Update V8 to version 4.7.53.
[chromium-blink-merge.git] / net / disk_cache / blockfile / backend_impl.cc
blob50e7b026a83e4b199a3c893f0eae18655e1f5912
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/backend_impl.h"
7 #include "base/bind.h"
8 #include "base/bind_helpers.h"
9 #include "base/files/file.h"
10 #include "base/files/file_path.h"
11 #include "base/files/file_util.h"
12 #include "base/hash.h"
13 #include "base/location.h"
14 #include "base/metrics/field_trial.h"
15 #include "base/metrics/histogram.h"
16 #include "base/rand_util.h"
17 #include "base/single_thread_task_runner.h"
18 #include "base/strings/string_number_conversions.h"
19 #include "base/strings/string_util.h"
20 #include "base/strings/stringprintf.h"
21 #include "base/sys_info.h"
22 #include "base/thread_task_runner_handle.h"
23 #include "base/threading/thread_restrictions.h"
24 #include "base/time/time.h"
25 #include "base/timer/timer.h"
26 #include "net/base/net_errors.h"
27 #include "net/disk_cache/blockfile/disk_format.h"
28 #include "net/disk_cache/blockfile/entry_impl.h"
29 #include "net/disk_cache/blockfile/errors.h"
30 #include "net/disk_cache/blockfile/experiments.h"
31 #include "net/disk_cache/blockfile/file.h"
32 #include "net/disk_cache/blockfile/histogram_macros.h"
33 #include "net/disk_cache/blockfile/webfonts_histogram.h"
34 #include "net/disk_cache/cache_util.h"
36 // Provide a BackendImpl object to macros from histogram_macros.h.
37 #define CACHE_UMA_BACKEND_IMPL_OBJ this
39 using base::Time;
40 using base::TimeDelta;
41 using base::TimeTicks;
43 namespace {
45 const char kIndexName[] = "index";
47 // Seems like ~240 MB correspond to less than 50k entries for 99% of the people.
48 // Note that the actual target is to keep the index table load factor under 55%
49 // for most users.
50 const int k64kEntriesStore = 240 * 1000 * 1000;
51 const int kBaseTableLen = 64 * 1024;
53 // Avoid trimming the cache for the first 5 minutes (10 timer ticks).
54 const int kTrimDelay = 10;
56 int DesiredIndexTableLen(int32 storage_size) {
57 if (storage_size <= k64kEntriesStore)
58 return kBaseTableLen;
59 if (storage_size <= k64kEntriesStore * 2)
60 return kBaseTableLen * 2;
61 if (storage_size <= k64kEntriesStore * 4)
62 return kBaseTableLen * 4;
63 if (storage_size <= k64kEntriesStore * 8)
64 return kBaseTableLen * 8;
66 // The biggest storage_size for int32 requires a 4 MB table.
67 return kBaseTableLen * 16;
70 int MaxStorageSizeForTable(int table_len) {
71 return table_len * (k64kEntriesStore / kBaseTableLen);
74 size_t GetIndexSize(int table_len) {
75 size_t table_size = sizeof(disk_cache::CacheAddr) * table_len;
76 return sizeof(disk_cache::IndexHeader) + table_size;
79 // ------------------------------------------------------------------------
81 // Sets group for the current experiment. Returns false if the files should be
82 // discarded.
83 bool InitExperiment(disk_cache::IndexHeader* header, bool cache_created) {
84 if (header->experiment == disk_cache::EXPERIMENT_OLD_FILE1 ||
85 header->experiment == disk_cache::EXPERIMENT_OLD_FILE2) {
86 // Discard current cache.
87 return false;
90 if (base::FieldTrialList::FindFullName("SimpleCacheTrial") ==
91 "ExperimentControl") {
92 if (cache_created) {
93 header->experiment = disk_cache::EXPERIMENT_SIMPLE_CONTROL;
94 return true;
96 return header->experiment == disk_cache::EXPERIMENT_SIMPLE_CONTROL;
99 header->experiment = disk_cache::NO_EXPERIMENT;
100 return true;
103 // A callback to perform final cleanup on the background thread.
104 void FinalCleanupCallback(disk_cache::BackendImpl* backend) {
105 backend->CleanupCache();
108 } // namespace
110 // ------------------------------------------------------------------------
112 namespace disk_cache {
114 BackendImpl::BackendImpl(
115 const base::FilePath& path,
116 const scoped_refptr<base::SingleThreadTaskRunner>& cache_thread,
117 net::NetLog* net_log)
118 : background_queue_(this, cache_thread),
119 path_(path),
120 block_files_(path),
121 mask_(0),
122 max_size_(0),
123 up_ticks_(0),
124 cache_type_(net::DISK_CACHE),
125 uma_report_(0),
126 user_flags_(0),
127 init_(false),
128 restarted_(false),
129 unit_test_(false),
130 read_only_(false),
131 disabled_(false),
132 new_eviction_(false),
133 first_timer_(true),
134 user_load_(false),
135 net_log_(net_log),
136 done_(true, false),
137 ptr_factory_(this) {
140 BackendImpl::BackendImpl(
141 const base::FilePath& path,
142 uint32 mask,
143 const scoped_refptr<base::SingleThreadTaskRunner>& cache_thread,
144 net::NetLog* net_log)
145 : background_queue_(this, cache_thread),
146 path_(path),
147 block_files_(path),
148 mask_(mask),
149 max_size_(0),
150 up_ticks_(0),
151 cache_type_(net::DISK_CACHE),
152 uma_report_(0),
153 user_flags_(kMask),
154 init_(false),
155 restarted_(false),
156 unit_test_(false),
157 read_only_(false),
158 disabled_(false),
159 new_eviction_(false),
160 first_timer_(true),
161 user_load_(false),
162 net_log_(net_log),
163 done_(true, false),
164 ptr_factory_(this) {
167 BackendImpl::~BackendImpl() {
168 if (user_flags_ & kNoRandom) {
169 // This is a unit test, so we want to be strict about not leaking entries
170 // and completing all the work.
171 background_queue_.WaitForPendingIO();
172 } else {
173 // This is most likely not a test, so we want to do as little work as
174 // possible at this time, at the price of leaving dirty entries behind.
175 background_queue_.DropPendingIO();
178 if (background_queue_.BackgroundIsCurrentThread()) {
179 // Unit tests may use the same thread for everything.
180 CleanupCache();
181 } else {
182 background_queue_.background_thread()->PostTask(
183 FROM_HERE, base::Bind(&FinalCleanupCallback, base::Unretained(this)));
184 // http://crbug.com/74623
185 base::ThreadRestrictions::ScopedAllowWait allow_wait;
186 done_.Wait();
190 int BackendImpl::Init(const CompletionCallback& callback) {
191 background_queue_.Init(callback);
192 return net::ERR_IO_PENDING;
195 int BackendImpl::SyncInit() {
196 #if defined(NET_BUILD_STRESS_CACHE)
197 // Start evictions right away.
198 up_ticks_ = kTrimDelay * 2;
199 #endif
200 DCHECK(!init_);
201 if (init_)
202 return net::ERR_FAILED;
204 bool create_files = false;
205 if (!InitBackingStore(&create_files)) {
206 ReportError(ERR_STORAGE_ERROR);
207 return net::ERR_FAILED;
210 num_refs_ = num_pending_io_ = max_refs_ = 0;
211 entry_count_ = byte_count_ = 0;
213 bool should_create_timer = false;
214 if (!restarted_) {
215 buffer_bytes_ = 0;
216 trace_object_ = TraceObject::GetTraceObject();
217 should_create_timer = true;
220 init_ = true;
221 Trace("Init");
223 if (data_->header.experiment != NO_EXPERIMENT &&
224 cache_type_ != net::DISK_CACHE) {
225 // No experiment for other caches.
226 return net::ERR_FAILED;
229 if (!(user_flags_ & kNoRandom)) {
230 // The unit test controls directly what to test.
231 new_eviction_ = (cache_type_ == net::DISK_CACHE);
234 if (!CheckIndex()) {
235 ReportError(ERR_INIT_FAILED);
236 return net::ERR_FAILED;
239 if (!restarted_ && (create_files || !data_->header.num_entries))
240 ReportError(ERR_CACHE_CREATED);
242 if (!(user_flags_ & kNoRandom) && cache_type_ == net::DISK_CACHE &&
243 !InitExperiment(&data_->header, create_files)) {
244 return net::ERR_FAILED;
247 // We don't care if the value overflows. The only thing we care about is that
248 // the id cannot be zero, because that value is used as "not dirty".
249 // Increasing the value once per second gives us many years before we start
250 // having collisions.
251 data_->header.this_id++;
252 if (!data_->header.this_id)
253 data_->header.this_id++;
255 bool previous_crash = (data_->header.crash != 0);
256 data_->header.crash = 1;
258 if (!block_files_.Init(create_files))
259 return net::ERR_FAILED;
261 // We want to minimize the changes to cache for an AppCache.
262 if (cache_type() == net::APP_CACHE) {
263 DCHECK(!new_eviction_);
264 read_only_ = true;
265 } else if (cache_type() == net::SHADER_CACHE) {
266 DCHECK(!new_eviction_);
269 eviction_.Init(this);
271 // stats_ and rankings_ may end up calling back to us so we better be enabled.
