadBufferSize
, buffer2
.get(), kReadBufferSize
));
689 memcmp(reference_buffers
[i
]->data() + kReadBufferSize
,
697 TEST_F(DiskCacheEntryTest
, StreamAccess
) {
702 TEST_F(DiskCacheEntryTest
, MemoryOnlyStreamAccess
) {
708 void DiskCacheEntryTest::GetKey() {
709 std::string
key("the first key");
710 disk_cache::Entry
* entry
;
711 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
712 EXPECT_EQ(key
, entry
->GetKey()) << "short key";
715 int seed
= static_cast<int>(Time::Now().ToInternalValue());
717 char key_buffer
[20000];
719 CacheTestFillBuffer(key_buffer
, 3000, true);
720 key_buffer
[1000] = '\0';
723 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
724 EXPECT_TRUE(key
== entry
->GetKey()) << "1000 bytes key";
727 key_buffer
[1000] = 'p';
728 key_buffer
[3000] = '\0';
730 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
731 EXPECT_TRUE(key
== entry
->GetKey()) << "medium size key";
734 CacheTestFillBuffer(key_buffer
, sizeof(key_buffer
), true);
735 key_buffer
[19999] = '\0';
738 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
739 EXPECT_TRUE(key
== entry
->GetKey()) << "long key";
742 CacheTestFillBuffer(key_buffer
, 0x4000, true);
743 key_buffer
[0x4000] = '\0';
746 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
747 EXPECT_TRUE(key
== entry
->GetKey()) << "16KB key";
751 TEST_F(DiskCacheEntryTest
, GetKey
) {
756 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetKey
) {
762 void DiskCacheEntryTest::GetTimes(int stream_index
) {
763 std::string
key("the first key");
764 disk_cache::Entry
* entry
;
766 Time t1
= Time::Now();
767 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
768 EXPECT_TRUE(entry
->GetLastModified() >= t1
);
769 EXPECT_TRUE(entry
->GetLastModified() == entry
->GetLastUsed());
772 Time t2
= Time::Now();
773 EXPECT_TRUE(t2
> t1
);
774 EXPECT_EQ(0, WriteData(entry
, stream_index
, 200, NULL
, 0, false));
775 if (type_
== net::APP_CACHE
) {
776 EXPECT_TRUE(entry
->GetLastModified() < t2
);
778 EXPECT_TRUE(entry
->GetLastModified() >= t2
);
780 EXPECT_TRUE(entry
->GetLastModified() == entry
->GetLastUsed());
783 Time t3
= Time::Now();
784 EXPECT_TRUE(t3
> t2
);
785 const int kSize
= 200;
786 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
787 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 0, buffer
.get(), kSize
));
788 if (type_
== net::APP_CACHE
) {
789 EXPECT_TRUE(entry
->GetLastUsed() < t2
);
790 EXPECT_TRUE(entry
->GetLastModified() < t2
);
791 } else if (type_
== net::SHADER_CACHE
) {
792 EXPECT_TRUE(entry
->GetLastUsed() < t3
);
793 EXPECT_TRUE(entry
->GetLastModified() < t3
);
795 EXPECT_TRUE(entry
->GetLastUsed() >= t3
);
796 EXPECT_TRUE(entry
->GetLastModified() < t3
);
801 TEST_F(DiskCacheEntryTest
, GetTimes
) {
806 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetTimes
) {
812 TEST_F(DiskCacheEntryTest
, AppCacheGetTimes
) {
813 SetCacheType(net::APP_CACHE
);
818 TEST_F(DiskCacheEntryTest
, ShaderCacheGetTimes
) {
819 SetCacheType(net::SHADER_CACHE
);
824 void DiskCacheEntryTest::GrowData(int stream_index
) {
825 std::string
key1("the first key");
826 disk_cache::Entry
* entry
;
827 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
829 const int kSize
= 20000;
830 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
831 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
832 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
833 memset(buffer2
->data(), 0, kSize
);
835 base::strlcpy(buffer1
->data(), "the data", kSize
);
836 EXPECT_EQ(10, WriteData(entry
, stream_index
, 0, buffer1
.get(), 10, false));
837 EXPECT_EQ(10, ReadData(entry
, stream_index
, 0, buffer2
.get(), 10));
838 EXPECT_STREQ("the data", buffer2
->data());
839 EXPECT_EQ(10, entry
->GetDataSize(stream_index
));
842 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
843 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
844 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
845 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 2000));
848 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, false));
849 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
850 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), kSize
));
851 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), kSize
));
854 memset(buffer2
->data(), 0, kSize
);
855 std::string
key2("Second key");
856 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry
));
857 EXPECT_EQ(10, WriteData(entry
, stream_index
, 0, buffer1
.get(), 10, false));
858 EXPECT_EQ(10, entry
->GetDataSize(stream_index
));
861 // Go from an internal address to a bigger block size.
862 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
864 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
865 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
866 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
867 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 2000));
869 memset(buffer2
->data(), 0, kSize
);
871 // Go from an internal address to an external one.
872 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
874 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, false));
875 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
876 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), kSize
));
877 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), kSize
));
880 // Double check the size from disk.
881 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
882 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
884 // Now extend the entry without actual data.
885 EXPECT_EQ(0, WriteData(entry
, stream_index
, 45500, buffer1
.get(), 0, false));
888 // And check again from disk.
889 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
890 EXPECT_EQ(45500, entry
->GetDataSize(stream_index
));
894 TEST_F(DiskCacheEntryTest
, GrowData
) {
899 TEST_F(DiskCacheEntryTest
, GrowDataNoBuffer
) {
901 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
905 TEST_F(DiskCacheEntryTest
, MemoryOnlyGrowData
) {
911 void DiskCacheEntryTest::TruncateData(int stream_index
) {
912 std::string
key("the first key");
913 disk_cache::Entry
* entry
;
914 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
916 const int kSize1
= 20000;
917 const int kSize2
= 20000;
918 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
919 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
921 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
922 memset(buffer2
->data(), 0, kSize2
);
924 // Simple truncation:
925 EXPECT_EQ(200, WriteData(entry
, stream_index
, 0, buffer1
.get(), 200, false));
926 EXPECT_EQ(200, entry
->GetDataSize(stream_index
));
927 EXPECT_EQ(100, WriteData(entry
, stream_index
, 0, buffer1
.get(), 100, false));
928 EXPECT_EQ(200, entry
->GetDataSize(stream_index
));
929 EXPECT_EQ(100, WriteData(entry
, stream_index
, 0, buffer1
.get(), 100, true));
930 EXPECT_EQ(100, entry
->GetDataSize(stream_index
));
931 EXPECT_EQ(0, WriteData(entry
, stream_index
, 50, buffer1
.get(), 0, true));
932 EXPECT_EQ(50, entry
->GetDataSize(stream_index
));
933 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer1
.get(), 0, true));
934 EXPECT_EQ(0, entry
->GetDataSize(stream_index
));
936 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
938 // Go to an external file.
940 WriteData(entry
, stream_index
, 0, buffer1
.get(), 20000, true));
941 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
942 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 20000));
943 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 20000));
944 memset(buffer2
->data(), 0, kSize2
);
946 // External file truncation
948 WriteData(entry
, stream_index
, 0, buffer1
.get(), 18000, false));
949 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
951 WriteData(entry
, stream_index
, 0, buffer1
.get(), 18000, true));
952 EXPECT_EQ(18000, entry
->GetDataSize(stream_index
));
953 EXPECT_EQ(0, WriteData(entry
, stream_index
, 17500, buffer1
.get(), 0, true));
954 EXPECT_EQ(17500, entry
->GetDataSize(stream_index
));
956 // And back to an internal block.
958 WriteData(entry
, stream_index
, 1000, buffer1
.get(), 600, true));
959 EXPECT_EQ(1600, entry
->GetDataSize(stream_index
));
960 EXPECT_EQ(600, ReadData(entry
, stream_index
, 1000, buffer2
.get(), 600));
961 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 600));
962 EXPECT_EQ(1000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 1000));
963 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 1000))
964 << "Preserves previous data";
966 // Go from external file to zero length.
968 WriteData(entry
, stream_index
, 0, buffer1
.get(), 20000, true));
969 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
970 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer1
.get(), 0, true));
971 EXPECT_EQ(0, entry
->GetDataSize(stream_index
));
976 TEST_F(DiskCacheEntryTest
, TruncateData
) {
981 TEST_F(DiskCacheEntryTest
, TruncateDataNoBuffer
) {
983 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
987 TEST_F(DiskCacheEntryTest
, MemoryOnlyTruncateData
) {
993 void DiskCacheEntryTest::ZeroLengthIO(int stream_index
) {
994 std::string
key("the first key");
995 disk_cache::Entry
* entry
;
996 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
998 EXPECT_EQ(0, ReadData(entry
, stream_index
, 0, NULL
, 0));
999 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, NULL
, 0, false));
1001 // This write should extend the entry.
1002 EXPECT_EQ(0, WriteData(entry
, stream_index
, 1000, NULL
, 0, false));
1003 EXPECT_EQ(0, ReadData(entry
, stream_index
, 500, NULL
, 0));
1004 EXPECT_EQ(0, ReadData(entry
, stream_index
, 2000, NULL
, 0));
1005 EXPECT_EQ(1000, entry
->GetDataSize(stream_index
));
1007 EXPECT_EQ(0, WriteData(entry
, stream_index
, 100000, NULL
, 0, true));
1008 EXPECT_EQ(0, ReadData(entry
, stream_index
, 50000, NULL
, 0));
1009 EXPECT_EQ(100000, entry
->GetDataSize(stream_index
));
1011 // Let's verify the actual content.
1012 const int kSize
= 20;
1013 const char zeros
[kSize
] = {};
1014 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1016 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1017 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 500, buffer
.get(), kSize
));
1018 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1020 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1021 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 5000, buffer
.get(), kSize
));
1022 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1024 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1025 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 50000, buffer
.get(), kSize
));
1026 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1031 TEST_F(DiskCacheEntryTest
, ZeroLengthIO
) {
1036 TEST_F(DiskCacheEntryTest
, ZeroLengthIONoBuffer
) {
1038 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1042 TEST_F(DiskCacheEntryTest
, MemoryOnlyZeroLengthIO
) {
1043 SetMemoryOnlyMode();
1048 // Tests that we handle the content correctly when buffering, a feature of the
1049 // standard cache that permits fast responses to certain reads.
1050 void DiskCacheEntryTest::Buffering() {
1051 std::string
key("the first key");
1052 disk_cache::Entry
* entry
;
1053 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1055 const int kSize
= 200;
1056 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
1057 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
1058 CacheTestFillBuffer(buffer1
->data(), kSize
, true);
1059 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1061 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buffer1
.get(), kSize
, false));
1064 // Write a little more and read what we wrote before.
1065 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1066 EXPECT_EQ(kSize
, WriteData(entry
, 1, 5000, buffer1
.get(), kSize
, false));
1067 EXPECT_EQ(kSize
, ReadData(entry
, 1, 0, buffer2
.get(), kSize
));
1068 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1070 // Now go to an external file.
1071 EXPECT_EQ(kSize
, WriteData(entry
, 1, 18000, buffer1
.get(), kSize
, false));
1074 // Write something else and verify old data.
1075 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1076 EXPECT_EQ(kSize
, WriteData(entry
, 1, 10000, buffer1
.get(), kSize
, false));
1077 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1078 EXPECT_EQ(kSize
, ReadData(entry
, 1, 5000, buffer2
.get(), kSize
));
1079 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1080 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1081 EXPECT_EQ(kSize
, ReadData(entry
, 1, 0, buffer2
.get(), kSize
));
1082 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1083 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1084 EXPECT_EQ(kSize
, ReadData(entry
, 1, 18000, buffer2
.get(), kSize
));
1085 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1087 // Extend the file some more.
1088 EXPECT_EQ(kSize
, WriteData(entry
, 1, 23000, buffer1
.get(), kSize
, false));
1091 // And now make sure that we can deal with data in both places (ram/disk).
1092 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1093 EXPECT_EQ(kSize
, WriteData(entry
, 1, 17000, buffer1
.get(), kSize
, false));
1095 // We should not overwrite the data at 18000 with this.
1096 EXPECT_EQ(kSize
, WriteData(entry
, 1, 19000, buffer1
.get(), kSize
, false));
1097 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1098 EXPECT_EQ(kSize
, ReadData(entry
, 1, 18000, buffer2
.get(), kSize
));
1099 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1100 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1101 EXPECT_EQ(kSize
, ReadData(entry
, 1, 17000, buffer2
.get(), kSize
));
1102 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1104 EXPECT_EQ(kSize
, WriteData(entry
, 1, 22900, buffer1
.get(), kSize
, false));
1105 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1106 EXPECT_EQ(100, ReadData(entry
, 1, 23000, buffer2
.get(), kSize
));
1107 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + 100, 100));
1109 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1110 EXPECT_EQ(100, ReadData(entry
, 1, 23100, buffer2
.get(), kSize
));
1111 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + 100, 100));
1113 // Extend the file again and read before without closing the entry.
1114 EXPECT_EQ(kSize
, WriteData(entry
, 1, 25000, buffer1
.get(), kSize
, false));
1115 EXPECT_EQ(kSize
, WriteData(entry
, 1, 45000, buffer1
.get(), kSize
, false));
1116 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1117 EXPECT_EQ(kSize
, ReadData(entry
, 1, 25000, buffer2
.get(), kSize
));
1118 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1119 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1120 EXPECT_EQ(kSize
, ReadData(entry
, 1, 45000, buffer2
.get(), kSize
));
1121 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1126 TEST_F(DiskCacheEntryTest
, Buffering
) {
1131 TEST_F(DiskCacheEntryTest
, BufferingNoBuffer
) {
1133 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1137 // Checks that entries are zero length when created.
