Update V8 to version 4.7.53.
[chromium-blink-merge.git] / net / disk_cache / blockfile / entry_impl.cc
blobc26026e2d788a65bc9064f475b0a2289d13c69e9
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/entry_impl.h"
7 #include "base/hash.h"
8 #include "base/message_loop/message_loop.h"
9 #include "base/strings/string_util.h"
10 #include "net/base/io_buffer.h"
11 #include "net/base/net_errors.h"
12 #include "net/disk_cache/blockfile/backend_impl.h"
13 #include "net/disk_cache/blockfile/bitmap.h"
14 #include "net/disk_cache/blockfile/disk_format.h"
15 #include "net/disk_cache/blockfile/histogram_macros.h"
16 #include "net/disk_cache/blockfile/sparse_control.h"
17 #include "net/disk_cache/cache_util.h"
18 #include "net/disk_cache/net_log_parameters.h"
20 // Provide a BackendImpl object to macros from histogram_macros.h.
21 #define CACHE_UMA_BACKEND_IMPL_OBJ backend_
23 using base::Time;
24 using base::TimeDelta;
25 using base::TimeTicks;
27 namespace {
29 // Index for the file used to store the key, if any (files_[kKeyFileIndex]).
30 const int kKeyFileIndex = 3;
32 // This class implements FileIOCallback to buffer the callback from a file IO
33 // operation from the actual net class.
34 class SyncCallback: public disk_cache::FileIOCallback {
35 public:
36 // |end_event_type| is the event type to log on completion. Logs nothing on
37 // discard, or when the NetLog is not set to log all events.
38 SyncCallback(disk_cache::EntryImpl* entry, net::IOBuffer* buffer,
39 const net::CompletionCallback& callback,
40 net::NetLog::EventType end_event_type)
41 : entry_(entry), callback_(callback), buf_(buffer),
42 start_(TimeTicks::Now()), end_event_type_(end_event_type) {
43 entry->AddRef();
44 entry->IncrementIoCount();
46 ~SyncCallback() override {}
48 void OnFileIOComplete(int bytes_copied) override;
49 void Discard();
51 private:
52 disk_cache::EntryImpl* entry_;
53 net::CompletionCallback callback_;
54 scoped_refptr<net::IOBuffer> buf_;
55 TimeTicks start_;
56 const net::NetLog::EventType end_event_type_;
58 DISALLOW_COPY_AND_ASSIGN(SyncCallback);
61 void SyncCallback::OnFileIOComplete(int bytes_copied) {
62 entry_->DecrementIoCount();
63 if (!callback_.is_null()) {
64 if (entry_->net_log().IsCapturing()) {
65 entry_->net_log().EndEvent(
66 end_event_type_,
67 disk_cache::CreateNetLogReadWriteCompleteCallback(bytes_copied));
69 entry_->ReportIOTime(disk_cache::EntryImpl::kAsyncIO, start_);
70 buf_ = NULL; // Release the buffer before invoking the callback.
71 callback_.Run(bytes_copied);
73 entry_->Release();
74 delete this;
77 void SyncCallback::Discard() {
78 callback_.Reset();
79 buf_ = NULL;
80 OnFileIOComplete(0);
83 const int kMaxBufferSize = 1024 * 1024; // 1 MB.
85 } // namespace
87 namespace disk_cache {
89 // This class handles individual memory buffers that store data before it is
90 // sent to disk. The buffer can start at any offset, but if we try to write to
91 // anywhere in the first 16KB of the file (kMaxBlockSize), we set the offset to
92 // zero. The buffer grows up to a size determined by the backend, to keep the
93 // total memory used under control.
94 class EntryImpl::UserBuffer {
95 public:
96 explicit UserBuffer(BackendImpl* backend)
97 : backend_(backend->GetWeakPtr()), offset_(0), grow_allowed_(true) {
98 buffer_.reserve(kMaxBlockSize);
100 ~UserBuffer() {
101 if (backend_.get())
102 backend_->BufferDeleted(capacity() - kMaxBlockSize);
105 // Returns true if we can handle writing |len| bytes to |offset|.
106 bool PreWrite(int offset, int len);
108 // Truncates the buffer to |offset| bytes.
109 void Truncate(int offset);
111 // Writes |len| bytes from |buf| at the given |offset|.
112 void Write(int offset, IOBuffer* buf, int len);
114 // Returns true if we can read |len| bytes from |offset|, given that the
115 // actual file has |eof| bytes stored. Note that the number of bytes to read
116 // may be modified by this method even though it returns false: that means we
117 // should do a smaller read from disk.
118 bool PreRead(int eof, int offset, int* len);
120 // Read |len| bytes from |buf| at the given |offset|.
121 int Read(int offset, IOBuffer* buf, int len);
123 // Prepare this buffer for reuse.