272 disabled_ = false;
273 if (!InitStats())
274 return net::ERR_FAILED;
276 disabled_ = !rankings_.Init(this, new_eviction_);
278 #if defined(STRESS_CACHE_EXTENDED_VALIDATION)
279 trace_object_->EnableTracing(false);
280 int sc = SelfCheck();
281 if (sc < 0 && sc != ERR_NUM_ENTRIES_MISMATCH)
282 NOTREACHED();
283 trace_object_->EnableTracing(true);
284 #endif
286 if (previous_crash) {
287 ReportError(ERR_PREVIOUS_CRASH);
288 } else if (!restarted_) {
289 ReportError(ERR_NO_ERROR);
292 FlushIndex();
294 if (!disabled_ && should_create_timer) {
295 // Create a recurrent timer of 30 secs.
296 int timer_delay = unit_test_ ? 1000 : 30000;
297 timer_.reset(new base::RepeatingTimer<BackendImpl>());
298 timer_->Start(FROM_HERE, TimeDelta::FromMilliseconds(timer_delay), this,
299 &BackendImpl::OnStatsTimer);
302 return disabled_ ? net::ERR_FAILED : net::OK;
305 void BackendImpl::CleanupCache() {
306 Trace("Backend Cleanup");
307 eviction_.Stop();
308 timer_.reset();
310 if (init_) {
311 StoreStats();
312 if (data_)
313 data_->header.crash = 0;
315 if (user_flags_ & kNoRandom) {
316 // This is a net_unittest, verify that we are not 'leaking' entries.
317 File::WaitForPendingIO(&num_pending_io_);
318 DCHECK(!num_refs_);
319 } else {
320 File::DropPendingIO();
323 block_files_.CloseFiles();
324 FlushIndex();
325 index_ = NULL;
326 ptr_factory_.InvalidateWeakPtrs();
327 done_.Signal();
330 // ------------------------------------------------------------------------
332 int BackendImpl::SyncOpenEntry(const std::string& key, Entry** entry) {
333 DCHECK(entry);
334 *entry = OpenEntryImpl(key);
335 return (*entry) ? net::OK : net::ERR_FAILED;
338 int BackendImpl::SyncCreateEntry(const std::string& key, Entry** entry) {
339 DCHECK(entry);
340 *entry = CreateEntryImpl(key);
341 return (*entry) ? net::OK : net::ERR_FAILED;
344 int BackendImpl::SyncDoomEntry(const std::string& key) {
345 if (disabled_)
346 return net::ERR_FAILED;
348 EntryImpl* entry = OpenEntryImpl(key);
349 if (!entry)
350 return net::ERR_FAILED;
352 entry->DoomImpl();
353 entry->Release();
354 return net::OK;
357 int BackendImpl::SyncDoomAllEntries() {
358 if (disabled_)
359 return net::ERR_FAILED;
361 // This is not really an error, but it is an interesting condition.
362 ReportError(ERR_CACHE_DOOMED);
363 stats_.OnEvent(Stats::DOOM_CACHE);
364 if (!num_refs_) {
365 RestartCache(false);
366 return disabled_ ? net::ERR_FAILED : net::OK;
367 } else {
368 if (disabled_)
369 return net::ERR_FAILED;
371 eviction_.TrimCache(true);
372 return net::OK;
376 int BackendImpl::SyncDoomEntriesBetween(const base::Time initial_time,
377 const base::Time end_time) {
378 DCHECK_NE(net::APP_CACHE, cache_type_);
379 if (end_time.is_null())
380 return SyncDoomEntriesSince(initial_time);
382 DCHECK(end_time >= initial_time);
384 if (disabled_)
385 return net::ERR_FAILED;
387 EntryImpl* node;
388 scoped_ptr<Rankings::Iterator> iterator(new Rankings::Iterator());
389 EntryImpl* next = OpenNextEntryImpl(iterator.get());
390 if (!next)
391 return net::OK;
393 while (next) {
394 node = next;
395 next = OpenNextEntryImpl(iterator.get());
397 if (node->GetLastUsed() >= initial_time &&
398 node->GetLastUsed() < end_time) {
399 node->DoomImpl();
400 } else if (node->GetLastUsed() < initial_time) {
401 if (next)
402 next->Release();
403 next = NULL;
404 SyncEndEnumeration(iterator.Pass());
407 node->Release();
410 return net::OK;
413 // We use OpenNextEntryImpl to retrieve elements from the cache, until we get
414 // entries that are too old.
415 int BackendImpl::SyncDoomEntriesSince(const base::Time initial_time) {
416 DCHECK_NE(net::APP_CACHE, cache_type_);
417 if (disabled_)
418 return net::ERR_FAILED;
420 stats_.OnEvent(Stats::DOOM_RECENT);
421 for (;;) {
422 scoped_ptr<Rankings::Iterator> iterator(new Rankings::Iterator());
423 EntryImpl* entry = OpenNextEntryImpl(iterator.get());
424 if (!entry)
425 return net::OK;
427 if (initial_time > entry->GetLastUsed()) {
428 entry->Release();
429 SyncEndEnumeration(iterator.Pass());
430 return net::OK;
433 entry->DoomImpl();
434 entry->Release();
435 SyncEndEnumeration(iterator.Pass()); // The doom invalidated the iterator.
439 int BackendImpl::SyncOpenNextEntry(Rankings::Iterator* iterator,
440 Entry** next_entry) {
441 *next_entry = OpenNextEntryImpl(iterator);
442 return (*next_entry) ? net::OK : net::ERR_FAILED;
445 void BackendImpl::SyncEndEnumeration(scoped_ptr<Rankings::Iterator> iterator) {
446 iterator->Reset();
449 void BackendImpl::SyncOnExternalCacheHit(const std::string& key) {
450 if (disabled_)
451 return;
453 uint32 hash = base::Hash(key);
454 bool error;
455 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
456 if (cache_entry) {
457 if (ENTRY_NORMAL == cache_entry->entry()->Data()->state) {
458 UpdateRank(cache_entry, cache_type() == net::SHADER_CACHE);
460 cache_entry->Release();
464 EntryImpl* BackendImpl::OpenEntryImpl(const std::string& key) {
465 if (disabled_)
466 return NULL;
468 TimeTicks start = TimeTicks::Now();
469 uint32 hash = base::Hash(key);
470 Trace("Open hash 0x%x", hash);
472 bool error;
473 EntryImpl* cache_entry = MatchEntry(key, hash, false, Addr(), &error);
474 if (cache_entry && ENTRY_NORMAL != cache_entry->entry()->Data()->state) {
475 // The entry was already evicted.
476 cache_entry->Release();
477 cache_entry = NULL;
478 web_fonts_histogram::RecordEvictedEntry(key);
479 } else if (!cache_entry) {
480 web_fonts_histogram::RecordCacheMiss(key);
483 int current_size = data_->header.num_bytes / (1024 * 1024);
484 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
485 int64 no_use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
486 int64 use_hours = total_hours - no_use_hours;
488 if (!cache_entry) {
489 CACHE_UMA(AGE_MS, "OpenTime.Miss", 0, start);
490 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Miss", 0, current_size);
491 CACHE_UMA(HOURS, "AllOpenByTotalHours.Miss", 0,
492 static_cast<base::HistogramBase::Sample>(total_hours));
493 CACHE_UMA(HOURS, "AllOpenByUseHours.Miss", 0,
494 static_cast<base::HistogramBase::Sample>(use_hours));
495 stats_.OnEvent(Stats::OPEN_MISS);
496 return NULL;
499 eviction_.OnOpenEntry(cache_entry);
500 entry_count_++;
502 Trace("Open hash 0x%x end: 0x%x", hash,
503 cache_entry->entry()->address().value());
504 CACHE_UMA(AGE_MS, "OpenTime", 0, start);
505 CACHE_UMA(COUNTS_10000, "AllOpenBySize.Hit", 0, current_size);
506 CACHE_UMA(HOURS, "AllOpenByTotalHours.Hit", 0,
507 static_cast<base::HistogramBase::Sample>(total_hours));
508 CACHE_UMA(HOURS, "AllOpenByUseHours.Hit", 0,
509 static_cast<base::HistogramBase::Sample>(use_hours));
510 stats_.OnEvent(Stats::OPEN_HIT);
511 web_fonts_histogram::RecordCacheHit(cache_entry);
512 return cache_entry;
515 EntryImpl* BackendImpl::CreateEntryImpl(const std::string& key) {
516 if (disabled_ || key.empty())
517 return NULL;
519 TimeTicks start = TimeTicks::Now();
520 uint32 hash = base::Hash(key);
521 Trace("Create hash 0x%x", hash);
523 scoped_refptr<EntryImpl> parent;
524 Addr entry_address(data_->table[hash & mask_]);
525 if (entry_address.is_initialized()) {
526 // We have an entry already. It could be the one we are looking for, or just
527 // a hash conflict.
528 bool error;
529 EntryImpl* old_entry = MatchEntry(key, hash, false, Addr(), &error);
530 if (old_entry)
531 return ResurrectEntry(old_entry);
533 EntryImpl* parent_entry = MatchEntry(key, hash, true, Addr(), &error);
534 DCHECK(!error);
535 if (parent_entry) {
536 parent.swap(&parent_entry);
537 } else if (data_->table[hash & mask_]) {
538 // We should have corrected the problem.