1138 void DiskCacheEntryTest::SizeAtCreate() {
1139 const char key
[] = "the first key";
1140 disk_cache::Entry
* entry
;
1141 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1143 const int kNumStreams
= 3;
1144 for (int i
= 0; i
< kNumStreams
; ++i
)
1145 EXPECT_EQ(0, entry
->GetDataSize(i
));
1149 TEST_F(DiskCacheEntryTest
, SizeAtCreate
) {
1154 TEST_F(DiskCacheEntryTest
, MemoryOnlySizeAtCreate
) {
1155 SetMemoryOnlyMode();
1160 // Some extra tests to make sure that buffering works properly when changing
1162 void DiskCacheEntryTest::SizeChanges(int stream_index
) {
1163 std::string
key("the first key");
1164 disk_cache::Entry
* entry
;
1165 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1167 const int kSize
= 200;
1168 const char zeros
[kSize
] = {};
1169 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
1170 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
1171 CacheTestFillBuffer(buffer1
->data(), kSize
, true);
1172 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1175 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, true));
1177 WriteData(entry
, stream_index
, 17000, buffer1
.get(), kSize
, true));
1179 WriteData(entry
, stream_index
, 23000, buffer1
.get(), kSize
, true));
1182 // Extend the file and read between the old size and the new write.
1183 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1184 EXPECT_EQ(23000 + kSize
, entry
->GetDataSize(stream_index
));
1186 WriteData(entry
, stream_index
, 25000, buffer1
.get(), kSize
, true));
1187 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1188 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 24000, buffer2
.get(), kSize
));
1189 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, kSize
));
1191 // Read at the end of the old file size.
1194 ReadData(entry
, stream_index
, 23000 + kSize
- 35, buffer2
.get(), kSize
));
1195 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + kSize
- 35, 35));
1197 // Read slightly before the last write.
1198 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1199 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 24900, buffer2
.get(), kSize
));
1200 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1201 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1203 // Extend the entry a little more.
1205 WriteData(entry
, stream_index
, 26000, buffer1
.get(), kSize
, true));
1206 EXPECT_EQ(26000 + kSize
, entry
->GetDataSize(stream_index
));
1207 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1208 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 25900, buffer2
.get(), kSize
));
1209 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1210 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1212 // And now reduce the size.
1214 WriteData(entry
, stream_index
, 25000, buffer1
.get(), kSize
, true));
1215 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1218 ReadData(entry
, stream_index
, 25000 + kSize
- 28, buffer2
.get(), kSize
));
1219 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + kSize
- 28, 28));
1221 // Reduce the size with a buffer that is not extending the size.
1223 WriteData(entry
, stream_index
, 24000, buffer1
.get(), kSize
, false));
1224 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1226 WriteData(entry
, stream_index
, 24500, buffer1
.get(), kSize
, true));
1227 EXPECT_EQ(24500 + kSize
, entry
->GetDataSize(stream_index
));
1228 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 23900, buffer2
.get(), kSize
));
1229 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1230 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1232 // And now reduce the size below the old size.
1234 WriteData(entry
, stream_index
, 19000, buffer1
.get(), kSize
, true));
1235 EXPECT_EQ(19000 + kSize
, entry
->GetDataSize(stream_index
));
1236 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 18900, buffer2
.get(), kSize
));
1237 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1238 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1240 // Verify that the actual file is truncated.
1242 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1243 EXPECT_EQ(19000 + kSize
, entry
->GetDataSize(stream_index
));
1245 // Extend the newly opened file with a zero length write, expect zero fill.
1248 WriteData(entry
, stream_index
, 20000 + kSize
, buffer1
.get(), 0, false));
1250 ReadData(entry
, stream_index
, 19000 + kSize
, buffer1
.get(), kSize
));
1251 EXPECT_EQ(0, memcmp(buffer1
->data(), zeros
, kSize
));
1256 TEST_F(DiskCacheEntryTest
, SizeChanges
) {
1261 TEST_F(DiskCacheEntryTest
, SizeChangesNoBuffer
) {
1263 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1267 // Write more than the total cache capacity but to a single entry. |size| is the
1268 // amount of bytes to write each time.
1269 void DiskCacheEntryTest::ReuseEntry(int size
, int stream_index
) {
1270 std::string
key1("the first key");
1271 disk_cache::Entry
* entry
;
1272 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
1275 std::string
key2("the second key");
1276 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry
));
1278 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(size
));
1279 CacheTestFillBuffer(buffer
->data(), size
, false);
1281 for (int i
= 0; i
< 15; i
++) {
1282 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer
.get(), 0, true));
1284 WriteData(entry
, stream_index
, 0, buffer
.get(), size
, false));
1286 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
1290 ASSERT_EQ(net::OK
, OpenEntry(key1
, &entry
)) << "have not evicted this entry";
1294 TEST_F(DiskCacheEntryTest
, ReuseExternalEntry
) {
1295 SetMaxSize(200 * 1024);
1297 ReuseEntry(20 * 1024, 0);
1300 TEST_F(DiskCacheEntryTest
, MemoryOnlyReuseExternalEntry
) {
1301 SetMemoryOnlyMode();
1302 SetMaxSize(200 * 1024);
1304 ReuseEntry(20 * 1024, 0);
1307 TEST_F(DiskCacheEntryTest
, ReuseInternalEntry
) {
1308 SetMaxSize(100 * 1024);
1310 ReuseEntry(10 * 1024, 0);
1313 TEST_F(DiskCacheEntryTest
, MemoryOnlyReuseInternalEntry
) {
1314 SetMemoryOnlyMode();
1315 SetMaxSize(100 * 1024);
1317 ReuseEntry(10 * 1024, 0);
1320 // Reading somewhere that was not written should return zeros.
1321 void DiskCacheEntryTest::InvalidData(int stream_index
) {
1322 std::string
key("the first key");
1323 disk_cache::Entry
* entry
;
1324 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1326 const int kSize1
= 20000;
1327 const int kSize2
= 20000;
1328 const int kSize3
= 20000;
1329 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
1330 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
1331 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
1333 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
1334 memset(buffer2
->data(), 0, kSize2
);
1336 // Simple data grow:
1338 WriteData(entry
, stream_index
, 400, buffer1
.get(), 200, false));
1339 EXPECT_EQ(600, entry
->GetDataSize(stream_index
));
1340 EXPECT_EQ(100, ReadData(entry
, stream_index
, 300, buffer3
.get(), 100));
1341 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1343 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1345 // The entry is now on disk. Load it and extend it.
1347 WriteData(entry
, stream_index
, 800, buffer1
.get(), 200, false));
1348 EXPECT_EQ(1000, entry
->GetDataSize(stream_index
));
1349 EXPECT_EQ(100, ReadData(entry
, stream_index
, 700, buffer3
.get(), 100));
1350 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1352 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1354 // This time using truncate.
1356 WriteData(entry
, stream_index
, 1800, buffer1
.get(), 200, true));
1357 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
1358 EXPECT_EQ(100, ReadData(entry
, stream_index
, 1500, buffer3
.get(), 100));
1359 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1361 // Go to an external file.
1363 WriteData(entry
, stream_index
, 19800, buffer1
.get(), 200, false));
1364 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
1365 EXPECT_EQ(4000, ReadData(entry
, stream_index
, 14000, buffer3
.get(), 4000));
1366 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 4000));
1368 // And back to an internal block.
1370 WriteData(entry
, stream_index
, 1000, buffer1
.get(), 600, true));
1371 EXPECT_EQ(1600, entry
->GetDataSize(stream_index
));
1372 EXPECT_EQ(600, ReadData(entry
, stream_index
, 1000, buffer3
.get(), 600));
1373 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer1
->data(), 600));
1377 WriteData(entry
, stream_index
, 2000, buffer1
.get(), 600, false));
1378 EXPECT_EQ(2600, entry
->GetDataSize(stream_index
));
1379 EXPECT_EQ(200, ReadData(entry
, stream_index
, 1800, buffer3
.get(), 200));
1380 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 200));
1382 // And again (with truncation flag).
1384 WriteData(entry
, stream_index
, 3000, buffer1
.get(), 600, true));
1385 EXPECT_EQ(3600, entry
->GetDataSize(stream_index
));
1386 EXPECT_EQ(200, ReadData(entry
, stream_index
, 2800, buffer3
.get(), 200));
1387 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 200));
1392 TEST_F(DiskCacheEntryTest
, InvalidData
) {
1397 TEST_F(DiskCacheEntryTest
, InvalidDataNoBuffer
) {
1399 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1403 TEST_F(DiskCacheEntryTest
, MemoryOnlyInvalidData
) {
1404 SetMemoryOnlyMode();
1409 // Tests that the cache preserves the buffer of an IO operation.
1410 void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index
) {
1411 std::string
key("the first key");
1412 disk_cache::Entry
* entry
;
1413 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1415 const int kSize
= 200;
1416 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1417 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1419 net::TestCompletionCallback cb
;
1420 EXPECT_EQ(net::ERR_IO_PENDING
,
1422 stream_index
, 0, buffer
.get(), kSize
, cb
.callback(), false));
1424 // Release our reference to the buffer.
1426 EXPECT_EQ(kSize
, cb
.WaitForResult());
1428 // And now test with a Read().
1429 buffer
= new net::IOBuffer(kSize
);
1430 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1433 net::ERR_IO_PENDING
,
1434 entry
->ReadData(stream_index
, 0, buffer
.get(), kSize
, cb
.callback()));
1436 EXPECT_EQ(kSize
, cb
.WaitForResult());
1441 TEST_F(DiskCacheEntryTest
, ReadWriteDestroyBuffer
) {
1443 ReadWriteDestroyBuffer(0);
1446 void DiskCacheEntryTest::DoomNormalEntry() {
1447 std::string
key("the first key");
1448 disk_cache::Entry
* entry
;
1449 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1453 const int kSize
= 20000;
1454 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1455 CacheTestFillBuffer(buffer
->data(), kSize
, true);
1456 buffer
->data()[19999] = '\0';
1458 key
= buffer
->data();
1459 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1460 EXPECT_EQ(20000, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
1461 EXPECT_EQ(20000, WriteData(entry
, 1, 0, buffer
.get(), kSize
, false));
1465 FlushQueueForTest();
1466 EXPECT_EQ(0, cache_
->GetEntryCount());
1469 TEST_F(DiskCacheEntryTest
, DoomEntry
) {
1474 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomEntry
) {
1475 SetMemoryOnlyMode();
1480 // Tests dooming an entry that's linked to an open entry.
1481 void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
1482 disk_cache::Entry
* entry1
;
1483 disk_cache::Entry
* entry2
;
1484 ASSERT_EQ(net::OK
, CreateEntry("fixed", &entry1
));
1486 ASSERT_EQ(net::OK
, CreateEntry("foo", &entry1
));
1488 ASSERT_EQ(net::OK
, CreateEntry("bar", &entry1
));
1491 ASSERT_EQ(net::OK
, OpenEntry("foo", &entry1
));
1492 ASSERT_EQ(net::OK
, OpenEntry("bar", &entry2
));
1496 ASSERT_EQ(net::OK
, OpenEntry("foo", &entry2
));
1501 ASSERT_EQ(net::OK
, OpenEntry("fixed", &entry1
));
1505 TEST_F(DiskCacheEntryTest
, DoomEntryNextToOpenEntry
) {
1507 DoomEntryNextToOpenEntry();
1510 TEST_F(DiskCacheEntryTest
, NewEvictionDoomEntryNextToOpenEntry
) {
1513 DoomEntryNextToOpenEntry();
1516 TEST_F(DiskCacheEntryTest
, AppCacheDoomEntryNextToOpenEntry
) {
1517 SetCacheType(net::APP_CACHE
);
1519 DoomEntryNextToOpenEntry();
1522 // Verify that basic operations work as expected with doomed entries.
1523 void DiskCacheEntryTest::DoomedEntry(int stream_index
) {
1524 std::string
key("the first key");
1525 disk_cache::Entry
* entry
;
1526 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1529 FlushQueueForTest();
1530 EXPECT_EQ(0, cache_
->GetEntryCount());
1531 Time initial
= Time::Now();
1534 const int kSize1
= 2000;
1535 const int kSize2
= 2000;
1536 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
1537 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
1538 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
1539 memset(buffer2
->data(), 0, kSize2
);
1542 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
1543 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
1544 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer2
->data(), kSize1
));
1545 EXPECT_EQ(key
, entry
->GetKey());
1546 EXPECT_TRUE(initial
< entry
->GetLastModified());
1547 EXPECT_TRUE(initial
< entry
->GetLastUsed());
1552 TEST_F(DiskCacheEntryTest
, DoomedEntry
) {
1557 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomedEntry
) {
1558 SetMemoryOnlyMode();
1563 // Tests that we discard entries if the data is missing.
1564 TEST_F(DiskCacheEntryTest
, MissingData
) {
1567 std::string
key("the first key");
1568 disk_cache::Entry
* entry
;
1569 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1571 // Write to an external file.
1572 const int kSize
= 20000;
1573 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1574 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1575 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
1577 FlushQueueForTest();
1579 disk_cache::Addr
address(0x80000001);
1580 base::FilePath name
= cache_impl_
->GetFileName(address
);
1581 EXPECT_TRUE(base::DeleteFile(name
, false));
1583 // Attempt to read the data.
1584 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1585 EXPECT_EQ(net::ERR_FILE_NOT_FOUND
,
1586 ReadData(entry
, 0, 0, buffer
.get(), kSize
));
1589 // The entry should be gone.
1590 ASSERT_NE(net::OK
, OpenEntry(key
, &entry
));
1593 // Test that child entries in a memory cache backend are not visible from
1595 TEST_F(DiskCacheEntryTest
, MemoryOnlyEnumerationWithSparseEntries
) {
1596 SetMemoryOnlyMode();
1599 const int kSize
= 4096;
1600 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1601 CacheTestFillBuffer(buf
->data(), kSize
, false);
1603 std::string
key("the first key");
1604 disk_cache::Entry
* parent_entry
;
1605 ASSERT_EQ(net::OK
, CreateEntry(key
, &parent_entry
));
1607 // Writes to the parent entry.
1609 parent_entry
->WriteSparseData(
1610 0, buf
.get(), kSize
, net::CompletionCallback()));
1612 // This write creates a child entry and writes to it.
1614 parent_entry
->WriteSparseData(
1615 8192, buf
.get(), kSize
, net::CompletionCallback()));
1617 parent_entry
->Close();
1619 // Perform the enumerations.
1620 scoped_ptr
<TestIterator
> iter
= CreateIterator();
1621 disk_cache::Entry
* entry
= NULL
;
1623 while (iter
->OpenNextEntry(&entry
) == net::OK
) {
1624 ASSERT_TRUE(entry
!= NULL
);
1626 disk_cache::MemEntryImpl
* mem_entry
=
1627 reinterpret_cast<disk_cache::MemEntryImpl
*>(entry
);
1628 EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry
, mem_entry
->type());
1631 EXPECT_EQ(1, count
);
1634 // Writes |buf_1| to offset and reads it back as |buf_2|.
