x11: Use scoped_ptr<> for X11 objects where it makes sense.
[chromium-blink-merge.git] / ui / events / latency_info.cc
blob02586d69347bc5d69c0abbefa9fc628d07bf6079
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/json/json_writer.h"
6 #include "base/memory/scoped_ptr.h"
7 #include "base/strings/stringprintf.h"
8 #include "base/trace_event/trace_event.h"
9 #include "ui/events/latency_info.h"
11 #include <algorithm>
13 namespace {
15 const size_t kMaxLatencyInfoNumber = 100;
17 const char* GetComponentName(ui::LatencyComponentType type) {
18 #define CASE_TYPE(t) case ui::t: return #t
19 switch (type) {
20 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT);
21 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT);
22 CASE_TYPE(INPUT_EVENT_LATENCY_BEGIN_SCROLL_UPDATE_MAIN_COMPONENT);
23 CASE_TYPE(INPUT_EVENT_LATENCY_SCROLL_UPDATE_ORIGINAL_COMPONENT);
24 CASE_TYPE(INPUT_EVENT_LATENCY_FIRST_SCROLL_UPDATE_ORIGINAL_COMPONENT);
25 CASE_TYPE(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT);
26 CASE_TYPE(INPUT_EVENT_LATENCY_UI_COMPONENT);
27 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_MAIN_COMPONENT);
28 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERING_SCHEDULED_IMPL_COMPONENT);
29 CASE_TYPE(INPUT_EVENT_LATENCY_FORWARD_SCROLL_UPDATE_TO_MAIN_COMPONENT);
30 CASE_TYPE(INPUT_EVENT_LATENCY_ACK_RWH_COMPONENT);
31 CASE_TYPE(WINDOW_SNAPSHOT_FRAME_NUMBER_COMPONENT);
32 CASE_TYPE(WINDOW_OLD_SNAPSHOT_FRAME_NUMBER_COMPONENT);
33 CASE_TYPE(TAB_SHOW_COMPONENT);
34 CASE_TYPE(INPUT_EVENT_LATENCY_RENDERER_SWAP_COMPONENT);
35 CASE_TYPE(INPUT_EVENT_BROWSER_RECEIVED_RENDERER_SWAP_COMPONENT);
36 CASE_TYPE(INPUT_EVENT_GPU_SWAP_BUFFER_COMPONENT);
37 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT);
38 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT);
39 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT);
40 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT);
41 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT);
42 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT);
43 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT);
44 CASE_TYPE(INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT);
45 default:
46 DLOG(WARNING) << "Unhandled LatencyComponentType.\n";
47 break;
49 #undef CASE_TYPE
50 return "unknown";
53 bool IsTerminalComponent(ui::LatencyComponentType type) {
54 switch (type) {
55 case ui::INPUT_EVENT_LATENCY_TERMINATED_MOUSE_COMPONENT:
56 case ui::INPUT_EVENT_LATENCY_TERMINATED_TOUCH_COMPONENT:
57 case ui::INPUT_EVENT_LATENCY_TERMINATED_GESTURE_COMPONENT:
58 case ui::INPUT_EVENT_LATENCY_TERMINATED_FRAME_SWAP_COMPONENT:
59 case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_FAILED_COMPONENT:
60 case ui::INPUT_EVENT_LATENCY_TERMINATED_COMMIT_NO_UPDATE_COMPONENT:
61 case ui::INPUT_EVENT_LATENCY_TERMINATED_SWAP_FAILED_COMPONENT:
62 case ui::INPUT_EVENT_LATENCY_TERMINATED_PLUGIN_COMPONENT:
63 return true;
64 default:
65 return false;
69 bool IsBeginComponent(ui::LatencyComponentType type) {
70 return (type == ui::INPUT_EVENT_LATENCY_BEGIN_RWH_COMPONENT ||
71 type == ui::INPUT_EVENT_LATENCY_BEGIN_PLUGIN_COMPONENT ||
72 type == ui::INPUT_EVENT_LATENCY_BEGIN_SCROLL_UPDATE_MAIN_COMPONENT);
75 // This class is for converting latency info to trace buffer friendly format.