539 NOTREACHED();
540 return NULL;
544 // The general flow is to allocate disk space and initialize the entry data,
545 // followed by saving that to disk, then linking the entry though the index
546 // and finally through the lists. If there is a crash in this process, we may
547 // end up with:
548 // a. Used, unreferenced empty blocks on disk (basically just garbage).
549 // b. Used, unreferenced but meaningful data on disk (more garbage).
550 // c. A fully formed entry, reachable only through the index.
551 // d. A fully formed entry, also reachable through the lists, but still dirty.
553 // Anything after (b) can be automatically cleaned up. We may consider saving
554 // the current operation (as we do while manipulating the lists) so that we
555 // can detect and cleanup (a) and (b).
557 int num_blocks = EntryImpl::NumBlocksForEntry(key.size());
558 if (!block_files_.CreateBlock(BLOCK_256, num_blocks, &entry_address)) {
559 LOG(ERROR) << "Create entry failed " << key.c_str();
560 stats_.OnEvent(Stats::CREATE_ERROR);
561 return NULL;
564 Addr node_address(0);
565 if (!block_files_.CreateBlock(RANKINGS, 1, &node_address)) {
566 block_files_.DeleteBlock(entry_address, false);
567 LOG(ERROR) << "Create entry failed " << key.c_str();
568 stats_.OnEvent(Stats::CREATE_ERROR);
569 return NULL;
572 scoped_refptr<EntryImpl> cache_entry(
573 new EntryImpl(this, entry_address, false));
574 IncreaseNumRefs();
576 if (!cache_entry->CreateEntry(node_address, key, hash)) {
577 block_files_.DeleteBlock(entry_address, false);
578 block_files_.DeleteBlock(node_address, false);
579 LOG(ERROR) << "Create entry failed " << key.c_str();
580 stats_.OnEvent(Stats::CREATE_ERROR);
581 return NULL;
584 cache_entry->BeginLogging(net_log_, true);
586 // We are not failing the operation; let's add this to the map.
587 open_entries_[entry_address.value()] = cache_entry.get();
589 // Save the entry.
590 cache_entry->entry()->Store();
591 cache_entry->rankings()->Store();
592 IncreaseNumEntries();
593 entry_count_++;
595 // Link this entry through the index.
596 if (parent.get()) {
597 parent->SetNextAddress(entry_address);
598 } else {
599 data_->table[hash & mask_] = entry_address.value();
602 // Link this entry through the lists.
603 eviction_.OnCreateEntry(cache_entry.get());
605 CACHE_UMA(AGE_MS, "CreateTime", 0, start);
606 stats_.OnEvent(Stats::CREATE_HIT);
607 Trace("create entry hit ");
608 FlushIndex();
609 cache_entry->AddRef();
610 return cache_entry.get();
613 EntryImpl* BackendImpl::OpenNextEntryImpl(Rankings::Iterator* iterator) {
614 if (disabled_)
615 return NULL;
617 const int kListsToSearch = 3;
618 scoped_refptr<EntryImpl> entries[kListsToSearch];
619 if (!iterator->my_rankings) {
620 iterator->my_rankings = &rankings_;
621 bool ret = false;
623 // Get an entry from each list.
624 for (int i = 0; i < kListsToSearch; i++) {
625 EntryImpl* temp = NULL;
626 ret |= OpenFollowingEntryFromList(static_cast<Rankings::List>(i),
627 &iterator->nodes[i], &temp);
628 entries[i].swap(&temp); // The entry was already addref'd.
630 if (!ret) {
631 iterator->Reset();
632 return NULL;
634 } else {
635 // Get the next entry from the last list, and the actual entries for the
636 // elements on the other lists.
637 for (int i = 0; i < kListsToSearch; i++) {
638 EntryImpl* temp = NULL;
639 if (iterator->list == i) {
640 OpenFollowingEntryFromList(
641 iterator->list, &iterator->nodes[i], &temp);
642 } else {
643 temp = GetEnumeratedEntry(iterator->nodes[i],
644 static_cast<Rankings::List>(i));
647 entries[i].swap(&temp); // The entry was already addref'd.
651 int newest = -1;
652 int oldest = -1;
653 Time access_times[kListsToSearch];
654 for (int i = 0; i < kListsToSearch; i++) {
655 if (entries[i].get()) {
656 access_times[i] = entries[i]->GetLastUsed();
657 if (newest < 0) {
658 DCHECK_LT(oldest, 0);
659 newest = oldest = i;
660 continue;
662 if (access_times[i] > access_times[newest])
663 newest = i;
664 if (access_times[i] < access_times[oldest])
665 oldest = i;
669 if (newest < 0 || oldest < 0) {
670 iterator->Reset();
671 return NULL;
674 EntryImpl* next_entry;
675 next_entry = entries[newest].get();
676 iterator->list = static_cast<Rankings::List>(newest);
677 next_entry->AddRef();
678 return next_entry;
681 bool BackendImpl::SetMaxSize(int max_bytes) {
682 static_assert(sizeof(max_bytes) == sizeof(max_size_),
683 "unsupported int model");
684 if (max_bytes < 0)
685 return false;
687 // Zero size means use the default.
688 if (!max_bytes)
689 return true;
691 // Avoid a DCHECK later on.
692 if (max_bytes >= kint32max - kint32max / 10)
693 max_bytes = kint32max - kint32max / 10 - 1;
695 user_flags_ |= kMaxSize;
696 max_size_ = max_bytes;
697 return true;
700 void BackendImpl::SetType(net::CacheType type) {
701 DCHECK_NE(net::MEMORY_CACHE, type);
702 cache_type_ = type;
705 base::FilePath BackendImpl::GetFileName(Addr address) const {
706 if (!address.is_separate_file() || !address.is_initialized()) {
707 NOTREACHED();
708 return base::FilePath();
711 std::string tmp = base::StringPrintf("f_%06x", address.FileNumber());
712 return path_.AppendASCII(tmp);
715 MappedFile* BackendImpl::File(Addr address) {
716 if (disabled_)
717 return NULL;
718 return block_files_.GetFile(address);
721 base::WeakPtr<InFlightBackendIO> BackendImpl::GetBackgroundQueue() {
722 return background_queue_.GetWeakPtr();
725 bool BackendImpl::CreateExternalFile(Addr* address) {
726 int file_number = data_->header.last_file + 1;
727 Addr file_address(0);
728 bool success = false;
729 for (int i = 0; i < 0x0fffffff; i++, file_number++) {
730 if (!file_address.SetFileNumber(file_number)) {
731 file_number = 1;
732 continue;
734 base::FilePath name = GetFileName(file_address);
735 int flags = base::File::FLAG_READ | base::File::FLAG_WRITE |
736 base::File::FLAG_CREATE | base::File::FLAG_EXCLUSIVE_WRITE;
737 base::File file(name, flags);
738 if (!file.IsValid()) {
739 base::File::Error error = file.error_details();
740 if (error != base::File::FILE_ERROR_EXISTS) {
741 LOG(ERROR) << "Unable to create file: " << error;
742 return false;
744 continue;
747 success = true;
748 break;
751 DCHECK(success);
752 if (!success)
753 return false;
755 data_->header.last_file = file_number;
756 address->set_value(file_address.value());
757 return true;
760 bool BackendImpl::CreateBlock(FileType block_type, int block_count,
761 Addr* block_address) {
762 return block_files_.CreateBlock(block_type, block_count, block_address);
765 void BackendImpl::DeleteBlock(Addr block_address, bool deep) {
766 block_files_.DeleteBlock(block_address, deep);
769 LruData* BackendImpl::GetLruData() {
770 return &data_->header.lru;
773 void BackendImpl::UpdateRank(EntryImpl* entry, bool modified) {
774 if (read_only_ || (!modified && cache_type() == net::SHADER_CACHE))
775 return;
776 eviction_.UpdateRank(entry, modified);
779 void BackendImpl::RecoveredEntry(CacheRankingsBlock* rankings) {
780 Addr address(rankings->Data()->contents);
781 EntryImpl* cache_entry = NULL;
782 if (NewEntry(address, &cache_entry)) {
783 STRESS_NOTREACHED();
784 return;
787 uint32 hash = cache_entry->GetHash();
788 cache_entry->Release();
790 // Anything on the table means that this entry is there.
791 if (data_->table[hash & mask_])
792 return;
794 data_->table[hash & mask_] = address.value();
795 FlushIndex();
798 void BackendImpl::InternalDoomEntry(EntryImpl* entry) {
799 uint32 hash = entry->GetHash();
800 std::string key = entry->GetKey();
801 Addr entry_addr = entry->entry()->address();
802 bool error;
803 EntryImpl* parent_entry = MatchEntry(key, hash, true, entry_addr, &error);
804 CacheAddr child(entry->GetNextAddress());
806 Trace("Doom entry 0x%p", entry);
808 if (!entry->doomed()) {
809 // We may have doomed this entry from within MatchEntry.