1635 void VerifySparseIO(disk_cache::Entry
* entry
, int64 offset
,
1636 net::IOBuffer
* buf_1
, int size
, net::IOBuffer
* buf_2
) {
1637 net::TestCompletionCallback cb
;
1639 memset(buf_2
->data(), 0, size
);
1640 int ret
= entry
->ReadSparseData(offset
, buf_2
, size
, cb
.callback());
1641 EXPECT_EQ(0, cb
.GetResult(ret
));
1643 ret
= entry
->WriteSparseData(offset
, buf_1
, size
, cb
.callback());
1644 EXPECT_EQ(size
, cb
.GetResult(ret
));
1646 ret
= entry
->ReadSparseData(offset
, buf_2
, size
, cb
.callback());
1647 EXPECT_EQ(size
, cb
.GetResult(ret
));
1649 EXPECT_EQ(0, memcmp(buf_1
->data(), buf_2
->data(), size
));
1652 // Reads |size| bytes from |entry| at |offset| and verifies that they are the
1653 // same as the content of the provided |buffer|.
1654 void VerifyContentSparseIO(disk_cache::Entry
* entry
, int64 offset
, char* buffer
,
1656 net::TestCompletionCallback cb
;
1658 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(size
));
1659 memset(buf_1
->data(), 0, size
);
1660 int ret
= entry
->ReadSparseData(offset
, buf_1
.get(), size
, cb
.callback());
1661 EXPECT_EQ(size
, cb
.GetResult(ret
));
1662 EXPECT_EQ(0, memcmp(buf_1
->data(), buffer
, size
));
1665 void DiskCacheEntryTest::BasicSparseIO() {
1666 std::string
key("the first key");
1667 disk_cache::Entry
* entry
;
1668 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1670 const int kSize
= 2048;
1671 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1672 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1673 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1675 // Write at offset 0.
1676 VerifySparseIO(entry
, 0, buf_1
.get(), kSize
, buf_2
.get());
1678 // Write at offset 0x400000 (4 MB).
1679 VerifySparseIO(entry
, 0x400000, buf_1
.get(), kSize
, buf_2
.get());
1681 // Write at offset 0x800000000 (32 GB).
1682 VerifySparseIO(entry
, 0x800000000LL
, buf_1
.get(), kSize
, buf_2
.get());
1686 // Check everything again.
1687 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1688 VerifyContentSparseIO(entry
, 0, buf_1
->data(), kSize
);
1689 VerifyContentSparseIO(entry
, 0x400000, buf_1
->data(), kSize
);
1690 VerifyContentSparseIO(entry
, 0x800000000LL
, buf_1
->data(), kSize
);
1694 TEST_F(DiskCacheEntryTest
, BasicSparseIO
) {
1699 TEST_F(DiskCacheEntryTest
, MemoryOnlyBasicSparseIO
) {
1700 SetMemoryOnlyMode();
1705 void DiskCacheEntryTest::HugeSparseIO() {
1706 std::string
key("the first key");
1707 disk_cache::Entry
* entry
;
1708 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1710 // Write 1.2 MB so that we cover multiple entries.
1711 const int kSize
= 1200 * 1024;
1712 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1713 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1714 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1716 // Write at offset 0x20F0000 (33 MB - 64 KB).
1717 VerifySparseIO(entry
, 0x20F0000, buf_1
.get(), kSize
, buf_2
.get());
1721 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1722 VerifyContentSparseIO(entry
, 0x20F0000, buf_1
->data(), kSize
);
1726 TEST_F(DiskCacheEntryTest
, HugeSparseIO
) {
1731 TEST_F(DiskCacheEntryTest
, MemoryOnlyHugeSparseIO
) {
1732 SetMemoryOnlyMode();
1737 void DiskCacheEntryTest::GetAvailableRange() {
1738 std::string
key("the first key");
1739 disk_cache::Entry
* entry
;
1740 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1742 const int kSize
= 16 * 1024;
1743 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1744 CacheTestFillBuffer(buf
->data(), kSize
, false);
1746 // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
1747 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F0000, buf
.get(), kSize
));
1748 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F4400, buf
.get(), kSize
));
1750 // We stop at the first empty block.
1752 net::TestCompletionCallback cb
;
1753 int rv
= entry
->GetAvailableRange(
1754 0x20F0000, kSize
* 2, &start
, cb
.callback());
1755 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1756 EXPECT_EQ(0x20F0000, start
);
1759 rv
= entry
->GetAvailableRange(0, kSize
, &start
, cb
.callback());
1760 EXPECT_EQ(0, cb
.GetResult(rv
));
1761 rv
= entry
->GetAvailableRange(
1762 0x20F0000 - kSize
, kSize
, &start
, cb
.callback());
1763 EXPECT_EQ(0, cb
.GetResult(rv
));
1764 rv
= entry
->GetAvailableRange(0, 0x2100000, &start
, cb
.callback());
1765 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1766 EXPECT_EQ(0x20F0000, start
);
1768 // We should be able to Read based on the results of GetAvailableRange.
1770 rv
= entry
->GetAvailableRange(0x2100000, kSize
, &start
, cb
.callback());
1771 EXPECT_EQ(0, cb
.GetResult(rv
));
1772 rv
= entry
->ReadSparseData(start
, buf
.get(), kSize
, cb
.callback());
1773 EXPECT_EQ(0, cb
.GetResult(rv
));
1776 rv
= entry
->GetAvailableRange(0x20F2000, kSize
, &start
, cb
.callback());
1777 EXPECT_EQ(0x2000, cb
.GetResult(rv
));
1778 EXPECT_EQ(0x20F2000, start
);
1779 EXPECT_EQ(0x2000, ReadSparseData(entry
, start
, buf
.get(), kSize
));
1781 // Make sure that we respect the |len| argument.
1783 rv
= entry
->GetAvailableRange(
1784 0x20F0001 - kSize
, kSize
, &start
, cb
.callback());
1785 EXPECT_EQ(1, cb
.GetResult(rv
));
1786 EXPECT_EQ(0x20F0000, start
);
1791 TEST_F(DiskCacheEntryTest
, GetAvailableRange
) {
1793 GetAvailableRange();
1796 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetAvailableRange
) {
1797 SetMemoryOnlyMode();
1799 GetAvailableRange();
1802 // Tests that non-sequential writes that are not aligned with the minimum sparse
1803 // data granularity (1024 bytes) do in fact result in dropped data.
1804 TEST_F(DiskCacheEntryTest
, SparseWriteDropped
) {
1806 std::string
key("the first key");
1807 disk_cache::Entry
* entry
;
1808 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1810 const int kSize
= 180;
1811 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1812 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1813 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1815 // Do small writes (180 bytes) that get increasingly close to a 1024-byte
1816 // boundary. All data should be dropped until a boundary is crossed, at which
1817 // point the data after the boundary is saved (at least for a while).
1818 int offset
= 1024 - 500;
1820 net::TestCompletionCallback cb
;
1822 for (int i
= 0; i
< 5; i
++) {
1823 // Check result of last GetAvailableRange.
1826 rv
= entry
->WriteSparseData(offset
, buf_1
.get(), kSize
, cb
.callback());
1827 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1829 rv
= entry
->GetAvailableRange(offset
- 100, kSize
, &start
, cb
.callback());
1830 EXPECT_EQ(0, cb
.GetResult(rv
));
1832 rv
= entry
->GetAvailableRange(offset
, kSize
, &start
, cb
.callback());
1833 rv
= cb
.GetResult(rv
);
1835 rv
= entry
->ReadSparseData(offset
, buf_2
.get(), kSize
, cb
.callback());
1836 EXPECT_EQ(0, cb
.GetResult(rv
));
1839 offset
+= 1024 * i
+ 100;
1842 // The last write started 100 bytes below a bundary, so there should be 80
1843 // bytes after the boundary.
1845 EXPECT_EQ(1024 * 7, start
);
1846 rv
= entry
->ReadSparseData(start
, buf_2
.get(), kSize
, cb
.callback());
1847 EXPECT_EQ(80, cb
.GetResult(rv
));
1848 EXPECT_EQ(0, memcmp(buf_1
.get()->data() + 100, buf_2
.get()->data(), 80));
1850 // And even that part is dropped when another write changes the offset.
1852 rv
= entry
->WriteSparseData(0, buf_1
.get(), kSize
, cb
.callback());
1853 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1855 rv
= entry
->GetAvailableRange(offset
, kSize
, &start
, cb
.callback());
1856 EXPECT_EQ(0, cb
.GetResult(rv
));
1860 // Tests that small sequential writes are not dropped.
1861 TEST_F(DiskCacheEntryTest
, SparseSquentialWriteNotDropped
) {
1863 std::string
key("the first key");
1864 disk_cache::Entry
* entry
;
1865 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1867 const int kSize
= 180;
1868 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1869 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1870 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1872 // Any starting offset is fine as long as it is 1024-bytes aligned.
1874 net::TestCompletionCallback cb
;
1876 int64 offset
= 1024 * 11;
1877 for (; offset
< 20000; offset
+= kSize
) {
1878 rv
= entry
->WriteSparseData(offset
, buf_1
.get(), kSize
, cb
.callback());
1879 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1881 rv
= entry
->GetAvailableRange(offset
, kSize
, &start
, cb
.callback());
1882 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1883 EXPECT_EQ(offset
, start
);
1885 rv
= entry
->ReadSparseData(offset
, buf_2
.get(), kSize
, cb
.callback());
1886 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1887 EXPECT_EQ(0, memcmp(buf_1
.get()->data(), buf_2
.get()->data(), kSize
));
1891 FlushQueueForTest();
1893 // Verify again the last write made.
1894 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1896 rv
= entry
->GetAvailableRange(offset
, kSize
, &start
, cb
.callback());
1897 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1898 EXPECT_EQ(offset
, start
);
1900 rv
= entry
->ReadSparseData(offset
, buf_2
.get(), kSize
, cb
.callback());
1901 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1902 EXPECT_EQ(0, memcmp(buf_1
.get()->data(), buf_2
.get()->data(), kSize
));
1907 void DiskCacheEntryTest::CouldBeSparse() {
1908 std::string
key("the first key");
1909 disk_cache::Entry
* entry
;
1910 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1912 const int kSize
= 16 * 1024;
1913 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1914 CacheTestFillBuffer(buf
->data(), kSize
, false);
1916 // Write at offset 0x20F0000 (33 MB - 64 KB).
1917 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F0000, buf
.get(), kSize
));
1919 EXPECT_TRUE(entry
->CouldBeSparse());
1922 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1923 EXPECT_TRUE(entry
->CouldBeSparse());
1926 // Now verify a regular entry.
1927 key
.assign("another key");
1928 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1929 EXPECT_FALSE(entry
->CouldBeSparse());
1931 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buf
.get(), kSize
, false));
1932 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buf
.get(), kSize
, false));
1933 EXPECT_EQ(kSize
, WriteData(entry
, 2, 0, buf
.get(), kSize
, false));
1935 EXPECT_FALSE(entry
->CouldBeSparse());
1938 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1939 EXPECT_FALSE(entry
->CouldBeSparse());
1943 TEST_F(DiskCacheEntryTest
, CouldBeSparse
) {
1948 TEST_F(DiskCacheEntryTest
, MemoryCouldBeSparse
) {
1949 SetMemoryOnlyMode();
1954 TEST_F(DiskCacheEntryTest
, MemoryOnlyMisalignedSparseIO
) {
1955 SetMemoryOnlyMode();
1958 const int kSize
= 8192;
1959 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1960 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1961 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1963 std::string
key("the first key");
1964 disk_cache::Entry
* entry
;
1965 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1967 // This loop writes back to back starting from offset 0 and 9000.
1968 for (int i
= 0; i
< kSize
; i
+= 1024) {
1969 scoped_refptr
<net::WrappedIOBuffer
> buf_3(
1970 new net::WrappedIOBuffer(buf_1
->data() + i
));
1971 VerifySparseIO(entry
, i
, buf_3
.get(), 1024, buf_2
.get());
1972 VerifySparseIO(entry
, 9000 + i
, buf_3
.get(), 1024, buf_2
.get());
1975 // Make sure we have data written.
1976 VerifyContentSparseIO(entry
, 0, buf_1
->data(), kSize
);
1977 VerifyContentSparseIO(entry
, 9000, buf_1
->data(), kSize
);
1979 // This tests a large write that spans 3 entries from a misaligned offset.
1980 VerifySparseIO(entry
, 20481, buf_1
.get(), 8192, buf_2
.get());
1985 TEST_F(DiskCacheEntryTest
, MemoryOnlyMisalignedGetAvailableRange
) {
1986 SetMemoryOnlyMode();
1989 const int kSize
= 8192;
1990 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1991 CacheTestFillBuffer(buf
->data(), kSize
, false);
1993 disk_cache::Entry
* entry
;
1994 std::string
key("the first key");
1995 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1997 // Writes in the middle of an entry.
2000 entry
->WriteSparseData(0, buf
.get(), 1024, net::CompletionCallback()));
2003 entry
->WriteSparseData(5120, buf
.get(), 1024, net::CompletionCallback()));
2005 entry
->WriteSparseData(
2006 10000, buf
.get(), 1024, net::CompletionCallback()));
2008 // Writes in the middle of an entry and spans 2 child entries.
2010 entry
->WriteSparseData(
2011 50000, buf
.get(), 8192, net::CompletionCallback()));
2014 net::TestCompletionCallback cb
;
2015 // Test that we stop at a discontinuous child at the second block.
2016 int rv
= entry
->GetAvailableRange(0, 10000, &start
, cb
.callback());
2017 EXPECT_EQ(1024, cb
.GetResult(rv
));
2018 EXPECT_EQ(0, start
);
2020 // Test that number of bytes is reported correctly when we start from the
2021 // middle of a filled region.
2022 rv
= entry
->GetAvailableRange(512, 10000, &start
, cb
.callback());
2023 EXPECT_EQ(512, cb
.GetResult(rv
));
2024 EXPECT_EQ(512, start
);
2026 // Test that we found bytes in the child of next block.