76 class LatencyInfoTracedValue
77 : public base::trace_event::ConvertableToTraceFormat {
78 public:
79 static scoped_refptr<ConvertableToTraceFormat> FromValue(
80 scoped_ptr<base::Value> value);
82 void AppendAsTraceFormat(std::string* out) const override;
84 private:
85 explicit LatencyInfoTracedValue(base::Value* value);
86 ~LatencyInfoTracedValue() override;
88 scoped_ptr<base::Value> value_;
90 DISALLOW_COPY_AND_ASSIGN(LatencyInfoTracedValue);
93 scoped_refptr<base::trace_event::ConvertableToTraceFormat>
94 LatencyInfoTracedValue::FromValue(scoped_ptr<base::Value> value) {
95 return scoped_refptr<base::trace_event::ConvertableToTraceFormat>(
96 new LatencyInfoTracedValue(value.release()));
99 LatencyInfoTracedValue::~LatencyInfoTracedValue() {
102 void LatencyInfoTracedValue::AppendAsTraceFormat(std::string* out) const {
103 std::string tmp;
104 base::JSONWriter::Write(value_.get(), &tmp);
105 *out += tmp;
108 LatencyInfoTracedValue::LatencyInfoTracedValue(base::Value* value)
109 : value_(value) {
112 // Converts latencyinfo into format that can be dumped into trace buffer.
113 scoped_refptr<base::trace_event::ConvertableToTraceFormat> AsTraceableData(
114 const ui::LatencyInfo& latency) {
115 scoped_ptr<base::DictionaryValue> record_data(new base::DictionaryValue());
116 for (ui::LatencyInfo::LatencyMap::const_iterator it =
117 latency.latency_components.begin();
118 it != latency.latency_components.end(); ++it) {
119 base::DictionaryValue* component_info = new base::DictionaryValue();
120 component_info->SetDouble("comp_id", static_cast<double>(it->first.second));
121 component_info->SetDouble(
122 "time", static_cast<double>(it->second.event_time.ToInternalValue()));
123 component_info->SetDouble("count", it->second.event_count);
124 record_data->Set(GetComponentName(it->first.first), component_info);
126 record_data->SetDouble("trace_id", static_cast<double>(latency.trace_id));
128 scoped_ptr<base::ListValue> coordinates(new base::ListValue());
129 for (size_t i = 0; i < latency.input_coordinates_size; i++) {
130 scoped_ptr<base::DictionaryValue> coordinate_pair(
131 new base::DictionaryValue());
132 coordinate_pair->SetDouble("x", latency.input_coordinates[i].x);
133 coordinate_pair->SetDouble("y", latency.input_coordinates[i].y);
134 coordinates->Append(coordinate_pair.release());
136 record_data->Set("coordinates", coordinates.release());
137 return LatencyInfoTracedValue::FromValue(record_data.Pass());
140 } // namespace
142 namespace ui {
144 LatencyInfo::InputCoordinate::InputCoordinate() : x(0), y(0) {
147 LatencyInfo::InputCoordinate::InputCoordinate(float x, float y) : x(x), y(y) {
150 LatencyInfo::LatencyInfo()
151 : input_coordinates_size(0), trace_id(-1), terminated(false) {
154 LatencyInfo::~LatencyInfo() {
157 bool LatencyInfo::Verify(const std::vector<LatencyInfo>& latency_info,
158 const char* referring_msg) {
159 if (latency_info.size() > kMaxLatencyInfoNumber) {
160 LOG(ERROR) << referring_msg << ", LatencyInfo vector size "
161 << latency_info.size() << " is too big.";
162 return false;
164 for (size_t i = 0; i < latency_info.size(); i++) {
165 if (latency_info[i].input_coordinates_size > kMaxInputCoordinates) {
166 LOG(ERROR) << referring_msg << ", coordinate vector size "
167 << latency_info[i].input_coordinates_size << " is too big.";
168 return false;
172 return true;
175 void LatencyInfo::CopyLatencyFrom(const LatencyInfo& other,
176 LatencyComponentType type) {
177 for (LatencyMap::const_iterator it = other.latency_components.begin();
178 it != other.latency_components.end();
179 ++it) {
180 if (it->first.first == type) {
181 AddLatencyNumberWithTimestamp(it->first.first,
182 it->first.second,
183 it->second.sequence_number,
184 it->second.event_time,
185 it->second.event_count);
190 void LatencyInfo::AddNewLatencyFrom(const LatencyInfo& other) {
191 for (LatencyMap::const_iterator it = other.latency_components.begin();
192 it != other.latency_components.end();
193 ++it) {
194 if (!FindLatency(it->first.first, it->first.second, NULL)) {
195 AddLatencyNumberWithTimestamp(it->first.first,
196 it->first.second,
197 it->second.sequence_number,
198 it->second.event_time,
199 it->second.event_count);
204 void LatencyInfo::AddLatencyNumber(LatencyComponentType component,
205 int64 id,
206 int64 component_sequence_number) {
207 AddLatencyNumberWithTimestamp(component, id, component_sequence_number,
208 base::TimeTicks::Now(), 1);
211 void LatencyInfo::AddLatencyNumberWithTimestamp(LatencyComponentType component,
212 int64 id,
213 int64 component_sequence_number,
214 base::TimeTicks time,
215 uint32 event_count) {
217 static const unsigned char* benchmark_enabled =
218 TRACE_EVENT_API_GET_CATEGORY_GROUP_ENABLED("benchmark");
220 if (IsBeginComponent(component)) {
221 // Should only ever add begin component once.