810 eviction_.OnDoomEntry(entry);
811 entry->InternalDoom();
812 if (!new_eviction_) {
813 DecreaseNumEntries();
815 stats_.OnEvent(Stats::DOOM_ENTRY);
818 if (parent_entry) {
819 parent_entry->SetNextAddress(Addr(child));
820 parent_entry->Release();
821 } else if (!error) {
822 data_->table[hash & mask_] = child;
825 FlushIndex();
828 #if defined(NET_BUILD_STRESS_CACHE)
830 CacheAddr BackendImpl::GetNextAddr(Addr address) {
831 EntriesMap::iterator it = open_entries_.find(address.value());
832 if (it != open_entries_.end()) {
833 EntryImpl* this_entry = it->second;
834 return this_entry->GetNextAddress();
836 DCHECK(block_files_.IsValid(address));
837 DCHECK(!address.is_separate_file() && address.file_type() == BLOCK_256);
839 CacheEntryBlock entry(File(address), address);
840 CHECK(entry.Load());
841 return entry.Data()->next;
844 void BackendImpl::NotLinked(EntryImpl* entry) {
845 Addr entry_addr = entry->entry()->address();
846 uint32 i = entry->GetHash() & mask_;
847 Addr address(data_->table[i]);
848 if (!address.is_initialized())
849 return;
851 for (;;) {
852 DCHECK(entry_addr.value() != address.value());
853 address.set_value(GetNextAddr(address));
854 if (!address.is_initialized())
855 break;
858 #endif // NET_BUILD_STRESS_CACHE
860 // An entry may be linked on the DELETED list for a while after being doomed.
861 // This function is called when we want to remove it.
862 void BackendImpl::RemoveEntry(EntryImpl* entry) {
863 #if defined(NET_BUILD_STRESS_CACHE)
864 NotLinked(entry);
865 #endif
866 if (!new_eviction_)
867 return;
869 DCHECK_NE(ENTRY_NORMAL, entry->entry()->Data()->state);
871 Trace("Remove entry 0x%p", entry);
872 eviction_.OnDestroyEntry(entry);
873 DecreaseNumEntries();
876 void BackendImpl::OnEntryDestroyBegin(Addr address) {
877 EntriesMap::iterator it = open_entries_.find(address.value());
878 if (it != open_entries_.end())
879 open_entries_.erase(it);
882 void BackendImpl::OnEntryDestroyEnd() {
883 DecreaseNumRefs();
884 if (data_->header.num_bytes > max_size_ && !read_only_ &&
885 (up_ticks_ > kTrimDelay || user_flags_ & kNoRandom))
886 eviction_.TrimCache(false);
889 EntryImpl* BackendImpl::GetOpenEntry(CacheRankingsBlock* rankings) const {
890 DCHECK(rankings->HasData());
891 EntriesMap::const_iterator it =
892 open_entries_.find(rankings->Data()->contents);
893 if (it != open_entries_.end()) {
894 // We have this entry in memory.
895 return it->second;
898 return NULL;
901 int32 BackendImpl::GetCurrentEntryId() const {
902 return data_->header.this_id;
905 int BackendImpl::MaxFileSize() const {
906 return cache_type() == net::PNACL_CACHE ? max_size_ : max_size_ / 8;
909 void BackendImpl::ModifyStorageSize(int32 old_size, int32 new_size) {
910 if (disabled_ || old_size == new_size)
911 return;
912 if (old_size > new_size)
913 SubstractStorageSize(old_size - new_size);
914 else
915 AddStorageSize(new_size - old_size);
917 FlushIndex();
919 // Update the usage statistics.
920 stats_.ModifyStorageStats(old_size, new_size);
923 void BackendImpl::TooMuchStorageRequested(int32 size) {
924 stats_.ModifyStorageStats(0, size);
927 bool BackendImpl::IsAllocAllowed(int current_size, int new_size) {
928 DCHECK_GT(new_size, current_size);
929 if (user_flags_ & kNoBuffering)
930 return false;
932 int to_add = new_size - current_size;
933 if (buffer_bytes_ + to_add > MaxBuffersSize())
934 return false;
936 buffer_bytes_ += to_add;
937 CACHE_UMA(COUNTS_50000, "BufferBytes", 0, buffer_bytes_ / 1024);
938 return true;
941 void BackendImpl::BufferDeleted(int size) {
942 buffer_bytes_ -= size;
943 DCHECK_GE(size, 0);
946 bool BackendImpl::IsLoaded() const {
947 CACHE_UMA(COUNTS, "PendingIO", 0, num_pending_io_);
948 if (user_flags_ & kNoLoadProtection)
949 return false;
951 return (num_pending_io_ > 5 || user_load_);
954 std::string BackendImpl::HistogramName(const char* name, int experiment) const {
955 if (!experiment)
956 return base::StringPrintf("DiskCache.%d.%s", cache_type_, name);
957 return base::StringPrintf("DiskCache.%d.%s_%d", cache_type_,
958 name, experiment);
961 base::WeakPtr<BackendImpl> BackendImpl::GetWeakPtr() {
962 return ptr_factory_.GetWeakPtr();
965 // We want to remove biases from some histograms so we only send data once per
966 // week.
967 bool BackendImpl::ShouldReportAgain() {
968 if (uma_report_)
969 return uma_report_ == 2;
971 uma_report_++;
972 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
973 Time last_time = Time::FromInternalValue(last_report);
974 if (!last_report || (Time::Now() - last_time).InDays() >= 7) {
975 stats_.SetCounter(Stats::LAST_REPORT, Time::Now().ToInternalValue());
976 uma_report_++;
977 return true;
979 return false;
982 void BackendImpl::FirstEviction() {
983 DCHECK(data_->header.create_time);
984 if (!GetEntryCount())
985 return; // This is just for unit tests.
987 Time create_time = Time::FromInternalValue(data_->header.create_time);
988 CACHE_UMA(AGE, "FillupAge", 0, create_time);
990 int64 use_time = stats_.GetCounter(Stats::TIMER);
991 CACHE_UMA(HOURS, "FillupTime", 0, static_cast<int>(use_time / 120));
992 CACHE_UMA(PERCENTAGE, "FirstHitRatio", 0, stats_.GetHitRatio());
994 if (!use_time)
995 use_time = 1;
996 CACHE_UMA(COUNTS_10000, "FirstEntryAccessRate", 0,
997 static_cast<int>(data_->header.num_entries / use_time));
998 CACHE_UMA(COUNTS, "FirstByteIORate", 0,
999 static_cast<int>((data_->header.num_bytes / 1024) / use_time));
1001 int avg_size = data_->header.num_bytes / GetEntryCount();
1002 CACHE_UMA(COUNTS, "FirstEntrySize", 0, avg_size);
1004 int large_entries_bytes = stats_.GetLargeEntriesSize();
1005 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
1006 CACHE_UMA(PERCENTAGE, "FirstLargeEntriesRatio", 0, large_ratio);
1008 if (new_eviction_) {
1009 CACHE_UMA(PERCENTAGE, "FirstResurrectRatio", 0, stats_.GetResurrectRatio());
1010 CACHE_UMA(PERCENTAGE, "FirstNoUseRatio", 0,
1011 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1012 CACHE_UMA(PERCENTAGE, "FirstLowUseRatio", 0,
1013 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1014 CACHE_UMA(PERCENTAGE, "FirstHighUseRatio", 0,
1015 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1018 stats_.ResetRatios();
1021 void BackendImpl::CriticalError(int error) {
1022 STRESS_NOTREACHED();
1023 LOG(ERROR) << "Critical error found " << error;
1024 if (disabled_)
1025 return;
1027 stats_.OnEvent(Stats::FATAL_ERROR);
1028 LogStats();
1029 ReportError(error);
1031 // Setting the index table length to an invalid value will force re-creation
1032 // of the cache files.
1033 data_->header.table_len = 1;
1034 disabled_ = true;
1036 if (!num_refs_)
1037 base::ThreadTaskRunnerHandle::Get()->PostTask(
1038 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1041 void BackendImpl::ReportError(int error) {
1042 STRESS_DCHECK(!error || error == ERR_PREVIOUS_CRASH ||
1043 error == ERR_CACHE_CREATED);
1045 // We transmit positive numbers, instead of direct error codes.
1046 DCHECK_LE(error, 0);
1047 CACHE_UMA(CACHE_ERROR, "Error", 0, error * -1);
1050 void BackendImpl::OnEvent(Stats::Counters an_event) {
1051 stats_.OnEvent(an_event);
1054 void BackendImpl::OnRead(int32 bytes) {
1055 DCHECK_GE(bytes, 0);
1056 byte_count_ += bytes;
1057 if (byte_count_ < 0)
1058 byte_count_ = kint32max;
1061 void BackendImpl::OnWrite(int32 bytes) {
1062 // We use the same implementation as OnRead... just log the number of bytes.
1063 OnRead(bytes);
1066 void BackendImpl::OnStatsTimer() {
1067 if (disabled_)
1068 return;
1070 stats_.OnEvent(Stats::TIMER);
1071 int64 time = stats_.GetCounter(Stats::TIMER);
1072 int64 current = stats_.GetCounter(Stats::OPEN_ENTRIES);
1074 // OPEN_ENTRIES is a sampled average of the number of open entries, avoiding
1075 // the bias towards 0.