124 void Reset();
126 char* Data() { return buffer_.size() ? &buffer_[0] : NULL; }
127 int Size() { return static_cast<int>(buffer_.size()); }
128 int Start() { return offset_; }
129 int End() { return offset_ + Size(); }
131 private:
132 int capacity() { return static_cast<int>(buffer_.capacity()); }
133 bool GrowBuffer(int required, int limit);
135 base::WeakPtr<BackendImpl> backend_;
136 int offset_;
137 std::vector<char> buffer_;
138 bool grow_allowed_;
139 DISALLOW_COPY_AND_ASSIGN(UserBuffer);
142 bool EntryImpl::UserBuffer::PreWrite(int offset, int len) {
143 DCHECK_GE(offset, 0);
144 DCHECK_GE(len, 0);
145 DCHECK_GE(offset + len, 0);
147 // We don't want to write before our current start.
148 if (offset < offset_)
149 return false;
151 // Lets get the common case out of the way.
152 if (offset + len <= capacity())
153 return true;
155 // If we are writing to the first 16K (kMaxBlockSize), we want to keep the
156 // buffer offset_ at 0.
157 if (!Size() && offset > kMaxBlockSize)
158 return GrowBuffer(len, kMaxBufferSize);
160 int required = offset - offset_ + len;
161 return GrowBuffer(required, kMaxBufferSize * 6 / 5);
164 void EntryImpl::UserBuffer::Truncate(int offset) {
165 DCHECK_GE(offset, 0);
166 DCHECK_GE(offset, offset_);
167 DVLOG(3) << "Buffer truncate at " << offset << " current " << offset_;
169 offset -= offset_;
170 if (Size() >= offset)
171 buffer_.resize(offset);
174 void EntryImpl::UserBuffer::Write(int offset, IOBuffer* buf, int len) {
175 DCHECK_GE(offset, 0);
176 DCHECK_GE(len, 0);
177 DCHECK_GE(offset + len, 0);
178 DCHECK_GE(offset, offset_);
179 DVLOG(3) << "Buffer write at " << offset << " current " << offset_;
181 if (!Size() && offset > kMaxBlockSize)
182 offset_ = offset;
184 offset -= offset_;
186 if (offset > Size())
187 buffer_.resize(offset);
189 if (!len)
190 return;
192 char* buffer = buf->data();
193 int valid_len = Size() - offset;
194 int copy_len = std::min(valid_len, len);
195 if (copy_len) {
196 memcpy(&buffer_[offset], buffer, copy_len);
197 len -= copy_len;
198 buffer += copy_len;
200 if (!len)
201 return;
203 buffer_.insert(buffer_.end(), buffer, buffer + len);
206 bool EntryImpl::UserBuffer::PreRead(int eof, int offset, int* len) {
207 DCHECK_GE(offset, 0);
208 DCHECK_GT(*len, 0);
210 if (offset < offset_) {
211 // We are reading before this buffer.
212 if (offset >= eof)
213 return true;
215 // If the read overlaps with the buffer, change its length so that there is
216 // no overlap.
217 *len = std::min(*len, offset_ - offset);
218 *len = std::min(*len, eof - offset);
220 // We should read from disk.
221 return false;
224 if (!Size())
225 return false;
227 // See if we can fulfill the first part of the operation.
228 return (offset - offset_ < Size());
231 int EntryImpl::UserBuffer::Read(int offset, IOBuffer* buf, int len) {
232 DCHECK_GE(offset, 0);
233 DCHECK_GT(len, 0);
234 DCHECK(Size() || offset < offset_);
236 int clean_bytes = 0;
237 if (offset < offset_) {
238 // We don't have a file so lets fill the first part with 0.