2027 rv
= entry
->GetAvailableRange(1024, 10000, &start
, cb
.callback());
2028 EXPECT_EQ(1024, cb
.GetResult(rv
));
2029 EXPECT_EQ(5120, start
);
2031 // Test that the desired length is respected. It starts within a filled
2033 rv
= entry
->GetAvailableRange(5500, 512, &start
, cb
.callback());
2034 EXPECT_EQ(512, cb
.GetResult(rv
));
2035 EXPECT_EQ(5500, start
);
2037 // Test that the desired length is respected. It starts before a filled
2039 rv
= entry
->GetAvailableRange(5000, 620, &start
, cb
.callback());
2040 EXPECT_EQ(500, cb
.GetResult(rv
));
2041 EXPECT_EQ(5120, start
);
2043 // Test that multiple blocks are scanned.
2044 rv
= entry
->GetAvailableRange(40000, 20000, &start
, cb
.callback());
2045 EXPECT_EQ(8192, cb
.GetResult(rv
));
2046 EXPECT_EQ(50000, start
);
2051 void DiskCacheEntryTest::UpdateSparseEntry() {
2052 std::string
key("the first key");
2053 disk_cache::Entry
* entry1
;
2054 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
2056 const int kSize
= 2048;
2057 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
2058 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
2059 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
2061 // Write at offset 0.
2062 VerifySparseIO(entry1
, 0, buf_1
.get(), kSize
, buf_2
.get());
2065 // Write at offset 2048.
2066 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry1
));
2067 VerifySparseIO(entry1
, 2048, buf_1
.get(), kSize
, buf_2
.get());
2069 disk_cache::Entry
* entry2
;
2070 ASSERT_EQ(net::OK
, CreateEntry("the second key", &entry2
));
2074 FlushQueueForTest();
2075 if (memory_only_
|| simple_cache_mode_
)
2076 EXPECT_EQ(2, cache_
->GetEntryCount());
2078 EXPECT_EQ(3, cache_
->GetEntryCount());
2081 TEST_F(DiskCacheEntryTest
, UpdateSparseEntry
) {
2082 SetCacheType(net::MEDIA_CACHE
);
2084 UpdateSparseEntry();
2087 TEST_F(DiskCacheEntryTest
, MemoryOnlyUpdateSparseEntry
) {
2088 SetMemoryOnlyMode();
2089 SetCacheType(net::MEDIA_CACHE
);
2091 UpdateSparseEntry();
2094 void DiskCacheEntryTest::DoomSparseEntry() {
2095 std::string
key1("the first key");
2096 std::string
key2("the second key");
2097 disk_cache::Entry
*entry1
, *entry2
;
2098 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry1
));
2099 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry2
));
2101 const int kSize
= 4 * 1024;
2102 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
2103 CacheTestFillBuffer(buf
->data(), kSize
, false);
2105 int64 offset
= 1024;
2106 // Write to a bunch of ranges.
2107 for (int i
= 0; i
< 12; i
++) {
2108 EXPECT_EQ(kSize
, WriteSparseData(entry1
, offset
, buf
.get(), kSize
));
2109 // Keep the second map under the default size.
2111 EXPECT_EQ(kSize
, WriteSparseData(entry2
, offset
, buf
.get(), kSize
));
2116 if (memory_only_
|| simple_cache_mode_
)
2117 EXPECT_EQ(2, cache_
->GetEntryCount());
2119 EXPECT_EQ(15, cache_
->GetEntryCount());
2121 // Doom the first entry while it's still open.
2126 // Doom the second entry after it's fully saved.
2127 EXPECT_EQ(net::OK
, DoomEntry(key2
));
2129 // Make sure we do all needed work. This may fail for entry2 if between Close
2130 // and DoomEntry the system decides to remove all traces of the file from the
2131 // system cache so we don't see that there is pending IO.
2132 base::MessageLoop::current()->RunUntilIdle();
2135 EXPECT_EQ(0, cache_
->GetEntryCount());
2137 if (5 == cache_
->GetEntryCount()) {
2138 // Most likely we are waiting for the result of reading the sparse info
2139 // (it's always async on Posix so it is easy to miss). Unfortunately we
2140 // don't have any signal to watch for so we can only wait.
2141 base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500));
2142 base::MessageLoop::current()->RunUntilIdle();
2144 EXPECT_EQ(0, cache_
->GetEntryCount());
2148 TEST_F(DiskCacheEntryTest
, DoomSparseEntry
) {
2154 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomSparseEntry
) {
2155 SetMemoryOnlyMode();
2160 // A CompletionCallback wrapper that deletes the cache from within the callback.
2161 // The way a CompletionCallback works means that all tasks (even new ones)
2162 // are executed by the message loop before returning to the caller so the only
2163 // way to simulate a race is to execute what we want on the callback.
2164 class SparseTestCompletionCallback
: public net::TestCompletionCallback
{
2166 explicit SparseTestCompletionCallback(scoped_ptr
<disk_cache::Backend
> cache
)
2167 : cache_(cache
.Pass()) {
2171 void SetResult(int result
) override
{
2173 TestCompletionCallback::SetResult(result
);
2176 scoped_ptr
<disk_cache::Backend
> cache_
;
2177 DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback
);
2180 // Tests that we don't crash when the backend is deleted while we are working
2181 // deleting the sub-entries of a sparse entry.
2182 TEST_F(DiskCacheEntryTest
, DoomSparseEntry2
) {
2185 std::string
key("the key");
2186 disk_cache::Entry
* entry
;
2187 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2189 const int kSize
= 4 * 1024;
2190 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
2191 CacheTestFillBuffer(buf
->data(), kSize
, false);
2193 int64 offset
= 1024;
2194 // Write to a bunch of ranges.
2195 for (int i
= 0; i
< 12; i
++) {
2197 entry
->WriteSparseData(
2198 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2201 EXPECT_EQ(9, cache_
->GetEntryCount());
2204 disk_cache::Backend
* cache
= cache_
.get();
2205 SparseTestCompletionCallback
cb(cache_
.Pass());
2206 int rv
= cache
->DoomEntry(key
, cb
.callback());
2207 EXPECT_EQ(net::ERR_IO_PENDING
, rv
);
2208 EXPECT_EQ(net::OK
, cb
.WaitForResult());
2211 void DiskCacheEntryTest::PartialSparseEntry() {
2212 std::string
key("the first key");
2213 disk_cache::Entry
* entry
;
2214 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2216 // We should be able to deal with IO that is not aligned to the block size
2217 // of a sparse entry, at least to write a big range without leaving holes.
2218 const int kSize
= 4 * 1024;
2219 const int kSmallSize
= 128;
2220 scoped_refptr
<net::IOBuffer
> buf1(new net::IOBuffer(kSize
));
2221 CacheTestFillBuffer(buf1
->data(), kSize
, false);
2223 // The first write is just to extend the entry. The third write occupies
2224 // a 1KB block partially, it may not be written internally depending on the
2226 EXPECT_EQ(kSize
, WriteSparseData(entry
, 20000, buf1
.get(), kSize
));
2227 EXPECT_EQ(kSize
, WriteSparseData(entry
, 500, buf1
.get(), kSize
));
2228 EXPECT_EQ(kSmallSize
,
2229 WriteSparseData(entry
, 1080321, buf1
.get(), kSmallSize
));
2231 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2233 scoped_refptr
<net::IOBuffer
> buf2(new net::IOBuffer(kSize
));
2234 memset(buf2
->data(), 0, kSize
);
2235 EXPECT_EQ(0, ReadSparseData(entry
, 8000, buf2
.get(), kSize
));
2237 EXPECT_EQ(500, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2238 EXPECT_EQ(0, memcmp(buf2
->data(), buf1
->data() + kSize
- 500, 500));
2239 EXPECT_EQ(0, ReadSparseData(entry
, 0, buf2
.get(), kSize
));
2241 // This read should not change anything.
2242 if (memory_only_
|| simple_cache_mode_
)
2243 EXPECT_EQ(96, ReadSparseData(entry
, 24000, buf2
.get(), kSize
));
2245 EXPECT_EQ(0, ReadSparseData(entry
, 24000, buf2
.get(), kSize
));
2247 EXPECT_EQ(500, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2248 EXPECT_EQ(0, ReadSparseData(entry
, 99, buf2
.get(), kSize
));
2252 net::TestCompletionCallback cb
;
2253 if (memory_only_
|| simple_cache_mode_
) {
2254 rv
= entry
->GetAvailableRange(0, 600, &start
, cb
.callback());
2255 EXPECT_EQ(100, cb
.GetResult(rv
));
2256 EXPECT_EQ(500, start
);
2258 rv
= entry
->GetAvailableRange(0, 2048, &start
, cb
.callback());
2259 EXPECT_EQ(1024, cb
.GetResult(rv
));
2260 EXPECT_EQ(1024, start
);
2262 rv
= entry
->GetAvailableRange(kSize
, kSize
, &start
, cb
.callback());
2263 EXPECT_EQ(500, cb
.GetResult(rv
));
2264 EXPECT_EQ(kSize
, start
);
2265 rv
= entry
->GetAvailableRange(20 * 1024, 10000, &start
, cb
.callback());
2266 if (memory_only_
|| simple_cache_mode_
)
2267 EXPECT_EQ(3616, cb
.GetResult(rv
));
2269 EXPECT_EQ(3072, cb
.GetResult(rv
));
2271 EXPECT_EQ(20 * 1024, start
);
2273 // 1. Query before a filled 1KB block.
2274 // 2. Query within a filled 1KB block.
2275 // 3. Query beyond a filled 1KB block.
2276 if (memory_only_
|| simple_cache_mode_
) {
2277 rv
= entry
->GetAvailableRange(19400, kSize
, &start
, cb
.callback());
2278 EXPECT_EQ(3496, cb
.GetResult(rv
));
2279 EXPECT_EQ(20000, start
);
2281 rv
= entry
->GetAvailableRange(19400, kSize
, &start
, cb
.callback());
2282 EXPECT_EQ(3016, cb
.GetResult(rv
));
2283 EXPECT_EQ(20480, start
);
2285 rv
= entry
->GetAvailableRange(3073, kSize
, &start
, cb
.callback());
2286 EXPECT_EQ(1523, cb
.GetResult(rv
));
2287 EXPECT_EQ(3073, start
);
2288 rv
= entry
->GetAvailableRange(4600, kSize
, &start
, cb
.callback());
2289 EXPECT_EQ(0, cb
.GetResult(rv
));
2290 EXPECT_EQ(4600, start
);
2292 // Now make another write and verify that there is no hole in between.
2293 EXPECT_EQ(kSize
, WriteSparseData(entry
, 500 + kSize
, buf1
.get(), kSize
));
2294 rv
= entry
->GetAvailableRange(1024, 10000, &start
, cb
.callback());
2295 EXPECT_EQ(7 * 1024 + 500, cb
.GetResult(rv
));
2296 EXPECT_EQ(1024, start
);
2297 EXPECT_EQ(kSize
, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2298 EXPECT_EQ(0, memcmp(buf2
->data(), buf1
->data() + kSize
- 500, 500));
2299 EXPECT_EQ(0, memcmp(buf2
->data() + 500, buf1
->data(), kSize
- 500));
2304 TEST_F(DiskCacheEntryTest
, PartialSparseEntry
) {
2306 PartialSparseEntry();
2309 TEST_F(DiskCacheEntryTest
, MemoryPartialSparseEntry
) {
2310 SetMemoryOnlyMode();
2312 PartialSparseEntry();
2315 // Tests that corrupt sparse children are removed automatically.
2316 TEST_F(DiskCacheEntryTest
, CleanupSparseEntry
) {
2318 std::string
key("the first key");
2319 disk_cache::Entry
* entry
;
2320 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2322 const int kSize
= 4 * 1024;
2323 scoped_refptr
<net::IOBuffer
> buf1(new net::IOBuffer(kSize
));
2324 CacheTestFillBuffer(buf1
->data(), kSize
, false);
2326 const int k1Meg
= 1024 * 1024;
2327 EXPECT_EQ(kSize
, WriteSparseData(entry
, 8192, buf1
.get(), kSize
));
2328 EXPECT_EQ(kSize
, WriteSparseData(entry
, k1Meg
+ 8192, buf1
.get(), kSize
));
2329 EXPECT_EQ(kSize
, WriteSparseData(entry
, 2 * k1Meg
+ 8192, buf1
.get(), kSize
));
2331 EXPECT_EQ(4, cache_
->GetEntryCount());
2333 scoped_ptr
<TestIterator
> iter
= CreateIterator();
2335 std::string child_key
[2];
2336 while (iter
->OpenNextEntry(&entry
) == net::OK
) {
2337 ASSERT_TRUE(entry
!= NULL
);
2338 // Writing to an entry will alter the LRU list and invalidate the iterator.
2339 if (entry
->GetKey() != key
&& count
< 2)
2340 child_key
[count
++] = entry
->GetKey();
2343 for (int i
= 0; i
< 2; i
++) {
2344 ASSERT_EQ(net::OK
, OpenEntry(child_key
[i
], &entry
));
2345 // Overwrite the header's magic and signature.
2346 EXPECT_EQ(12, WriteData(entry
, 2, 0, buf1
.get(), 12, false));
2350 EXPECT_EQ(4, cache_
->GetEntryCount());
2351 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2353 // Two children should be gone. One while reading and one while writing.
2354 EXPECT_EQ(0, ReadSparseData(entry
, 2 * k1Meg
+ 8192, buf1
.get(), kSize
));
2355 EXPECT_EQ(kSize
, WriteSparseData(entry
, k1Meg
+ 16384, buf1
.get(), kSize
));
2356 EXPECT_EQ(0, ReadSparseData(entry
, k1Meg
+ 8192, buf1
.get(), kSize
));
2358 // We never touched this one.
2359 EXPECT_EQ(kSize
, ReadSparseData(entry
, 8192, buf1
.get(), kSize
));
2362 // We re-created one of the corrupt children.
2363 EXPECT_EQ(3, cache_
->GetEntryCount());
2366 TEST_F(DiskCacheEntryTest
, CancelSparseIO
) {
2369 std::string
key("the first key");
2370 disk_cache::Entry
* entry
;
2371 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2373 const int kSize
= 40 * 1024;
2374 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
2375 CacheTestFillBuffer(buf
->data(), kSize
, false);
2377 // This will open and write two "real" entries.