1076 if (num_refs_ && (current != num_refs_)) {
1077 int64 diff = (num_refs_ - current) / 50;
1078 if (!diff)
1079 diff = num_refs_ > current ? 1 : -1;
1080 current = current + diff;
1081 stats_.SetCounter(Stats::OPEN_ENTRIES, current);
1082 stats_.SetCounter(Stats::MAX_ENTRIES, max_refs_);
1085 CACHE_UMA(COUNTS, "NumberOfReferences", 0, num_refs_);
1087 CACHE_UMA(COUNTS_10000, "EntryAccessRate", 0, entry_count_);
1088 CACHE_UMA(COUNTS, "ByteIORate", 0, byte_count_ / 1024);
1090 // These values cover about 99.5% of the population (Oct 2011).
1091 user_load_ = (entry_count_ > 300 || byte_count_ > 7 * 1024 * 1024);
1092 entry_count_ = 0;
1093 byte_count_ = 0;
1094 up_ticks_++;
1096 if (!data_)
1097 first_timer_ = false;
1098 if (first_timer_) {
1099 first_timer_ = false;
1100 if (ShouldReportAgain())
1101 ReportStats();
1104 // Save stats to disk at 5 min intervals.
1105 if (time % 10 == 0)
1106 StoreStats();
1109 void BackendImpl::IncrementIoCount() {
1110 num_pending_io_++;
1113 void BackendImpl::DecrementIoCount() {
1114 num_pending_io_--;
1117 void BackendImpl::SetUnitTestMode() {
1118 user_flags_ |= kUnitTestMode;
1119 unit_test_ = true;
1122 void BackendImpl::SetUpgradeMode() {
1123 user_flags_ |= kUpgradeMode;
1124 read_only_ = true;
1127 void BackendImpl::SetNewEviction() {
1128 user_flags_ |= kNewEviction;
1129 new_eviction_ = true;
1132 void BackendImpl::SetFlags(uint32 flags) {
1133 user_flags_ |= flags;
1136 void BackendImpl::ClearRefCountForTest() {
1137 num_refs_ = 0;
1140 int BackendImpl::FlushQueueForTest(const CompletionCallback& callback) {
1141 background_queue_.FlushQueue(callback);
1142 return net::ERR_IO_PENDING;
1145 int BackendImpl::RunTaskForTest(const base::Closure& task,
1146 const CompletionCallback& callback) {
1147 background_queue_.RunTask(task, callback);
1148 return net::ERR_IO_PENDING;
1151 void BackendImpl::TrimForTest(bool empty) {
1152 eviction_.SetTestMode();
1153 eviction_.TrimCache(empty);
1156 void BackendImpl::TrimDeletedListForTest(bool empty) {
1157 eviction_.SetTestMode();
1158 eviction_.TrimDeletedList(empty);
1161 base::RepeatingTimer<BackendImpl>* BackendImpl::GetTimerForTest() {
1162 return timer_.get();
1165 int BackendImpl::SelfCheck() {
1166 if (!init_) {
1167 LOG(ERROR) << "Init failed";
1168 return ERR_INIT_FAILED;
1171 int num_entries = rankings_.SelfCheck();
1172 if (num_entries < 0) {
1173 LOG(ERROR) << "Invalid rankings list, error " << num_entries;
1174 #if !defined(NET_BUILD_STRESS_CACHE)
1175 return num_entries;
1176 #endif
1179 if (num_entries != data_->header.num_entries) {
1180 LOG(ERROR) << "Number of entries mismatch";
1181 #if !defined(NET_BUILD_STRESS_CACHE)
1182 return ERR_NUM_ENTRIES_MISMATCH;
1183 #endif
1186 return CheckAllEntries();
1189 void BackendImpl::FlushIndex() {
1190 if (index_.get() && !disabled_)
1191 index_->Flush();
1194 // ------------------------------------------------------------------------
1196 net::CacheType BackendImpl::GetCacheType() const {
1197 return cache_type_;
1200 int32 BackendImpl::GetEntryCount() const {
1201 if (!index_.get() || disabled_)
1202 return 0;
1203 // num_entries includes entries already evicted.
1204 int32 not_deleted = data_->header.num_entries -
1205 data_->header.lru.sizes[Rankings::DELETED];
1207 if (not_deleted < 0) {
1208 NOTREACHED();
1209 not_deleted = 0;
1212 return not_deleted;
1215 int BackendImpl::OpenEntry(const std::string& key, Entry** entry,
1216 const CompletionCallback& callback) {
1217 DCHECK(!callback.is_null());
1218 background_queue_.OpenEntry(key, entry, callback);
1219 return net::ERR_IO_PENDING;
1222 int BackendImpl::CreateEntry(const std::string& key, Entry** entry,
1223 const CompletionCallback& callback) {
1224 DCHECK(!callback.is_null());
1225 background_queue_.CreateEntry(key, entry, callback);
1226 return net::ERR_IO_PENDING;
1229 int BackendImpl::DoomEntry(const std::string& key,
1230 const CompletionCallback& callback) {
1231 DCHECK(!callback.is_null());
1232 background_queue_.DoomEntry(key, callback);
1233 return net::ERR_IO_PENDING;
1236 int BackendImpl::DoomAllEntries(const CompletionCallback& callback) {
1237 DCHECK(!callback.is_null());
1238 background_queue_.DoomAllEntries(callback);
1239 return net::ERR_IO_PENDING;
1242 int BackendImpl::DoomEntriesBetween(const base::Time initial_time,
1243 const base::Time end_time,
1244 const CompletionCallback& callback) {
1245 DCHECK(!callback.is_null());
1246 background_queue_.DoomEntriesBetween(initial_time, end_time, callback);
1247 return net::ERR_IO_PENDING;
1250 int BackendImpl::DoomEntriesSince(const base::Time initial_time,
1251 const CompletionCallback& callback) {
1252 DCHECK(!callback.is_null());
1253 background_queue_.DoomEntriesSince(initial_time, callback);
1254 return net::ERR_IO_PENDING;
1257 class BackendImpl::IteratorImpl : public Backend::Iterator {
1258 public:
1259 explicit IteratorImpl(base::WeakPtr<InFlightBackendIO> background_queue)
1260 : background_queue_(background_queue),
1261 iterator_(new Rankings::Iterator()) {
1264 ~IteratorImpl() override {
1265 if (background_queue_)
1266 background_queue_->EndEnumeration(iterator_.Pass());
1269 int OpenNextEntry(Entry** next_entry,
1270 const net::CompletionCallback& callback) override {
1271 if (!background_queue_)
1272 return net::ERR_FAILED;
1273 background_queue_->OpenNextEntry(iterator_.get(), next_entry, callback);
1274 return net::ERR_IO_PENDING;
1277 private:
1278 const base::WeakPtr<InFlightBackendIO> background_queue_;
1279 scoped_ptr<Rankings::Iterator> iterator_;
1282 scoped_ptr<Backend::Iterator> BackendImpl::CreateIterator() {
1283 return scoped_ptr<Backend::Iterator>(new IteratorImpl(GetBackgroundQueue()));
1286 void BackendImpl::GetStats(StatsItems* stats) {
1287 if (disabled_)
1288 return;
1290 std::pair<std::string, std::string> item;
1292 item.first = "Entries";
1293 item.second = base::IntToString(data_->header.num_entries);
1294 stats->push_back(item);
1296 item.first = "Pending IO";
1297 item.second = base::IntToString(num_pending_io_);
1298 stats->push_back(item);
1300 item.first = "Max size";
1301 item.second = base::IntToString(max_size_);
1302 stats->push_back(item);
1304 item.first = "Current size";
1305 item.second = base::IntToString(data_->header.num_bytes);
1306 stats->push_back(item);
1308 item.first = "Cache type";
1309 item.second = "Blockfile Cache";
1310 stats->push_back(item);
1312 stats_.GetItems(stats);
1315 void BackendImpl::OnExternalCacheHit(const std::string& key) {
1316 background_queue_.OnExternalCacheHit(key);
1319 // ------------------------------------------------------------------------
1321 // We just created a new file so we're going to write the header and set the
1322 // file length to include the hash table (zero filled).
1323 bool BackendImpl::CreateBackingStore(disk_cache::File* file) {
1324 AdjustMaxCacheSize(0);
1326 IndexHeader header;
1327 header.table_len = DesiredIndexTableLen(max_size_);
1329 // We need file version 2.1 for the new eviction algorithm.
1330 if (new_eviction_)
1331 header.version = 0x20001;
1333 header.create_time = Time::Now().ToInternalValue();
1335 if (!file->Write(&header, sizeof(header), 0))
1336 return false;
1338 return file->SetLength(GetIndexSize(header.table_len));
1341 bool BackendImpl::InitBackingStore(bool* file_created) {
1342 if (!base::CreateDirectory(path_))
1343 return false;
1345 base::FilePath index_name = path_.AppendASCII(kIndexName);
1347 int flags = base::File::FLAG_READ | base::File::FLAG_WRITE |
1348 base::File::FLAG_OPEN_ALWAYS | base::File::FLAG_EXCLUSIVE_WRITE;
1349 base::File base_file(index_name, flags);
1350 if (!base_file.IsValid())
1351 return false;
1353 bool ret = true;
1354 *file_created = base_file.created();
1356 scoped_refptr<disk_cache::File> file(new disk_cache::File(base_file.Pass()));
1357 if (*file_created)
1358 ret = CreateBackingStore(file.get());
1360 file = NULL;
1361 if (!ret)
1362 return false;
1364 index_ = new MappedFile();
1365 data_ = static_cast<Index*>(index_->Init(index_name, 0));
1366 if (!data_) {
1367 LOG(ERROR) << "Unable to map Index file";
1368 return false;
1371 if (index_->GetLength() < sizeof(Index)) {
1372 // We verify this again on CheckIndex() but it's easier to make sure now
1373 // that the header is there.