222 CHECK_EQ(-1, trace_id);
223 trace_id = component_sequence_number;
225 if (*benchmark_enabled) {
226 // The timestamp for ASYNC_BEGIN trace event is used for drawing the
227 // beginning of the trace event in trace viewer. For better visualization,
228 // for an input event, we want to draw the beginning as when the event is
229 // originally created, e.g. the timestamp of its ORIGINAL/UI_COMPONENT,
230 // not when we actually issue the ASYNC_BEGIN trace event.
231 LatencyComponent component;
232 int64 ts = 0;
233 if (FindLatency(INPUT_EVENT_LATENCY_ORIGINAL_COMPONENT,
235 &component) ||
236 FindLatency(INPUT_EVENT_LATENCY_UI_COMPONENT,
238 &component)) {
239 // The timestamp stored in ORIGINAL/UI_COMPONENT is using clock
240 // CLOCK_MONOTONIC while TRACE_EVENT_ASYNC_BEGIN_WITH_TIMESTAMP0
241 // expects timestamp using CLOCK_MONOTONIC or CLOCK_SYSTEM_TRACE (on
242 // CrOS). So we need to adjust the diff between in CLOCK_MONOTONIC and
243 // CLOCK_SYSTEM_TRACE. Note that the diff is drifting overtime so we
244 // can't use a static value.
245 int64 diff = base::TimeTicks::Now().ToInternalValue() -
246 base::TimeTicks::NowFromSystemTraceTime().ToInternalValue();
247 ts = component.event_time.ToInternalValue() - diff;
248 } else {
249 ts = base::TimeTicks::NowFromSystemTraceTime().ToInternalValue();
251 TRACE_EVENT_ASYNC_BEGIN_WITH_TIMESTAMP0(
252 "benchmark",
253 "InputLatency",
254 TRACE_ID_DONT_MANGLE(trace_id),
255 ts);
258 TRACE_EVENT_FLOW_BEGIN0(
259 "input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id));
262 LatencyMap::key_type key = std::make_pair(component, id);
263 LatencyMap::iterator it = latency_components.find(key);
264 if (it == latency_components.end()) {
265 LatencyComponent info = {component_sequence_number, time, event_count};
266 latency_components[key] = info;
267 } else {
268 it->second.sequence_number = std::max(component_sequence_number,
269 it->second.sequence_number);
270 uint32 new_count = event_count + it->second.event_count;
271 if (event_count > 0 && new_count != 0) {
272 // Do a weighted average, so that the new event_time is the average of
273 // the times of events currently in this structure with the time passed
274 // into this method.
275 it->second.event_time += (time - it->second.event_time) * event_count /
276 new_count;
277 it->second.event_count = new_count;
281 if (IsTerminalComponent(component) && trace_id != -1) {
282 // Should only ever add terminal component once.
283 CHECK(!terminated);
284 terminated = true;
286 if (*benchmark_enabled) {
287 TRACE_EVENT_ASYNC_END1("benchmark",
288 "InputLatency",
289 TRACE_ID_DONT_MANGLE(trace_id),
290 "data", AsTraceableData(*this));
293 TRACE_EVENT_FLOW_END0(
294 "input,benchmark", "LatencyInfo.Flow", TRACE_ID_DONT_MANGLE(trace_id));
298 bool LatencyInfo::FindLatency(LatencyComponentType type,
299 int64 id,
300 LatencyComponent* output) const {
301 LatencyMap::const_iterator it = latency_components.find(
302 std::make_pair(type, id));
303 if (it == latency_components.end())
304 return false;
305 if (output)
306 *output = it->second;
307 return true;
310 void LatencyInfo::RemoveLatency(LatencyComponentType type) {
311 LatencyMap::iterator it = latency_components.begin();
312 while (it != latency_components.end()) {
313 if (it->first.first == type) {
314 LatencyMap::iterator tmp = it;
315 ++it;
316 latency_components.erase(tmp);
317 } else {
318 it++;
323 void LatencyInfo::Clear() {
324 latency_components.clear();
327 void LatencyInfo::TraceEventType(const char* event_type) {
328 TRACE_EVENT_ASYNC_STEP_INTO0("benchmark",
329 "InputLatency",
330 TRACE_ID_DONT_MANGLE(trace_id),
331 event_type);
334 } // namespace ui