2378 net::TestCompletionCallback cb1
, cb2
, cb3
, cb4
, cb5
;
2379 int rv
= entry
->WriteSparseData(
2380 1024 * 1024 - 4096, buf
.get(), kSize
, cb1
.callback());
2381 EXPECT_EQ(net::ERR_IO_PENDING
, rv
);
2384 rv
= entry
->GetAvailableRange(offset
, kSize
, &offset
, cb5
.callback());
2385 rv
= cb5
.GetResult(rv
);
2386 if (!cb1
.have_result()) {
2387 // We may or may not have finished writing to the entry. If we have not,
2388 // we cannot start another operation at this time.
2389 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
, rv
);
2392 // We cancel the pending operation, and register multiple notifications.
2393 entry
->CancelSparseIO();
2394 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb2
.callback()));
2395 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb3
.callback()));
2396 entry
->CancelSparseIO(); // Should be a no op at this point.
2397 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb4
.callback()));
2399 if (!cb1
.have_result()) {
2400 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
,
2401 entry
->ReadSparseData(
2402 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2403 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
,
2404 entry
->WriteSparseData(
2405 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2408 // Now see if we receive all notifications. Note that we should not be able
2409 // to write everything (unless the timing of the system is really weird).
2410 rv
= cb1
.WaitForResult();
2411 EXPECT_TRUE(rv
== 4096 || rv
== kSize
);
2412 EXPECT_EQ(net::OK
, cb2
.WaitForResult());
2413 EXPECT_EQ(net::OK
, cb3
.WaitForResult());
2414 EXPECT_EQ(net::OK
, cb4
.WaitForResult());
2416 rv
= entry
->GetAvailableRange(offset
, kSize
, &offset
, cb5
.callback());
2417 EXPECT_EQ(0, cb5
.GetResult(rv
));
2421 // Tests that we perform sanity checks on an entry's key. Note that there are
2422 // other tests that exercise sanity checks by using saved corrupt files.
2423 TEST_F(DiskCacheEntryTest
, KeySanityCheck
) {
2426 std::string
key("the first key");
2427 disk_cache::Entry
* entry
;
2428 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2430 disk_cache::EntryImpl
* entry_impl
=
2431 static_cast<disk_cache::EntryImpl
*>(entry
);
2432 disk_cache::EntryStore
* store
= entry_impl
->entry()->Data();
2434 // We have reserved space for a short key (one block), let's say that the key
2435 // takes more than one block, and remove the NULLs after the actual key.
2436 store
->key_len
= 800;
2437 memset(store
->key
+ key
.size(), 'k', sizeof(store
->key
) - key
.size());
2438 entry_impl
->entry()->set_modified();
2441 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2442 // allocated buffer here.
2443 ASSERT_NE(net::OK
, OpenEntry(key
, &entry
));
2444 DisableIntegrityCheck();
2447 TEST_F(DiskCacheEntryTest
, SimpleCacheInternalAsyncIO
) {
2448 SetSimpleCacheMode();
2453 TEST_F(DiskCacheEntryTest
, SimpleCacheExternalAsyncIO
) {
2454 SetSimpleCacheMode();
2459 TEST_F(DiskCacheEntryTest
, SimpleCacheReleaseBuffer
) {
2460 SetSimpleCacheMode();
2462 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2463 EXPECT_EQ(net::OK
, DoomAllEntries());
2468 TEST_F(DiskCacheEntryTest
, SimpleCacheStreamAccess
) {
2469 SetSimpleCacheMode();
2474 TEST_F(DiskCacheEntryTest
, SimpleCacheGetKey
) {
2475 SetSimpleCacheMode();
2480 TEST_F(DiskCacheEntryTest
, SimpleCacheGetTimes
) {
2481 SetSimpleCacheMode();
2483 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2484 EXPECT_EQ(net::OK
, DoomAllEntries());
2489 TEST_F(DiskCacheEntryTest
, SimpleCacheGrowData
) {
2490 SetSimpleCacheMode();
2492 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2493 EXPECT_EQ(net::OK
, DoomAllEntries());
2498 TEST_F(DiskCacheEntryTest
, SimpleCacheTruncateData
) {
2499 SetSimpleCacheMode();
2501 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2502 EXPECT_EQ(net::OK
, DoomAllEntries());
2507 TEST_F(DiskCacheEntryTest
, SimpleCacheZeroLengthIO
) {
2508 SetSimpleCacheMode();
2510 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2511 EXPECT_EQ(net::OK
, DoomAllEntries());
2516 TEST_F(DiskCacheEntryTest
, SimpleCacheSizeAtCreate
) {
2517 SetSimpleCacheMode();
2522 TEST_F(DiskCacheEntryTest
, SimpleCacheReuseExternalEntry
) {
2523 SetSimpleCacheMode();
2524 SetMaxSize(200 * 1024);
2526 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2527 EXPECT_EQ(net::OK
, DoomAllEntries());
2528 ReuseEntry(20 * 1024, i
);
2532 TEST_F(DiskCacheEntryTest
, SimpleCacheReuseInternalEntry
) {
2533 SetSimpleCacheMode();
2534 SetMaxSize(100 * 1024);
2536 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2537 EXPECT_EQ(net::OK
, DoomAllEntries());
2538 ReuseEntry(10 * 1024, i
);
2542 TEST_F(DiskCacheEntryTest
, SimpleCacheSizeChanges
) {
2543 SetSimpleCacheMode();
2545 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2546 EXPECT_EQ(net::OK
, DoomAllEntries());
2551 TEST_F(DiskCacheEntryTest
, SimpleCacheInvalidData
) {
2552 SetSimpleCacheMode();
2554 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2555 EXPECT_EQ(net::OK
, DoomAllEntries());
2560 TEST_F(DiskCacheEntryTest
, SimpleCacheReadWriteDestroyBuffer
) {
2561 // Proving that the test works well with optimistic operations enabled is
2562 // subtle, instead run only in APP_CACHE mode to disable optimistic
2563 // operations. Stream 0 always uses optimistic operations, so the test is not
2565 SetCacheType(net::APP_CACHE
);
2566 SetSimpleCacheMode();
2568 for (int i
= 1; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2569 EXPECT_EQ(net::OK
, DoomAllEntries());
2570 ReadWriteDestroyBuffer(i
);
2574 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomEntry
) {
2575 SetSimpleCacheMode();
2580 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomEntryNextToOpenEntry
) {
2581 SetSimpleCacheMode();
2583 DoomEntryNextToOpenEntry();
2586 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomedEntry
) {
2587 SetSimpleCacheMode();
2589 // Stream 2 is excluded because the implementation does not support writing to
2590 // it on a doomed entry, if it was previously lazily omitted.
2591 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
- 1; ++i
) {
2592 EXPECT_EQ(net::OK
, DoomAllEntries());
2597 // Creates an entry with corrupted last byte in stream 0.
2598 // Requires SimpleCacheMode.
2599 bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string
& key
,
2601 disk_cache::Entry
* entry
= NULL
;
2603 if (CreateEntry(key
, &entry
) != net::OK
|| !entry
) {
2604 LOG(ERROR
) << "Could not create entry";
2608 const char data
[] = "this is very good data";
2609 const int kDataSize
= arraysize(data
);
2610 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kDataSize
));
2611 base::strlcpy(buffer
->data(), data
, kDataSize
);
2613 EXPECT_EQ(kDataSize
, WriteData(entry
, 1, 0, buffer
.get(), kDataSize
, false));
2617 // Corrupt the last byte of the data.
2618 base::FilePath entry_file0_path
= cache_path_
.AppendASCII(
2619 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
2620 base::File
entry_file0(entry_file0_path
,
2621 base::File::FLAG_WRITE
| base::File::FLAG_OPEN
);
2622 if (!entry_file0
.IsValid())
2626 sizeof(disk_cache::SimpleFileHeader
) + key
.size() + kDataSize
- 2;
2627 EXPECT_EQ(1, entry_file0
.Write(file_offset
, "X", 1));
2628 *data_size
= kDataSize
;
2632 // Tests that the simple cache can detect entries that have bad data.
2633 TEST_F(DiskCacheEntryTest
, SimpleCacheBadChecksum
) {
2634 SetSimpleCacheMode();
2637 const char key
[] = "the first key";
2639 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size_unused
));
2641 disk_cache::Entry
* entry
= NULL
;
2644 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2645 ScopedEntryPtr
entry_closer(entry
);
2647 const int kReadBufferSize
= 200;
2648 EXPECT_GE(kReadBufferSize
, entry
->GetDataSize(1));
2649 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
2650 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH
,
2651 ReadData(entry
, 1, 0, read_buffer
.get(), kReadBufferSize
));
2654 // Tests that an entry that has had an IO error occur can still be Doomed().
2655 TEST_F(DiskCacheEntryTest
, SimpleCacheErrorThenDoom
) {
2656 SetSimpleCacheMode();
2659 const char key
[] = "the first key";
2661 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size_unused
));
2663 disk_cache::Entry
* entry
= NULL
;
2665 // Open the entry, forcing an IO error.
2666 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2667 ScopedEntryPtr
entry_closer(entry
);
2669 const int kReadBufferSize
= 200;
2670 EXPECT_GE(kReadBufferSize
, entry
->GetDataSize(1));
2671 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
2672 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH
,
2673 ReadData(entry
, 1, 0, read_buffer
.get(), kReadBufferSize
));
2675 entry
->Doom(); // Should not crash.
2678 bool TruncatePath(const base::FilePath
& file_path
, int64 length
) {
2679 base::File
file(file_path
, base::File::FLAG_WRITE
| base::File::FLAG_OPEN
);
2680 if (!file
.IsValid())
2682 return file
.SetLength(length
);
2685 TEST_F(DiskCacheEntryTest
, SimpleCacheNoEOF
) {
2686 SetSimpleCacheMode();
2689 const char key
[] = "the first key";
2691 disk_cache::Entry
* entry
= NULL
;
2692 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2693 disk_cache::Entry
* null
= NULL
;
2694 EXPECT_NE(null
, entry
);
2698 // Force the entry to flush to disk, so subsequent platform file operations
2700 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2704 // Truncate the file such that the length isn't sufficient to have an EOF
2706 int kTruncationBytes
= -implicit_cast
<int>(sizeof(disk_cache::SimpleFileEOF
));
2707 const base::FilePath entry_path
= cache_path_
.AppendASCII(
2708 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
2709 const int64 invalid_size
=
2710 disk_cache::simple_util::GetFileSizeFromKeyAndDataSize(key
,
2712 EXPECT_TRUE(TruncatePath(entry_path
, invalid_size
));
2713 EXPECT_EQ(net::ERR_FAILED
, OpenEntry(key
, &entry
));
2714 DisableIntegrityCheck();
2717 TEST_F(DiskCacheEntryTest
, SimpleCacheNonOptimisticOperationsBasic
) {
2719 // Create, Write, Read, Close.
2720 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2721 SetSimpleCacheMode();
2723 disk_cache::Entry
* const null_entry
= NULL
;
2725 disk_cache::Entry
* entry
= NULL
;
2726 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2727 ASSERT_NE(null_entry
, entry
);
2728 ScopedEntryPtr
entry_closer(entry
);
2730 const int kBufferSize
= 10;
2731 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2732 new net::IOBufferWithSize(kBufferSize
));
2733 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2735 write_buffer
->size(),
2736 WriteData(entry
, 1, 0, write_buffer
.get(), write_buffer
->size(), false));
2738 scoped_refptr
<net::IOBufferWithSize
> read_buffer(
2739 new net::IOBufferWithSize(kBufferSize
));
2740 EXPECT_EQ(read_buffer
->size(),
2741 ReadData(entry
, 1, 0, read_buffer
.get(), read_buffer
->size()));
2744 TEST_F(DiskCacheEntryTest
, SimpleCacheNonOptimisticOperationsDontBlock
) {
2746 // Create, Write, Close.
2747 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2748 SetSimpleCacheMode();
2750 disk_cache::Entry
* const null_entry
= NULL
;
2752 MessageLoopHelper helper
;
2753 CallbackTest
create_callback(&helper
, false);
2755 int expected_callback_runs
= 0;
2756 const int kBufferSize
= 10;
2757 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2758 new net::IOBufferWithSize(kBufferSize
));
2760 disk_cache::Entry
* entry
= NULL
;
2761 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2762 ASSERT_NE(null_entry
, entry
);
2763 ScopedEntryPtr
entry_closer(entry
);
2765 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2766 CallbackTest
write_callback(&helper
, false);
2767 int ret
= entry
->WriteData(
2771 write_buffer
->size(),
2772 base::Bind(&CallbackTest::Run
, base::Unretained(&write_callback
)),
2774 ASSERT_EQ(net::ERR_IO_PENDING
, ret
);
2775 helper
.WaitUntilCacheIoFinished(++expected_callback_runs
);
2778 TEST_F(DiskCacheEntryTest
,
2779 SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting
) {
2781 // Create, Write, Read, Close.
2782 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2783 SetSimpleCacheMode();
2785 disk_cache::Entry
* const null_entry
= NULL
;
2786 MessageLoopHelper helper
;
2788 disk_cache::Entry
* entry
= NULL
;
2789 // Note that |entry| is only set once CreateEntry() completed which is why we
2790 // have to wait (i.e. use the helper CreateEntry() function).
2791 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2792 ASSERT_NE(null_entry
, entry
);
2793 ScopedEntryPtr
entry_closer(entry
);
2795 const int kBufferSize
= 10;
2796 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2797 new net::IOBufferWithSize(kBufferSize
));
2798 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2799 CallbackTest
write_callback(&helper
, false);
2800 int ret
= entry
->WriteData(
2804 write_buffer
->size(),
2805 base::Bind(&CallbackTest::Run
, base::Unretained(&write_callback
)),
2807 EXPECT_EQ(net::ERR_IO_PENDING
, ret
);
2808 int expected_callback_runs
= 1;
2810 scoped_refptr
<net::IOBufferWithSize
> read_buffer(
2811 new net::IOBufferWithSize(kBufferSize
));
2812 CallbackTest
read_callback(&helper
, false);
2813 ret
= entry
->ReadData(
2817 read_buffer
->size(),
2818 base::Bind(&CallbackTest::Run
, base::Unretained(&read_callback
)));
2819 EXPECT_EQ(net::ERR_IO_PENDING
, ret
);
2820 ++expected_callback_runs
;
2822 helper
.WaitUntilCacheIoFinished(expected_callback_runs
);
2823 ASSERT_EQ(read_buffer
->size(), write_buffer
->size());
2826 memcmp(read_buffer
->data(), write_buffer
->data(), read_buffer
->size()));
2829 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic
) {
2831 // Create, Write, Read, Write, Read, Close.