1374 LOG(ERROR) << "Corrupt Index file";
1375 return false;
1378 return true;
1381 // The maximum cache size will be either set explicitly by the caller, or
1382 // calculated by this code.
1383 void BackendImpl::AdjustMaxCacheSize(int table_len) {
1384 if (max_size_)
1385 return;
1387 // If table_len is provided, the index file exists.
1388 DCHECK(!table_len || data_->header.magic);
1390 // The user is not setting the size, let's figure it out.
1391 int64 available = base::SysInfo::AmountOfFreeDiskSpace(path_);
1392 if (available < 0) {
1393 max_size_ = kDefaultCacheSize;
1394 return;
1397 if (table_len)
1398 available += data_->header.num_bytes;
1400 max_size_ = PreferredCacheSize(available);
1402 if (!table_len)
1403 return;
1405 // If we already have a table, adjust the size to it.
1406 int current_max_size = MaxStorageSizeForTable(table_len);
1407 if (max_size_ > current_max_size)
1408 max_size_= current_max_size;
1411 bool BackendImpl::InitStats() {
1412 Addr address(data_->header.stats);
1413 int size = stats_.StorageSize();
1415 if (!address.is_initialized()) {
1416 FileType file_type = Addr::RequiredFileType(size);
1417 DCHECK_NE(file_type, EXTERNAL);
1418 int num_blocks = Addr::RequiredBlocks(size, file_type);
1420 if (!CreateBlock(file_type, num_blocks, &address))
1421 return false;
1423 data_->header.stats = address.value();
1424 return stats_.Init(NULL, 0, address);
1427 if (!address.is_block_file()) {
1428 NOTREACHED();
1429 return false;
1432 // Load the required data.
1433 size = address.num_blocks() * address.BlockSize();
1434 MappedFile* file = File(address);
1435 if (!file)
1436 return false;
1438 scoped_ptr<char[]> data(new char[size]);
1439 size_t offset = address.start_block() * address.BlockSize() +
1440 kBlockHeaderSize;
1441 if (!file->Read(data.get(), size, offset))
1442 return false;
1444 if (!stats_.Init(data.get(), size, address))
1445 return false;
1446 if (cache_type_ == net::DISK_CACHE && ShouldReportAgain())
1447 stats_.InitSizeHistogram();
1448 return true;
1451 void BackendImpl::StoreStats() {
1452 int size = stats_.StorageSize();
1453 scoped_ptr<char[]> data(new char[size]);
1454 Addr address;
1455 size = stats_.SerializeStats(data.get(), size, &address);
1456 DCHECK(size);
1457 if (!address.is_initialized())
1458 return;
1460 MappedFile* file = File(address);
1461 if (!file)
1462 return;
1464 size_t offset = address.start_block() * address.BlockSize() +
1465 kBlockHeaderSize;
1466 file->Write(data.get(), size, offset); // ignore result.
1469 void BackendImpl::RestartCache(bool failure) {
1470 int64 errors = stats_.GetCounter(Stats::FATAL_ERROR);
1471 int64 full_dooms = stats_.GetCounter(Stats::DOOM_CACHE);
1472 int64 partial_dooms = stats_.GetCounter(Stats::DOOM_RECENT);
1473 int64 last_report = stats_.GetCounter(Stats::LAST_REPORT);
1475 PrepareForRestart();
1476 if (failure) {
1477 DCHECK(!num_refs_);
1478 DCHECK(!open_entries_.size());
1479 DelayedCacheCleanup(path_);
1480 } else {
1481 DeleteCache(path_, false);
1484 // Don't call Init() if directed by the unit test: we are simulating a failure
1485 // trying to re-enable the cache.
1486 if (unit_test_)
1487 init_ = true; // Let the destructor do proper cleanup.
1488 else if (SyncInit() == net::OK) {
1489 stats_.SetCounter(Stats::FATAL_ERROR, errors);
1490 stats_.SetCounter(Stats::DOOM_CACHE, full_dooms);
1491 stats_.SetCounter(Stats::DOOM_RECENT, partial_dooms);
1492 stats_.SetCounter(Stats::LAST_REPORT, last_report);
1496 void BackendImpl::PrepareForRestart() {
1497 // Reset the mask_ if it was not given by the user.
1498 if (!(user_flags_ & kMask))
1499 mask_ = 0;
1501 if (!(user_flags_ & kNewEviction))
1502 new_eviction_ = false;
1504 disabled_ = true;
1505 data_->header.crash = 0;
1506 index_->Flush();
1507 index_ = NULL;
1508 data_ = NULL;
1509 block_files_.CloseFiles();
1510 rankings_.Reset();
1511 init_ = false;
1512 restarted_ = true;
1515 int BackendImpl::NewEntry(Addr address, EntryImpl** entry) {
1516 EntriesMap::iterator it = open_entries_.find(address.value());
1517 if (it != open_entries_.end()) {
1518 // Easy job. This entry is already in memory.
1519 EntryImpl* this_entry = it->second;
1520 this_entry->AddRef();
1521 *entry = this_entry;
1522 return 0;
1525 STRESS_DCHECK(block_files_.IsValid(address));
1527 if (!address.SanityCheckForEntryV2()) {
1528 LOG(WARNING) << "Wrong entry address.";
1529 STRESS_NOTREACHED();
1530 return ERR_INVALID_ADDRESS;
1533 scoped_refptr<EntryImpl> cache_entry(
1534 new EntryImpl(this, address, read_only_));
1535 IncreaseNumRefs();
1536 *entry = NULL;
1538 TimeTicks start = TimeTicks::Now();
1539 if (!cache_entry->entry()->Load())
1540 return ERR_READ_FAILURE;
1542 if (IsLoaded()) {
1543 CACHE_UMA(AGE_MS, "LoadTime", 0, start);
1546 if (!cache_entry->SanityCheck()) {
1547 LOG(WARNING) << "Messed up entry found.";
1548 STRESS_NOTREACHED();
1549 return ERR_INVALID_ENTRY;
1552 STRESS_DCHECK(block_files_.IsValid(
1553 Addr(cache_entry->entry()->Data()->rankings_node)));
1555 if (!cache_entry->LoadNodeAddress())
1556 return ERR_READ_FAILURE;
1558 if (!rankings_.SanityCheck(cache_entry->rankings(), false)) {
1559 STRESS_NOTREACHED();
1560 cache_entry->SetDirtyFlag(0);
1561 // Don't remove this from the list (it is not linked properly). Instead,
1562 // break the link back to the entry because it is going away, and leave the
1563 // rankings node to be deleted if we find it through a list.
1564 rankings_.SetContents(cache_entry->rankings(), 0);
1565 } else if (!rankings_.DataSanityCheck(cache_entry->rankings(), false)) {
1566 STRESS_NOTREACHED();
1567 cache_entry->SetDirtyFlag(0);
1568 rankings_.SetContents(cache_entry->rankings(), address.value());
1571 if (!cache_entry->DataSanityCheck()) {
1572 LOG(WARNING) << "Messed up entry found.";
1573 cache_entry->SetDirtyFlag(0);
1574 cache_entry->FixForDelete();
1577 // Prevent overwriting the dirty flag on the destructor.
1578 cache_entry->SetDirtyFlag(GetCurrentEntryId());
1580 if (cache_entry->dirty()) {
1581 Trace("Dirty entry 0x%p 0x%x", reinterpret_cast<void*>(cache_entry.get()),
1582 address.value());
1585 open_entries_[address.value()] = cache_entry.get();
1587 cache_entry->BeginLogging(net_log_, false);
1588 cache_entry.swap(entry);
1589 return 0;
1592 EntryImpl* BackendImpl::MatchEntry(const std::string& key, uint32 hash,
1593 bool find_parent, Addr entry_addr,
1594 bool* match_error) {
1595 Addr address(data_->table[hash & mask_]);
1596 scoped_refptr<EntryImpl> cache_entry, parent_entry;
1597 EntryImpl* tmp = NULL;
1598 bool found = false;
1599 std::set<CacheAddr> visited;
1600 *match_error = false;
1602 for (;;) {
1603 if (disabled_)
1604 break;
1606 if (visited.find(address.value()) != visited.end()) {
1607 // It's possible for a buggy version of the code to write a loop. Just
1608 // break it.
1609 Trace("Hash collision loop 0x%x", address.value());
1610 address.set_value(0);
1611 parent_entry->SetNextAddress(address);
1613 visited.insert(address.value());
1615 if (!address.is_initialized()) {
1616 if (find_parent)
1617 found = true;
1618 break;
1621 int error = NewEntry(address, &tmp);
1622 cache_entry.swap(&tmp);
1624 if (error || cache_entry->dirty()) {
1625 // This entry is dirty on disk (it was not properly closed): we cannot
1626 // trust it.