2832 SetSimpleCacheMode();
2834 disk_cache::Entry
* null
= NULL
;
2835 const char key
[] = "the first key";
2837 MessageLoopHelper helper
;
2838 CallbackTest
callback1(&helper
, false);
2839 CallbackTest
callback2(&helper
, false);
2840 CallbackTest
callback3(&helper
, false);
2841 CallbackTest
callback4(&helper
, false);
2842 CallbackTest
callback5(&helper
, false);
2845 const int kSize1
= 10;
2846 const int kSize2
= 20;
2847 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2848 scoped_refptr
<net::IOBuffer
> buffer1_read(new net::IOBuffer(kSize1
));
2849 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
2850 scoped_refptr
<net::IOBuffer
> buffer2_read(new net::IOBuffer(kSize2
));
2851 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2852 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
2854 disk_cache::Entry
* entry
= NULL
;
2855 // Create is optimistic, must return OK.
2857 cache_
->CreateEntry(key
, &entry
,
2858 base::Bind(&CallbackTest::Run
,
2859 base::Unretained(&callback1
))));
2860 EXPECT_NE(null
, entry
);
2861 ScopedEntryPtr
entry_closer(entry
);
2863 // This write may or may not be optimistic (it depends if the previous
2864 // optimistic create already finished by the time we call the write here).
2865 int ret
= entry
->WriteData(
2870 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)),
2872 EXPECT_TRUE(kSize1
== ret
|| net::ERR_IO_PENDING
== ret
);
2873 if (net::ERR_IO_PENDING
== ret
)
2876 // This Read must not be optimistic, since we don't support that yet.
2877 EXPECT_EQ(net::ERR_IO_PENDING
,
2883 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
))));
2885 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
2886 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read
->data(), kSize1
));
2888 // At this point after waiting, the pending operations queue on the entry
2889 // should be empty, so the next Write operation must run as optimistic.
2896 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)),
2899 // Lets do another read so we block until both the write and the read
2900 // operation finishes and we can then test for HasOneRef() below.
2901 EXPECT_EQ(net::ERR_IO_PENDING
,
2907 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
))));
2910 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
2911 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer2_read
->data(), kSize2
));
2913 // Check that we are not leaking.
2914 EXPECT_NE(entry
, null
);
2916 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
2919 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic2
) {
2921 // Create, Open, Close, Close.
2922 SetSimpleCacheMode();
2924 disk_cache::Entry
* null
= NULL
;
2925 const char key
[] = "the first key";
2927 MessageLoopHelper helper
;
2928 CallbackTest
callback1(&helper
, false);
2929 CallbackTest
callback2(&helper
, false);
2931 disk_cache::Entry
* entry
= NULL
;
2933 cache_
->CreateEntry(key
, &entry
,
2934 base::Bind(&CallbackTest::Run
,
2935 base::Unretained(&callback1
))));
2936 EXPECT_NE(null
, entry
);
2937 ScopedEntryPtr
entry_closer(entry
);
2939 disk_cache::Entry
* entry2
= NULL
;
2940 ASSERT_EQ(net::ERR_IO_PENDING
,
2941 cache_
->OpenEntry(key
, &entry2
,
2942 base::Bind(&CallbackTest::Run
,
2943 base::Unretained(&callback2
))));
2944 ASSERT_TRUE(helper
.WaitUntilCacheIoFinished(1));
2946 EXPECT_NE(null
, entry2
);
2947 EXPECT_EQ(entry
, entry2
);
2949 // We have to call close twice, since we called create and open above.
2952 // Check that we are not leaking.
2954 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
2957 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic3
) {
2959 // Create, Close, Open, Close.
2960 SetSimpleCacheMode();
2962 disk_cache::Entry
* null
= NULL
;
2963 const char key
[] = "the first key";
2965 disk_cache::Entry
* entry
= NULL
;
2967 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2968 EXPECT_NE(null
, entry
);
2971 net::TestCompletionCallback cb
;
2972 disk_cache::Entry
* entry2
= NULL
;
2973 ASSERT_EQ(net::ERR_IO_PENDING
,
2974 cache_
->OpenEntry(key
, &entry2
, cb
.callback()));
2975 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
2976 ScopedEntryPtr
entry_closer(entry2
);
2978 EXPECT_NE(null
, entry2
);
2979 EXPECT_EQ(entry
, entry2
);
2981 // Check that we are not leaking.
2983 static_cast<disk_cache::SimpleEntryImpl
*>(entry2
)->HasOneRef());
2986 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic4
) {
2988 // Create, Close, Write, Open, Open, Close, Write, Read, Close.
2989 SetSimpleCacheMode();
2991 disk_cache::Entry
* null
= NULL
;
2992 const char key
[] = "the first key";
2994 net::TestCompletionCallback cb
;
2995 const int kSize1
= 10;
2996 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2997 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2998 disk_cache::Entry
* entry
= NULL
;
3001 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3002 EXPECT_NE(null
, entry
);
3005 // Lets do a Write so we block until both the Close and the Write
3006 // operation finishes. Write must fail since we are writing in a closed entry.
3008 net::ERR_IO_PENDING
,
3009 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
3010 EXPECT_EQ(net::ERR_FAILED
, cb
.GetResult(net::ERR_IO_PENDING
));
3012 // Finish running the pending tasks so that we fully complete the close
3013 // operation and destroy the entry object.
3014 base::MessageLoop::current()->RunUntilIdle();
3016 // At this point the |entry| must have been destroyed, and called
3017 // RemoveSelfFromBackend().
3018 disk_cache::Entry
* entry2
= NULL
;
3019 ASSERT_EQ(net::ERR_IO_PENDING
,
3020 cache_
->OpenEntry(key
, &entry2
, cb
.callback()));
3021 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
3022 EXPECT_NE(null
, entry2
);
3024 disk_cache::Entry
* entry3
= NULL
;
3025 ASSERT_EQ(net::ERR_IO_PENDING
,
3026 cache_
->OpenEntry(key
, &entry3
, cb
.callback()));
3027 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
3028 EXPECT_NE(null
, entry3
);
3029 EXPECT_EQ(entry2
, entry3
);
3032 // The previous Close doesn't actually closes the entry since we opened it
3033 // twice, so the next Write operation must succeed and it must be able to
3034 // perform it optimistically, since there is no operation running on this
3038 1, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
3040 // Lets do another read so we block until both the write and the read
3041 // operation finishes and we can then test for HasOneRef() below.
3042 EXPECT_EQ(net::ERR_IO_PENDING
,
3043 entry2
->ReadData(1, 0, buffer1
.get(), kSize1
, cb
.callback()));
3044 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3046 // Check that we are not leaking.
3048 static_cast<disk_cache::SimpleEntryImpl
*>(entry2
)->HasOneRef());
3052 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic5
) {
3054 // Create, Doom, Write, Read, Close.
3055 SetSimpleCacheMode();
3057 disk_cache::Entry
* null
= NULL
;
3058 const char key
[] = "the first key";
3060 net::TestCompletionCallback cb
;
3061 const int kSize1
= 10;
3062 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
3063 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
3064 disk_cache::Entry
* entry
= NULL
;
3067 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3068 EXPECT_NE(null
, entry
);
3069 ScopedEntryPtr
entry_closer(entry
);
3073 net::ERR_IO_PENDING
,
3074 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
3075 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3077 EXPECT_EQ(net::ERR_IO_PENDING
,
3078 entry
->ReadData(1, 0, buffer1
.get(), kSize1
, cb
.callback()));
3079 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3081 // Check that we are not leaking.
3083 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3086 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic6
) {
3088 // Create, Write, Doom, Doom, Read, Doom, Close.
3089 SetSimpleCacheMode();
3091 disk_cache::Entry
* null
= NULL
;
3092 const char key
[] = "the first key";
3094 net::TestCompletionCallback cb
;
3095 const int kSize1
= 10;
3096 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
3097 scoped_refptr
<net::IOBuffer
> buffer1_read(new net::IOBuffer(kSize1
));
3098 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
3099 disk_cache::Entry
* entry
= NULL
;
3102 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3103 EXPECT_NE(null
, entry
);
3104 ScopedEntryPtr
entry_closer(entry
);
3107 net::ERR_IO_PENDING
,
3108 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
3109 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3114 // This Read must not be optimistic, since we don't support that yet.
3115 EXPECT_EQ(net::ERR_IO_PENDING
,
3116 entry
->ReadData(1, 0, buffer1_read
.get(), kSize1
, cb
.callback()));
3117 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3118 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read
->data(), kSize1
));
3123 // Confirm that IO buffers are not referenced by the Simple Cache after a write
3125 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimisticWriteReleases
) {
3126 SetSimpleCacheMode();
3129 const char key
[] = "the first key";
3130 disk_cache::Entry
* entry
= NULL
;
3132 // First, an optimistic create.
3134 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3136 ScopedEntryPtr
entry_closer(entry
);
3138 const int kWriteSize
= 512;
3139 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kWriteSize
));
3140 EXPECT_TRUE(buffer1
->HasOneRef());
3141 CacheTestFillBuffer(buffer1
->data(), kWriteSize
, false);
3143 // An optimistic write happens only when there is an empty queue of pending
3144 // operations. To ensure the queue is empty, we issue a write and wait until
3146 EXPECT_EQ(kWriteSize
,
3147 WriteData(entry
, 1, 0, buffer1
.get(), kWriteSize
, false));
3148 EXPECT_TRUE(buffer1
->HasOneRef());
3150 // Finally, we should perform an optimistic write and confirm that all
3151 // references to the IO buffer have been released.
3155 1, 0, buffer1
.get(), kWriteSize
, net::CompletionCallback(), false));
3156 EXPECT_TRUE(buffer1
->HasOneRef());
3159 TEST_F(DiskCacheEntryTest
, SimpleCacheCreateDoomRace
) {
3161 // Create, Doom, Write, Close, Check files are not on disk anymore.
3162 SetSimpleCacheMode();
3164 disk_cache::Entry
* null
= NULL
;
3165 const char key
[] = "the first key";
3167 net::TestCompletionCallback cb
;
3168 const int kSize1
= 10;
3169 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
3170 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
3171 disk_cache::Entry
* entry
= NULL
;
3174 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3175 EXPECT_NE(null
, entry
);
3177 EXPECT_EQ(net::ERR_IO_PENDING
, cache_
->DoomEntry(key
, cb
.callback()));
3178 EXPECT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
3182 entry
->WriteData(0, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
3186 // Finish running the pending tasks so that we fully complete the close
3187 // operation and destroy the entry object.
3188 base::MessageLoop::current()->RunUntilIdle();
3190 for (int i
= 0; i
< disk_cache::kSimpleEntryFileCount
; ++i
) {
3191 base::FilePath entry_file_path
= cache_path_
.AppendASCII(
3192 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, i
));
3193 base::File::Info info
;
3194 EXPECT_FALSE(base::GetFileInfo(entry_file_path
, &info
));
3198 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCreateRace
) {
3199 // This test runs as APP_CACHE to make operations more synchronous. Test
3201 // Create, Doom, Create.
3202 SetCacheType(net::APP_CACHE
);
3203 SetSimpleCacheMode();
3205 disk_cache::Entry
* null
= NULL
;
3206 const char key
[] = "the first key";
3208 net::TestCompletionCallback create_callback
;
3210 disk_cache::Entry
* entry1
= NULL
;
3212 create_callback
.GetResult(
3213 cache_
->CreateEntry(key
, &entry1
, create_callback
.callback())));
3214 ScopedEntryPtr
entry1_closer(entry1
);
3215 EXPECT_NE(null
, entry1
);
3217 net::TestCompletionCallback doom_callback
;
3218 EXPECT_EQ(net::ERR_IO_PENDING
,
3219 cache_
->DoomEntry(key
, doom_callback
.callback()));
3221 disk_cache::Entry
* entry2
= NULL
;
3223 create_callback
.GetResult(
3224 cache_
->CreateEntry(key
, &entry2
, create_callback
.callback())));
3225 ScopedEntryPtr
entry2_closer(entry2
);
3226 EXPECT_EQ(net::OK
, doom_callback
.GetResult(net::ERR_IO_PENDING
));
3229 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomDoom
) {
3231 // Create, Doom, Create, Doom (1st entry), Open.
3232 SetSimpleCacheMode();
3234 disk_cache::Entry
* null
= NULL
;
3236 const char key
[] = "the first key";
3238 disk_cache::Entry
* entry1
= NULL
;
3239 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3240 ScopedEntryPtr
entry1_closer(entry1
);
3241 EXPECT_NE(null
, entry1
);
3243 EXPECT_EQ(net::OK
, DoomEntry(key
));
3245 disk_cache::Entry
* entry2
= NULL
;
3246 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3247 ScopedEntryPtr
entry2_closer(entry2
);
3248 EXPECT_NE(null
, entry2
);
3250 // Redundantly dooming entry1 should not delete entry2.
3251 disk_cache::SimpleEntryImpl
* simple_entry1
=
3252 static_cast<disk_cache::SimpleEntryImpl
*>(entry1
);
3253 net::TestCompletionCallback cb
;
3255 cb
.GetResult(simple_entry1
->DoomEntry(cb
.callback())));
3257 disk_cache::Entry
* entry3
= NULL
;
3258 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry3
));
3259 ScopedEntryPtr
entry3_closer(entry3
);
3260 EXPECT_NE(null
, entry3
);
3263 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCreateDoom
) {
3265 // Create, Doom, Create, Doom.
3266 SetSimpleCacheMode();
3269 disk_cache::Entry
* null
= NULL
;
3271 const char key
[] = "the first key";
3273 disk_cache::Entry
* entry1
= NULL
;
3274 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3275 ScopedEntryPtr
entry1_closer(entry1
);
3276 EXPECT_NE(null
, entry1
);
3280 disk_cache::Entry
* entry2
= NULL
;
3281 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3282 ScopedEntryPtr
entry2_closer(entry2
);
3283 EXPECT_NE(null
, entry2
);
3287 // This test passes if it doesn't crash.
3290 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCloseCreateCloseOpen
) {
3291 // Test sequence: Create, Doom, Close, Create, Close, Open.