1627 Addr child(0);
1628 if (!error)
1629 child.set_value(cache_entry->GetNextAddress());
1631 if (parent_entry.get()) {
1632 parent_entry->SetNextAddress(child);
1633 parent_entry = NULL;
1634 } else {
1635 data_->table[hash & mask_] = child.value();
1638 Trace("MatchEntry dirty %d 0x%x 0x%x", find_parent, entry_addr.value(),
1639 address.value());
1641 if (!error) {
1642 // It is important to call DestroyInvalidEntry after removing this
1643 // entry from the table.
1644 DestroyInvalidEntry(cache_entry.get());
1645 cache_entry = NULL;
1646 } else {
1647 Trace("NewEntry failed on MatchEntry 0x%x", address.value());
1650 // Restart the search.
1651 address.set_value(data_->table[hash & mask_]);
1652 visited.clear();
1653 continue;
1656 DCHECK_EQ(hash & mask_, cache_entry->entry()->Data()->hash & mask_);
1657 if (cache_entry->IsSameEntry(key, hash)) {
1658 if (!cache_entry->Update())
1659 cache_entry = NULL;
1660 found = true;
1661 if (find_parent && entry_addr.value() != address.value()) {
1662 Trace("Entry not on the index 0x%x", address.value());
1663 *match_error = true;
1664 parent_entry = NULL;
1666 break;
1668 if (!cache_entry->Update())
1669 cache_entry = NULL;
1670 parent_entry = cache_entry;
1671 cache_entry = NULL;
1672 if (!parent_entry.get())
1673 break;
1675 address.set_value(parent_entry->GetNextAddress());
1678 if (parent_entry.get() && (!find_parent || !found))
1679 parent_entry = NULL;
1681 if (find_parent && entry_addr.is_initialized() && !cache_entry.get()) {
1682 *match_error = true;
1683 parent_entry = NULL;
1686 if (cache_entry.get() && (find_parent || !found))
1687 cache_entry = NULL;
1689 if (find_parent)
1690 parent_entry.swap(&tmp);
1691 else
1692 cache_entry.swap(&tmp);
1694 FlushIndex();
1695 return tmp;
1698 bool BackendImpl::OpenFollowingEntryFromList(Rankings::List list,
1699 CacheRankingsBlock** from_entry,
1700 EntryImpl** next_entry) {
1701 if (disabled_)
1702 return false;
1704 if (!new_eviction_ && Rankings::NO_USE != list)
1705 return false;
1707 Rankings::ScopedRankingsBlock rankings(&rankings_, *from_entry);
1708 CacheRankingsBlock* next_block = rankings_.GetNext(rankings.get(), list);
1709 Rankings::ScopedRankingsBlock next(&rankings_, next_block);
1710 *from_entry = NULL;
1712 *next_entry = GetEnumeratedEntry(next.get(), list);
1713 if (!*next_entry)
1714 return false;
1716 *from_entry = next.release();
1717 return true;
1720 EntryImpl* BackendImpl::GetEnumeratedEntry(CacheRankingsBlock* next,
1721 Rankings::List list) {
1722 if (!next || disabled_)
1723 return NULL;
1725 EntryImpl* entry;
1726 int rv = NewEntry(Addr(next->Data()->contents), &entry);
1727 if (rv) {
1728 STRESS_NOTREACHED();
1729 rankings_.Remove(next, list, false);
1730 if (rv == ERR_INVALID_ADDRESS) {
1731 // There is nothing linked from the index. Delete the rankings node.
1732 DeleteBlock(next->address(), true);
1734 return NULL;
1737 if (entry->dirty()) {
1738 // We cannot trust this entry.
1739 InternalDoomEntry(entry);
1740 entry->Release();
1741 return NULL;
1744 if (!entry->Update()) {
1745 STRESS_NOTREACHED();
1746 entry->Release();
1747 return NULL;
1750 // Note that it is unfortunate (but possible) for this entry to be clean, but
1751 // not actually the real entry. In other words, we could have lost this entry
1752 // from the index, and it could have been replaced with a newer one. It's not
1753 // worth checking that this entry is "the real one", so we just return it and
1754 // let the enumeration continue; this entry will be evicted at some point, and
1755 // the regular path will work with the real entry. With time, this problem
1756 // will disasappear because this scenario is just a bug.
1758 // Make sure that we save the key for later.
1759 entry->GetKey();
1761 return entry;
1764 EntryImpl* BackendImpl::ResurrectEntry(EntryImpl* deleted_entry) {
1765 if (ENTRY_NORMAL == deleted_entry->entry()->Data()->state) {
1766 deleted_entry->Release();
1767 stats_.OnEvent(Stats::CREATE_MISS);
1768 Trace("create entry miss ");
1769 return NULL;
1772 // We are attempting to create an entry and found out that the entry was
1773 // previously deleted.
1775 eviction_.OnCreateEntry(deleted_entry);
1776 entry_count_++;
1778 stats_.OnEvent(Stats::RESURRECT_HIT);
1779 Trace("Resurrect entry hit ");
1780 return deleted_entry;
1783 void BackendImpl::DestroyInvalidEntry(EntryImpl* entry) {
1784 LOG(WARNING) << "Destroying invalid entry.";
1785 Trace("Destroying invalid entry 0x%p", entry);
1787 entry->SetPointerForInvalidEntry(GetCurrentEntryId());
1789 eviction_.OnDoomEntry(entry);
1790 entry->InternalDoom();
1792 if (!new_eviction_)
1793 DecreaseNumEntries();
1794 stats_.OnEvent(Stats::INVALID_ENTRY);
1797 void BackendImpl::AddStorageSize(int32 bytes) {
1798 data_->header.num_bytes += bytes;
1799 DCHECK_GE(data_->header.num_bytes, 0);
1802 void BackendImpl::SubstractStorageSize(int32 bytes) {
1803 data_->header.num_bytes -= bytes;
1804 DCHECK_GE(data_->header.num_bytes, 0);
1807 void BackendImpl::IncreaseNumRefs() {
1808 num_refs_++;
1809 if (max_refs_ < num_refs_)
1810 max_refs_ = num_refs_;
1813 void BackendImpl::DecreaseNumRefs() {
1814 DCHECK(num_refs_);
1815 num_refs_--;
1817 if (!num_refs_ && disabled_)
1818 base::ThreadTaskRunnerHandle::Get()->PostTask(
1819 FROM_HERE, base::Bind(&BackendImpl::RestartCache, GetWeakPtr(), true));
1822 void BackendImpl::IncreaseNumEntries() {
1823 data_->header.num_entries++;
1824 DCHECK_GT(data_->header.num_entries, 0);
1827 void BackendImpl::DecreaseNumEntries() {
1828 data_->header.num_entries--;
1829 if (data_->header.num_entries < 0) {
1830 NOTREACHED();
1831 data_->header.num_entries = 0;
1835 void BackendImpl::LogStats() {
1836 StatsItems stats;
1837 GetStats(&stats);
1839 for (size_t index = 0; index < stats.size(); index++)
1840 VLOG(1) << stats[index].first << ": " << stats[index].second;
1843 void BackendImpl::ReportStats() {
1844 CACHE_UMA(COUNTS, "Entries", 0, data_->header.num_entries);
1846 int current_size = data_->header.num_bytes / (1024 * 1024);
1847 int max_size = max_size_ / (1024 * 1024);
1848 int hit_ratio_as_percentage = stats_.GetHitRatio();
1850 CACHE_UMA(COUNTS_10000, "Size2", 0, current_size);
1851 // For any bin in HitRatioBySize2, the hit ratio of caches of that size is the
1852 // ratio of that bin's total count to the count in the same bin in the Size2
1853 // histogram.
1854 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1855 CACHE_UMA(COUNTS_10000, "HitRatioBySize2", 0, current_size);
1856 CACHE_UMA(COUNTS_10000, "MaxSize2", 0, max_size);
1857 if (!max_size)
1858 max_size++;
1859 CACHE_UMA(PERCENTAGE, "UsedSpace", 0, current_size * 100 / max_size);
1861 CACHE_UMA(COUNTS_10000, "AverageOpenEntries2", 0,
1862 static_cast<int>(stats_.GetCounter(Stats::OPEN_ENTRIES)));
1863 CACHE_UMA(COUNTS_10000, "MaxOpenEntries2", 0,
1864 static_cast<int>(stats_.GetCounter(Stats::MAX_ENTRIES)));
1865 stats_.SetCounter(Stats::MAX_ENTRIES, 0);
1867 CACHE_UMA(COUNTS_10000, "TotalFatalErrors", 0,
1868 static_cast<int>(stats_.GetCounter(Stats::FATAL_ERROR)));
1869 CACHE_UMA(COUNTS_10000, "TotalDoomCache", 0,
1870 static_cast<int>(stats_.GetCounter(Stats::DOOM_CACHE)));
1871 CACHE_UMA(COUNTS_10000, "TotalDoomRecentEntries", 0,
1872 static_cast<int>(stats_.GetCounter(Stats::DOOM_RECENT)));
1873 stats_.SetCounter(Stats::FATAL_ERROR, 0);
1874 stats_.SetCounter(Stats::DOOM_CACHE, 0);
1875 stats_.SetCounter(Stats::DOOM_RECENT, 0);
1877 int age = (Time::Now() -
1878 Time::FromInternalValue(data_->header.create_time)).InHours();
1879 if (age)
1880 CACHE_UMA(HOURS, "FilesAge", 0, age);
1882 int64 total_hours = stats_.GetCounter(Stats::TIMER) / 120;
1883 if (!data_->header.create_time || !data_->header.lru.filled) {
1884 int cause = data_->header.create_time ? 0 : 1;
1885 if (!data_->header.lru.filled)
1886 cause |= 2;
1887 CACHE_UMA(CACHE_ERROR, "ShortReport", 0, cause);
1888 CACHE_UMA(HOURS, "TotalTimeNotFull", 0, static_cast<int>(total_hours));
1889 return;
1892 // This is an up to date client that will report FirstEviction() data. After
1893 // that event, start reporting this:
1895 CACHE_UMA(HOURS, "TotalTime", 0, static_cast<int>(total_hours));
1896 // For any bin in HitRatioByTotalTime, the hit ratio of caches of that total
1897 // time is the ratio of that bin's total count to the count in the same bin in
1898 // the TotalTime histogram.