3292 SetSimpleCacheMode();
3295 disk_cache::Entry
* null
= NULL
;
3297 const char key
[] = "this is a key";
3299 disk_cache::Entry
* entry1
= NULL
;
3300 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3301 ScopedEntryPtr
entry1_closer(entry1
);
3302 EXPECT_NE(null
, entry1
);
3305 entry1_closer
.reset();
3308 disk_cache::Entry
* entry2
= NULL
;
3309 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3310 ScopedEntryPtr
entry2_closer(entry2
);
3311 EXPECT_NE(null
, entry2
);
3313 entry2_closer
.reset();
3316 disk_cache::Entry
* entry3
= NULL
;
3317 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry3
));
3318 ScopedEntryPtr
entry3_closer(entry3
);
3319 EXPECT_NE(null
, entry3
);
3322 // Checks that an optimistic Create would fail later on a racing Open.
3323 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimisticCreateFailsOnOpen
) {
3324 SetSimpleCacheMode();
3327 // Create a corrupt file in place of a future entry. Optimistic create should
3328 // initially succeed, but realize later that creation failed.
3329 const std::string key
= "the key";
3330 net::TestCompletionCallback cb
;
3331 disk_cache::Entry
* entry
= NULL
;
3332 disk_cache::Entry
* entry2
= NULL
;
3334 EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests(
3336 EXPECT_EQ(net::OK
, cache_
->CreateEntry(key
, &entry
, cb
.callback()));
3338 ScopedEntryPtr
entry_closer(entry
);
3339 ASSERT_NE(net::OK
, OpenEntry(key
, &entry2
));
3341 // Check that we are not leaking.
3343 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3345 DisableIntegrityCheck();
3348 // Tests that old entries are evicted while new entries remain in the index.
3349 // This test relies on non-mandatory properties of the simple Cache Backend:
3350 // LRU eviction, specific values of high-watermark and low-watermark etc.
3351 // When changing the eviction algorithm, the test will have to be re-engineered.
3352 TEST_F(DiskCacheEntryTest
, SimpleCacheEvictOldEntries
) {
3353 const int kMaxSize
= 200 * 1024;
3354 const int kWriteSize
= kMaxSize
/ 10;
3355 const int kNumExtraEntries
= 12;
3356 SetSimpleCacheMode();
3357 SetMaxSize(kMaxSize
);
3360 std::string
key1("the first key");
3361 disk_cache::Entry
* entry
;
3362 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
3363 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kWriteSize
));
3364 CacheTestFillBuffer(buffer
->data(), kWriteSize
, false);
3365 EXPECT_EQ(kWriteSize
,
3366 WriteData(entry
, 1, 0, buffer
.get(), kWriteSize
, false));
3370 std::string
key2("the key prefix");
3371 for (int i
= 0; i
< kNumExtraEntries
; i
++) {
3372 if (i
== kNumExtraEntries
- 2) {
3373 // Create a distinct timestamp for the last two entries. These entries
3374 // will be checked for outliving the eviction.
3377 ASSERT_EQ(net::OK
, CreateEntry(key2
+ base::StringPrintf("%d", i
), &entry
));
3378 ScopedEntryPtr
entry_closer(entry
);
3379 EXPECT_EQ(kWriteSize
,
3380 WriteData(entry
, 1, 0, buffer
.get(), kWriteSize
, false));
3383 // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using
3384 // the internal knowledge about |SimpleBackendImpl|.
3385 ASSERT_NE(net::OK
, OpenEntry(key1
, &entry
))
3386 << "Should have evicted the old entry";
3387 for (int i
= 0; i
< 2; i
++) {
3388 int entry_no
= kNumExtraEntries
- i
- 1;
3389 // Generally there is no guarantee that at this point the backround eviction
3390 // is finished. We are testing the positive case, i.e. when the eviction
3391 // never reaches this entry, should be non-flaky.
3392 ASSERT_EQ(net::OK
, OpenEntry(key2
+ base::StringPrintf("%d", entry_no
),
3394 << "Should not have evicted fresh entry " << entry_no
;
3399 // Tests that if a read and a following in-flight truncate are both in progress
3400 // simultaniously that they both can occur successfully. See
3401 // http://crbug.com/239223
3402 TEST_F(DiskCacheEntryTest
, SimpleCacheInFlightTruncate
) {
3403 SetSimpleCacheMode();
3406 const char key
[] = "the first key";
3408 const int kBufferSize
= 1024;
3409 scoped_refptr
<net::IOBuffer
> write_buffer(new net::IOBuffer(kBufferSize
));
3410 CacheTestFillBuffer(write_buffer
->data(), kBufferSize
, false);
3412 disk_cache::Entry
* entry
= NULL
;
3413 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3415 EXPECT_EQ(kBufferSize
,
3416 WriteData(entry
, 1, 0, write_buffer
.get(), kBufferSize
, false));
3420 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3421 ScopedEntryPtr
entry_closer(entry
);
3423 MessageLoopHelper helper
;
3426 // Make a short read.
3427 const int kReadBufferSize
= 512;
3428 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
3429 CallbackTest
read_callback(&helper
, false);
3430 EXPECT_EQ(net::ERR_IO_PENDING
,
3435 base::Bind(&CallbackTest::Run
,
3436 base::Unretained(&read_callback
))));
3439 // Truncate the entry to the length of that read.
3440 scoped_refptr
<net::IOBuffer
>
3441 truncate_buffer(new net::IOBuffer(kReadBufferSize
));
3442 CacheTestFillBuffer(truncate_buffer
->data(), kReadBufferSize
, false);
3443 CallbackTest
truncate_callback(&helper
, false);
3444 EXPECT_EQ(net::ERR_IO_PENDING
,
3447 truncate_buffer
.get(),
3449 base::Bind(&CallbackTest::Run
,
3450 base::Unretained(&truncate_callback
)),
3454 // Wait for both the read and truncation to finish, and confirm that both
3456 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
3457 EXPECT_EQ(kReadBufferSize
, read_callback
.last_result());
3458 EXPECT_EQ(kReadBufferSize
, truncate_callback
.last_result());
3460 memcmp(write_buffer
->data(), read_buffer
->data(), kReadBufferSize
));
3463 // Tests that if a write and a read dependant on it are both in flight
3464 // simultaneiously that they both can complete successfully without erroneous
3465 // early returns. See http://crbug.com/239223
3466 TEST_F(DiskCacheEntryTest
, SimpleCacheInFlightRead
) {
3467 SetSimpleCacheMode();
3470 const char key
[] = "the first key";
3471 disk_cache::Entry
* entry
= NULL
;
3473 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3474 ScopedEntryPtr
entry_closer(entry
);
3476 const int kBufferSize
= 1024;
3477 scoped_refptr
<net::IOBuffer
> write_buffer(new net::IOBuffer(kBufferSize
));
3478 CacheTestFillBuffer(write_buffer
->data(), kBufferSize
, false);
3480 MessageLoopHelper helper
;
3483 CallbackTest
write_callback(&helper
, false);
3484 EXPECT_EQ(net::ERR_IO_PENDING
,
3489 base::Bind(&CallbackTest::Run
,
3490 base::Unretained(&write_callback
)),
3494 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kBufferSize
));
3495 CallbackTest
read_callback(&helper
, false);
3496 EXPECT_EQ(net::ERR_IO_PENDING
,
3501 base::Bind(&CallbackTest::Run
,
3502 base::Unretained(&read_callback
))));
3505 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
3506 EXPECT_EQ(kBufferSize
, write_callback
.last_result());
3507 EXPECT_EQ(kBufferSize
, read_callback
.last_result());
3508 EXPECT_EQ(0, memcmp(write_buffer
->data(), read_buffer
->data(), kBufferSize
));
3511 TEST_F(DiskCacheEntryTest
, SimpleCacheOpenCreateRaceWithNoIndex
) {
3512 SetSimpleCacheMode();
3513 DisableSimpleCacheWaitForIndex();
3514 DisableIntegrityCheck();
3517 // Assume the index is not initialized, which is likely, since we are blocking
3518 // the IO thread from executing the index finalization step.
3519 disk_cache::Entry
* entry1
;
3520 net::TestCompletionCallback cb1
;
3521 disk_cache::Entry
* entry2
;
3522 net::TestCompletionCallback cb2
;
3523 int rv1
= cache_
->OpenEntry("key", &entry1
, cb1
.callback());
3524 int rv2
= cache_
->CreateEntry("key", &entry2
, cb2
.callback());
3526 EXPECT_EQ(net::ERR_FAILED
, cb1
.GetResult(rv1
));
3527 ASSERT_EQ(net::OK
, cb2
.GetResult(rv2
));
3531 // Checks that reading two entries simultaneously does not discard a CRC check.
3532 // TODO(pasko): make it work with Simple Cache.
3533 TEST_F(DiskCacheEntryTest
, DISABLED_SimpleCacheMultipleReadersCheckCRC
) {
3534 SetSimpleCacheMode();
3537 const char key
[] = "key";
3540 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size
));
3542 scoped_refptr
<net::IOBuffer
> read_buffer1(new net::IOBuffer(size
));
3543 scoped_refptr
<net::IOBuffer
> read_buffer2(new net::IOBuffer(size
));
3545 // Advance the first reader a little.
3546 disk_cache::Entry
* entry
= NULL
;
3547 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3548 EXPECT_EQ(1, ReadData(entry
, 0, 0, read_buffer1
.get(), 1));
3550 // Make the second reader pass the point where the first one is, and close.
3551 disk_cache::Entry
* entry2
= NULL
;
3552 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3553 EXPECT_EQ(1, ReadData(entry2
, 0, 0, read_buffer2
.get(), 1));
3554 EXPECT_EQ(1, ReadData(entry2
, 0, 1, read_buffer2
.get(), 1));
3557 // Read the data till the end should produce an error.
3558 EXPECT_GT(0, ReadData(entry
, 0, 1, read_buffer1
.get(), size
));
3560 DisableIntegrityCheck();
3563 // Checking one more scenario of overlapped reading of a bad entry.
3564 // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of
3566 TEST_F(DiskCacheEntryTest
, SimpleCacheMultipleReadersCheckCRC2
) {
3567 SetSimpleCacheMode();
3570 const char key
[] = "key";
3572 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size
));
3574 scoped_refptr
<net::IOBuffer
> read_buffer1(new net::IOBuffer(size
));
3575 scoped_refptr
<net::IOBuffer
> read_buffer2(new net::IOBuffer(size
));
3577 // Advance the first reader a little.
3578 disk_cache::Entry
* entry
= NULL
;
3579 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3580 ScopedEntryPtr
entry_closer(entry
);
3581 EXPECT_EQ(1, ReadData(entry
, 1, 0, read_buffer1
.get(), 1));
3583 // Advance the 2nd reader by the same amount.
3584 disk_cache::Entry
* entry2
= NULL
;
3585 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3586 ScopedEntryPtr
entry2_closer(entry2
);
3587 EXPECT_EQ(1, ReadData(entry2
, 1, 0, read_buffer2
.get(), 1));
3589 // Continue reading 1st.
3590 EXPECT_GT(0, ReadData(entry
, 1, 1, read_buffer1
.get(), size
));
3592 // This read should fail as well because we have previous read failures.
3593 EXPECT_GT(0, ReadData(entry2
, 1, 1, read_buffer2
.get(), 1));
3594 DisableIntegrityCheck();
3597 // Test if we can sequentially read each subset of the data until all the data
3598 // is read, then the CRC is calculated correctly and the reads are successful.
3599 TEST_F(DiskCacheEntryTest
, SimpleCacheReadCombineCRC
) {
3601 // Create, Write, Read (first half of data), Read (second half of data),
3603 SetSimpleCacheMode();
3605 disk_cache::Entry
* null
= NULL
;
3606 const char key
[] = "the first key";
3608 const int kHalfSize
= 200;
3609 const int kSize
= 2 * kHalfSize
;
3610 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3611 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3612 disk_cache::Entry
* entry
= NULL
;
3614 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3615 EXPECT_NE(null
, entry
);
3617 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buffer1
.get(), kSize
, false));
3620 disk_cache::Entry
* entry2
= NULL
;
3621 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3622 EXPECT_EQ(entry
, entry2
);
3624 // Read the first half of the data.
3626 int buf_len
= kHalfSize
;
3627 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(buf_len
));
3628 EXPECT_EQ(buf_len
, ReadData(entry2
, 1, offset
, buffer1_read1
.get(), buf_len
));
3629 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), buf_len
));
3631 // Read the second half of the data.
3633 buf_len
= kHalfSize
;
3634 scoped_refptr
<net::IOBuffer
> buffer1_read2(new net::IOBuffer(buf_len
));
3635 EXPECT_EQ(buf_len
, ReadData(entry2
, 1, offset
, buffer1_read2
.get(), buf_len
));
3636 char* buffer1_data
= buffer1
->data() + offset
;
3637 EXPECT_EQ(0, memcmp(buffer1_data
, buffer1_read2
->data(), buf_len
));
3639 // Check that we are not leaking.
3640 EXPECT_NE(entry
, null
);
3642 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3647 // Test if we can write the data not in sequence and read correctly. In
3648 // this case the CRC will not be present.
3649 TEST_F(DiskCacheEntryTest
, SimpleCacheNonSequentialWrite
) {
3651 // Create, Write (second half of data), Write (first half of data), Read,
3653 SetSimpleCacheMode();
3655 disk_cache::Entry
* null
= NULL
;
3656 const char key
[] = "the first key";
3658 const int kHalfSize
= 200;
3659 const int kSize
= 2 * kHalfSize
;
3660 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3661 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3662 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3663 char* buffer1_data
= buffer1
->data() + kHalfSize
;
3664 memcpy(buffer2
->data(), buffer1_data
, kHalfSize
);
3666 disk_cache::Entry
* entry
= NULL
;
3667 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3669 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3670 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3671 EXPECT_NE(null
, entry
);
3673 int offset
= kHalfSize
;
3674 int buf_len
= kHalfSize
;
3677 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
3679 buf_len
= kHalfSize
;
3681 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
3684 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3686 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(kSize
));
3687 EXPECT_EQ(kSize
, ReadData(entry
, i
, 0, buffer1_read1
.get(), kSize
));
3688 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), kSize
));
3689 // Check that we are not leaking.
3690 ASSERT_NE(entry
, null
);
3691 EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3696 // Test that changing stream1 size does not affect stream0 (stream0 and stream1
3697 // are stored in the same file in Simple Cache).
3698 TEST_F(DiskCacheEntryTest
, SimpleCacheStream1SizeChanges
) {
3699 SetSimpleCacheMode();
3701 disk_cache::Entry
* entry
= NULL
;
3702 const char key
[] = "the key";
3703 const int kSize
= 100;
3704 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3705 scoped_refptr
<net::IOBuffer
> buffer_read(new net::IOBuffer(kSize
));
3706 CacheTestFillBuffer(buffer
->data(), kSize
, false);
3708 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3711 // Write something into stream0.
3712 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
3713 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3714 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3718 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3719 int stream1_size
= 100;
3720 EXPECT_EQ(0, WriteData(entry
, 1, stream1_size
, buffer
.get(), 0, false));
3721 EXPECT_EQ(stream1_size
, entry
->GetDataSize(1));
3724 // Check that stream0 data has not been modified and that the EOF record for
3725 // stream 0 contains a crc.
3726 // The entry needs to be reopened before checking the crc: Open will perform
3727 // the synchronization with the previous Close. This ensures the EOF records
3728 // have been written to disk before we attempt to read them independently.
3729 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3730 base::FilePath entry_file0_path
= cache_path_
.AppendASCII(
3731 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
3732 base::File
entry_file0(entry_file0_path
,
3733 base::File::FLAG_READ
| base::File::FLAG_OPEN
);
3734 ASSERT_TRUE(entry_file0
.IsValid());
3736 int data_size
[disk_cache::kSimpleEntryStreamCount
] = {kSize
, stream1_size
, 0};
3737 int sparse_data_size
= 0;
3738 disk_cache::SimpleEntryStat
entry_stat(
3739 base::Time::Now(), base::Time::Now(), data_size
, sparse_data_size
);
3740 int eof_offset
= entry_stat
.GetEOFOffsetInFile(key
, 0);
3741 disk_cache::SimpleFileEOF eof_record
;
3742 ASSERT_EQ(static_cast<int>(sizeof(eof_record
)),
3743 entry_file0
.Read(eof_offset
, reinterpret_cast<char*>(&eof_record
),
3744 sizeof(eof_record
)));
3745 EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber
, eof_record
.final_magic_number
);
3746 EXPECT_TRUE((eof_record
.flags
& disk_cache::SimpleFileEOF::FLAG_HAS_CRC32
) ==
3747 disk_cache::SimpleFileEOF::FLAG_HAS_CRC32
);
3749 buffer_read
= new net::IOBuffer(kSize
);
3750 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3751 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3755 EXPECT_EQ(0, WriteData(entry
, 1, stream1_size
, buffer
.get(), 0, true));
3756 EXPECT_EQ(stream1_size
, entry
->GetDataSize(1));
3759 // Check that stream0 data has not been modified.
3760 buffer_read
= new net::IOBuffer(kSize
);
3761 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3762 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3763 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3768 // Test that writing within the range for which the crc has already been
3769 // computed will properly invalidate the computed crc.
3770 TEST_F(DiskCacheEntryTest
, SimpleCacheCRCRewrite
) {
3772 // Create, Write (big data), Write (small data in the middle), Close.
3773 // Open, Read (all), Close.
3774 SetSimpleCacheMode();
3776 disk_cache::Entry
* null
= NULL
;
3777 const char key
[] = "the first key";
3779 const int kHalfSize
= 200;
3780 const int kSize
= 2 * kHalfSize
;
3781 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3782 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kHalfSize
));
3783 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3784 CacheTestFillBuffer(buffer2
->data(), kHalfSize
, false);
3786 disk_cache::Entry
* entry
= NULL
;
3787 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3788 EXPECT_NE(null
, entry
);
3791 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3792 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3794 int buf_len
= kSize
;
3797 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
3799 buf_len
= kHalfSize
;
3801 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
3804 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3806 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(kSize
));
3807 EXPECT_EQ(kSize
, ReadData(entry
, i
, 0, buffer1_read1
.get(), kSize
));
3808 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), kHalfSize
));
3811 memcmp(buffer2
->data(), buffer1_read1
->data() + kHalfSize
, kHalfSize
));
3817 bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key
) {
3818 int third_stream_file_index
=
3819 disk_cache::simple_util::GetFileIndexFromStreamIndex(2);
3820 base::FilePath third_stream_file_path
= cache_path_
.AppendASCII(
3821 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(
3822 key
, third_stream_file_index
));
3823 return PathExists(third_stream_file_path
);
3826 void DiskCacheEntryTest::SyncDoomEntry(const char* key
) {
3827 net::TestCompletionCallback callback
;
3828 cache_
->DoomEntry(key
, callback
.callback());
3829 callback
.WaitForResult();
3832 // Check that a newly-created entry with no third-stream writes omits the
3833 // third stream file.
3834 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream1
) {
3835 SetSimpleCacheMode();
3838 const char key
[] = "key";
3840 disk_cache::Entry
* entry
;
3842 // Create entry and close without writing: third stream file should be
3843 // omitted, since the stream is empty.
3844 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3846 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3849 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3852 // Check that a newly-created entry with only a single zero-offset, zero-length
3853 // write omits the third stream file.
3854 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream2
) {
3855 SetSimpleCacheMode();
3858 const int kHalfSize
= 8;
3859 const int kSize
= kHalfSize
* 2;
3860 const char key
[] = "key";
3861 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3862 CacheTestFillBuffer(buffer
->data(), kHalfSize
, false);
3864 disk_cache::Entry
* entry
;
3866 // Create entry, write empty buffer to third stream, and close: third stream
3867 // should still be omitted, since the entry ignores writes that don't modify
3868 // data or change the length.
3869 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3870 EXPECT_EQ(0, WriteData(entry
, 2, 0, buffer
.get(), 0, true));
3872 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3875 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3878 // Check that we can read back data written to the third stream.
3879 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream3
) {
3880 SetSimpleCacheMode();
3883 const int kHalfSize
= 8;
3884 const int kSize
= kHalfSize
* 2;
3885 const char key
[] = "key";
3886 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3887 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3888 CacheTestFillBuffer(buffer1
->data(), kHalfSize
, false);
3890 disk_cache::Entry
* entry
;
3892 // Create entry, write data to third stream, and close: third stream should
3893 // not be omitted, since it contains data. Re-open entry and ensure there
3894 // are that many bytes in the third stream.
3895 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3896 EXPECT_EQ(kHalfSize
, WriteData(entry
, 2, 0, buffer1
.get(), kHalfSize
, true));
3898 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3900 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3901 EXPECT_EQ(kHalfSize
, ReadData(entry
, 2, 0, buffer2
.get(), kSize
));
3902 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer2
->data(), kHalfSize
));
3904 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3907 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3910 // Check that we remove the third stream file upon opening an entry and finding
3911 // the third stream empty. (This is the upgrade path for entries written
3912 // before the third stream was optional.)
3913 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream4
) {
3914 SetSimpleCacheMode();
3917 const int kHalfSize
= 8;
3918 const int kSize
= kHalfSize
* 2;
3919 const char key
[] = "key";
3920 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3921 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3922 CacheTestFillBuffer(buffer1
->data(), kHalfSize
, false);
3924 disk_cache::Entry
* entry
;
3926 // Create entry, write data to third stream, truncate third stream back to
3927 // empty, and close: third stream will not initially be omitted, since entry
3928 // creates the file when the first significant write comes in, and only
3929 // removes it on open if it is empty. Reopen, ensure that the file is
3930 // deleted, and that there's no data in the third stream.
3931 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3932 EXPECT_EQ(kHalfSize
, WriteData(entry
, 2, 0, buffer1
.get(), kHalfSize
, true));
3933 EXPECT_EQ(0, WriteData(entry
, 2, 0, buffer1
.get(), 0, true));
3935 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3937 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3938 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3939 EXPECT_EQ(0, ReadData(entry
, 2, 0, buffer2
.get(), kSize
));
3941 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3944 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3947 // Check that we don't accidentally create the third stream file once the entry
3949 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream5
) {
3950 SetSimpleCacheMode();
3953 const int kHalfSize
= 8;
3954 const int kSize
= kHalfSize
* 2;
3955 const char key
[] = "key";
3956 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3957 CacheTestFillBuffer(buffer
->data(), kHalfSize
, false);
3959 disk_cache::Entry
* entry
;
3961 // Create entry, doom entry, write data to third stream, and close: third
3962 // stream should not exist. (Note: We don't care if the write fails, just
3963 // that it doesn't cause the file to be created on disk.)
3964 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3966 WriteData(entry
, 2, 0, buffer
.get(), kHalfSize
, true);
3968 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3971 // There could be a race between Doom and an optimistic write.
3972 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomOptimisticWritesRace
) {
3974 // Create, first Write, second Write, Close.
3976 SetSimpleCacheMode();
3978 disk_cache::Entry
* null
= NULL
;
3979 const char key
[] = "the first key";
3981 const int kSize
= 200;
3982 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3983 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3984 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3985 CacheTestFillBuffer(buffer2
->data(), kSize
, false);
3987 // The race only happens on stream 1 and stream 2.
3988 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3989 ASSERT_EQ(net::OK
, DoomAllEntries());
3990 disk_cache::Entry
* entry
= NULL
;
3992 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3993 EXPECT_NE(null
, entry
);
3997 ASSERT_EQ(net::OK
, DoomAllEntries());
3998 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3999 EXPECT_NE(null
, entry
);
4002 int buf_len
= kSize
;
4003 // This write should not be optimistic (since create is).
4005 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
4008 // This write should be optimistic.
4010 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
4013 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
4014 EXPECT_NE(null
, entry
);
4021 // Tests for a regression in crbug.com/317138 , in which deleting an already
4022 // doomed entry was removing the active entry from the index.
4023 TEST_F(DiskCacheEntryTest
, SimpleCachePreserveActiveEntries
) {
4024 SetSimpleCacheMode();
4027 disk_cache::Entry
* null
= NULL
;
4029 const char key
[] = "this is a key";
4031 disk_cache::Entry
* entry1
= NULL
;
4032 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
4033 ScopedEntryPtr
entry1_closer(entry1
);
4034 EXPECT_NE(null
, entry1
);
4037 disk_cache::Entry
* entry2
= NULL
;
4038 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
4039 ScopedEntryPtr
entry2_closer(entry2
);
4040 EXPECT_NE(null
, entry2
);
4041 entry2_closer
.reset();
4043 // Closing then reopening entry2 insures that entry2 is serialized, and so
4044 // it can be opened from files without error.
4046 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry2
));
4047 EXPECT_NE(null
, entry2
);
4048 entry2_closer
.reset(entry2
);
4050 scoped_refptr
<disk_cache::SimpleEntryImpl
>
4051 entry1_refptr
= static_cast<disk_cache::SimpleEntryImpl
*>(entry1
);
4053 // If crbug.com/317138 has regressed, this will remove |entry2| from
4054 // the backend's |active_entries_| while |entry2| is still alive and its
4055 // files are still on disk.
4056 entry1_closer
.reset();
4059 // Close does not have a callback. However, we need to be sure the close is
4060 // finished before we continue the test. We can take advantage of how the ref
4061 // counting of a SimpleEntryImpl works to fake out a callback: When the
4062 // last Close() call is made to an entry, an IO operation is sent to the
4063 // synchronous entry to close the platform files. This IO operation holds a
4064 // ref pointer to the entry, which expires when the operation is done. So,
4065 // we take a refpointer, and watch the SimpleEntry object until it has only
4066 // one ref; this indicates the IO operation is complete.
4067 while (!entry1_refptr
->HasOneRef()) {
4068 base::PlatformThread::YieldCurrentThread();
4069 base::MessageLoop::current()->RunUntilIdle();
4071 entry1_refptr
= NULL
;
4073 // In the bug case, this new entry ends up being a duplicate object pointing
4074 // at the same underlying files.
4075 disk_cache::Entry
* entry3
= NULL
;
4076 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry3
));
4077 ScopedEntryPtr
entry3_closer(entry3
);
4078 EXPECT_NE(null
, entry3
);
4080 // The test passes if these two dooms do not crash.
4085 TEST_F(DiskCacheEntryTest
, SimpleCacheBasicSparseIO
) {
4086 SetSimpleCacheMode();
4091 TEST_F(DiskCacheEntryTest
, SimpleCacheHugeSparseIO
) {
4092 SetSimpleCacheMode();
4097 TEST_F(DiskCacheEntryTest
, SimpleCacheGetAvailableRange
) {
4098 SetSimpleCacheMode();
4100 GetAvailableRange();
4103 TEST_F(DiskCacheEntryTest
, DISABLED_SimpleCacheCouldBeSparse
) {
4104 SetSimpleCacheMode();
4109 TEST_F(DiskCacheEntryTest
, SimpleCacheUpdateSparseEntry
) {
4110 SetSimpleCacheMode();
4112 UpdateSparseEntry();
4115 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomSparseEntry
) {
4116 SetSimpleCacheMode();
4121 TEST_F(DiskCacheEntryTest
, SimpleCachePartialSparseEntry
) {
4122 SetSimpleCacheMode();
4124 PartialSparseEntry();
4127 TEST_F(DiskCacheEntryTest
, SimpleCacheTruncateLargeSparseFile
) {
4128 const int kSize
= 1024;
4130 SetSimpleCacheMode();
4131 // An entry is allowed sparse data 1/10 the size of the cache, so this size
4132 // allows for one |kSize|-sized range plus overhead, but not two ranges.
4133 SetMaxSize(kSize
* 15);
4136 const char key
[] = "key";
4137 disk_cache::Entry
* null
= NULL
;
4138 disk_cache::Entry
* entry
;
4139 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
4140 EXPECT_NE(null
, entry
);
4142 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
4143 CacheTestFillBuffer(buffer
->data(), kSize
, false);
4144 net::TestCompletionCallback callback
;
4147 // Verify initial conditions.
4148 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4149 EXPECT_EQ(0, callback
.GetResult(ret
));
4151 ret
= entry
->ReadSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4152 EXPECT_EQ(0, callback
.GetResult(ret
));
4154 // Write a range and make sure it reads back.
4155 ret
= entry
->WriteSparseData(0, buffer
.get(), kSize
, callback
.callback());
4156 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4158 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4159 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4161 // Write another range and make sure it reads back.
4162 ret
= entry
->WriteSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4163 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4165 ret
= entry
->ReadSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4166 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4168 // Make sure the first range was removed when the second was written.
4169 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4170 EXPECT_EQ(0, callback
.GetResult(ret
));