1899 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1900 CACHE_UMA(HOURS, "HitRatioByTotalTime", 0, static_cast<int>(total_hours));
1902 int64 use_hours = stats_.GetCounter(Stats::LAST_REPORT_TIMER) / 120;
1903 stats_.SetCounter(Stats::LAST_REPORT_TIMER, stats_.GetCounter(Stats::TIMER));
1905 // We may see users with no use_hours at this point if this is the first time
1906 // we are running this code.
1907 if (use_hours)
1908 use_hours = total_hours - use_hours;
1910 if (!use_hours || !GetEntryCount() || !data_->header.num_bytes)
1911 return;
1913 CACHE_UMA(HOURS, "UseTime", 0, static_cast<int>(use_hours));
1914 // For any bin in HitRatioByUseTime, the hit ratio of caches of that use time
1915 // is the ratio of that bin's total count to the count in the same bin in the
1916 // UseTime histogram.
1917 if (base::RandInt(0, 99) < hit_ratio_as_percentage)
1918 CACHE_UMA(HOURS, "HitRatioByUseTime", 0, static_cast<int>(use_hours));
1919 CACHE_UMA(PERCENTAGE, "HitRatio", 0, hit_ratio_as_percentage);
1921 int64 trim_rate = stats_.GetCounter(Stats::TRIM_ENTRY) / use_hours;
1922 CACHE_UMA(COUNTS, "TrimRate", 0, static_cast<int>(trim_rate));
1924 int avg_size = data_->header.num_bytes / GetEntryCount();
1925 CACHE_UMA(COUNTS, "EntrySize", 0, avg_size);
1926 CACHE_UMA(COUNTS, "EntriesFull", 0, data_->header.num_entries);
1928 CACHE_UMA(PERCENTAGE, "IndexLoad", 0,
1929 data_->header.num_entries * 100 / (mask_ + 1));
1931 int large_entries_bytes = stats_.GetLargeEntriesSize();
1932 int large_ratio = large_entries_bytes * 100 / data_->header.num_bytes;
1933 CACHE_UMA(PERCENTAGE, "LargeEntriesRatio", 0, large_ratio);
1935 if (new_eviction_) {
1936 CACHE_UMA(PERCENTAGE, "ResurrectRatio", 0, stats_.GetResurrectRatio());
1937 CACHE_UMA(PERCENTAGE, "NoUseRatio", 0,
1938 data_->header.lru.sizes[0] * 100 / data_->header.num_entries);
1939 CACHE_UMA(PERCENTAGE, "LowUseRatio", 0,
1940 data_->header.lru.sizes[1] * 100 / data_->header.num_entries);
1941 CACHE_UMA(PERCENTAGE, "HighUseRatio", 0,
1942 data_->header.lru.sizes[2] * 100 / data_->header.num_entries);
1943 CACHE_UMA(PERCENTAGE, "DeletedRatio", 0,
1944 data_->header.lru.sizes[4] * 100 / data_->header.num_entries);
1947 stats_.ResetRatios();
1948 stats_.SetCounter(Stats::TRIM_ENTRY, 0);
1950 if (cache_type_ == net::DISK_CACHE)
1951 block_files_.ReportStats();
1954 void BackendImpl::UpgradeTo2_1() {
1955 // 2.1 is basically the same as 2.0, except that new fields are actually
1956 // updated by the new eviction algorithm.
1957 DCHECK(0x20000 == data_->header.version);
1958 data_->header.version = 0x20001;
1959 data_->header.lru.sizes[Rankings::NO_USE] = data_->header.num_entries;
1962 bool BackendImpl::CheckIndex() {
1963 DCHECK(data_);
1965 size_t current_size = index_->GetLength();
1966 if (current_size < sizeof(Index)) {
1967 LOG(ERROR) << "Corrupt Index file";
1968 return false;
1971 if (new_eviction_) {
1972 // We support versions 2.0 and 2.1, upgrading 2.0 to 2.1.
1973 if (kIndexMagic != data_->header.magic ||
1974 kCurrentVersion >> 16 != data_->header.version >> 16) {
1975 LOG(ERROR) << "Invalid file version or magic";
1976 return false;
1978 if (kCurrentVersion == data_->header.version) {
1979 // We need file version 2.1 for the new eviction algorithm.
1980 UpgradeTo2_1();
1982 } else {
1983 if (kIndexMagic != data_->header.magic ||
1984 kCurrentVersion != data_->header.version) {
1985 LOG(ERROR) << "Invalid file version or magic";
1986 return false;
1990 if (!data_->header.table_len) {
1991 LOG(ERROR) << "Invalid table size";
1992 return false;
1995 if (current_size < GetIndexSize(data_->header.table_len) ||
1996 data_->header.table_len & (kBaseTableLen - 1)) {
1997 LOG(ERROR) << "Corrupt Index file";
1998 return false;
2001 AdjustMaxCacheSize(data_->header.table_len);
2003 #if !defined(NET_BUILD_STRESS_CACHE)
2004 if (data_->header.num_bytes < 0 ||
2005 (max_size_ < kint32max - kDefaultCacheSize &&
2006 data_->header.num_bytes > max_size_ + kDefaultCacheSize)) {
2007 LOG(ERROR) << "Invalid cache (current) size";
2008 return false;
2010 #endif
2012 if (data_->header.num_entries < 0) {
2013 LOG(ERROR) << "Invalid number of entries";
2014 return false;
2017 if (!mask_)
2018 mask_ = data_->header.table_len - 1;
2020 // Load the table into memory.
2021 return index_->Preload();
2024 int BackendImpl::CheckAllEntries() {
2025 int num_dirty = 0;
2026 int num_entries = 0;
2027 DCHECK(mask_ < kuint32max);
2028 for (unsigned int i = 0; i <= mask_; i++) {
2029 Addr address(data_->table[i]);
2030 if (!address.is_initialized())
2031 continue;
2032 for (;;) {
2033 EntryImpl* tmp;
2034 int ret = NewEntry(address, &tmp);
2035 if (ret) {
2036 STRESS_NOTREACHED();
2037 return ret;
2039 scoped_refptr<EntryImpl> cache_entry;
2040 cache_entry.swap(&tmp);
2042 if (cache_entry->dirty())
2043 num_dirty++;
2044 else if (CheckEntry(cache_entry.get()))
2045 num_entries++;
2046 else
2047 return ERR_INVALID_ENTRY;
2049 DCHECK_EQ(i, cache_entry->entry()->Data()->hash & mask_);
2050 address.set_value(cache_entry->GetNextAddress());
2051 if (!address.is_initialized())
2052 break;
2056 Trace("CheckAllEntries End");
2057 if (num_entries + num_dirty != data_->header.num_entries) {
2058 LOG(ERROR) << "Number of entries " << num_entries << " " << num_dirty <<
2059 " " << data_->header.num_entries;
2060 DCHECK_LT(num_entries, data_->header.num_entries);
2061 return ERR_NUM_ENTRIES_MISMATCH;
2064 return num_dirty;
2067 bool BackendImpl::CheckEntry(EntryImpl* cache_entry) {
2068 bool ok = block_files_.IsValid(cache_entry->entry()->address());
2069 ok = ok && block_files_.IsValid(cache_entry->rankings()->address());
2070 EntryStore* data = cache_entry->entry()->Data();
2071 for (size_t i = 0; i < arraysize(data->data_addr); i++) {
2072 if (data->data_addr[i]) {
2073 Addr address(data->data_addr[i]);
2074 if (address.is_block_file())
2075 ok = ok && block_files_.IsValid(address);
2079 return ok && cache_entry->rankings()->VerifyHash();
2082 int BackendImpl::MaxBuffersSize() {
2083 static int64 total_memory = base::SysInfo::AmountOfPhysicalMemory();
2084 static bool done = false;
2086 if (!done) {
2087 const int kMaxBuffersSize = 30 * 1024 * 1024;
2089 // We want to use up to 2% of the computer's memory.
2090 total_memory = total_memory * 2 / 100;
2091 if (total_memory > kMaxBuffersSize || total_memory <= 0)
2092 total_memory = kMaxBuffersSize;
2094 done = true;
2097 return static_cast<int>(total_memory);
2100 } // namespace disk_cache