239 clean_bytes = std::min(offset_ - offset, len);
240 memset(buf->data(), 0, clean_bytes);
241 if (len == clean_bytes)
242 return len;
243 offset = offset_;
244 len -= clean_bytes;
247 int start = offset - offset_;
248 int available = Size() - start;
249 DCHECK_GE(start, 0);
250 DCHECK_GE(available, 0);
251 len = std::min(len, available);
252 memcpy(buf->data() + clean_bytes, &buffer_[start], len);
253 return len + clean_bytes;
256 void EntryImpl::UserBuffer::Reset() {
257 if (!grow_allowed_) {
258 if (backend_.get())
259 backend_->BufferDeleted(capacity() - kMaxBlockSize);
260 grow_allowed_ = true;
261 std::vector<char> tmp;
262 buffer_.swap(tmp);
263 buffer_.reserve(kMaxBlockSize);
265 offset_ = 0;
266 buffer_.clear();
269 bool EntryImpl::UserBuffer::GrowBuffer(int required, int limit) {
270 DCHECK_GE(required, 0);
271 int current_size = capacity();
272 if (required <= current_size)
273 return true;
275 if (required > limit)
276 return false;
278 if (!backend_.get())
279 return false;
281 int to_add = std::max(required - current_size, kMaxBlockSize * 4);
282 to_add = std::max(current_size, to_add);
283 required = std::min(current_size + to_add, limit);
285 grow_allowed_ = backend_->IsAllocAllowed(current_size, required);
286 if (!grow_allowed_)
287 return false;
289 DVLOG(3) << "Buffer grow to " << required;
291 buffer_.reserve(required);
292 return true;
295 // ------------------------------------------------------------------------
297 EntryImpl::EntryImpl(BackendImpl* backend, Addr address, bool read_only)
298 : entry_(NULL, Addr(0)), node_(NULL, Addr(0)),
299 backend_(backend->GetWeakPtr()), doomed_(false), read_only_(read_only),
300 dirty_(false) {
301 entry_.LazyInit(backend->File(address), address);
302 for (int i = 0; i < kNumStreams; i++) {
303 unreported_size_[i] = 0;
307 void EntryImpl::DoomImpl() {
308 if (doomed_ || !backend_.get())
309 return;
311 SetPointerForInvalidEntry(backend_->GetCurrentEntryId());
312 backend_->InternalDoomEntry(this);
315 int EntryImpl::ReadDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
316 const CompletionCallback& callback) {
317 if (net_log_.IsCapturing()) {
318 net_log_.BeginEvent(
319 net::NetLog::TYPE_ENTRY_READ_DATA,
320 CreateNetLogReadWriteDataCallback(index, offset, buf_len, false));
323 int result = InternalReadData(index, offset, buf, buf_len, callback);
325 if (result != net::ERR_IO_PENDING && net_log_.IsCapturing()) {
326 net_log_.EndEvent(
327 net::NetLog::TYPE_ENTRY_READ_DATA,
328 CreateNetLogReadWriteCompleteCallback(result));
330 return result;
333 int EntryImpl::WriteDataImpl(int index, int offset, IOBuffer* buf, int buf_len,
334 const CompletionCallback& callback,
335 bool truncate) {
336 if (net_log_.IsCapturing()) {
337 net_log_.BeginEvent(
338 net::NetLog::TYPE_ENTRY_WRITE_DATA,
339 CreateNetLogReadWriteDataCallback(index, offset, buf_len, truncate));
342 int result = InternalWriteData(index, offset, buf, buf_len, callback,
343 truncate);
345 if (result != net::ERR_IO_PENDING && net_log_.IsCapturing()) {
346 net_log_.EndEvent(
347 net::NetLog::TYPE_ENTRY_WRITE_DATA,
348 CreateNetLogReadWriteCompleteCallback(result));
350 return result;
353 int EntryImpl::ReadSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
354 const CompletionCallback& callback) {
355 DCHECK(node_.Data()->dirty || read_only_);
356 int result = InitSparseData();
357 if (net::OK != result)
358 return result;
360 TimeTicks start = TimeTicks::Now();
361 result = sparse_->StartIO(SparseControl::kReadOperation, offset, buf, buf_len,
362 callback);
363 ReportIOTime(kSparseRead, start);
364 return result;
367 int EntryImpl::WriteSparseDataImpl(int64 offset, IOBuffer* buf, int buf_len,
368 const CompletionCallback& callback) {
369 DCHECK(node_.Data()->dirty || read_only_);
370 int result = InitSparseData();
371 if (net::OK != result)
372 return result;
374 TimeTicks start = TimeTicks::Now();
375 result = sparse_->StartIO(SparseControl::kWriteOperation, offset, buf,
376 buf_len, callback);
377 ReportIOTime(kSparseWrite, start);
378 return result;
381 int EntryImpl::GetAvailableRangeImpl(int64 offset, int len, int64* start) {
382 int result = InitSparseData();
383 if (net::OK != result)
384 return result;
386 return sparse_->GetAvailableRange(offset, len, start);
389 void EntryImpl::CancelSparseIOImpl() {
390 if (!sparse_.get())
391 return;
393 sparse_->CancelIO();
396 int EntryImpl::ReadyForSparseIOImpl(const CompletionCallback& callback) {
397 DCHECK(sparse_.get());
398 return sparse_->ReadyToUse(callback);
401 uint32 EntryImpl::GetHash() {
402 return entry_.Data()->hash;
405 bool EntryImpl::CreateEntry(Addr node_address, const std::string& key,
406 uint32 hash) {
407 Trace("Create entry In");
408 EntryStore* entry_store = entry_.Data();
409 RankingsNode* node = node_.Data();
410 memset(entry_store, 0, sizeof(EntryStore) * entry_.address().num_blocks());
411 memset(node, 0, sizeof(RankingsNode));
412 if (!node_.LazyInit(backend_->File(node_address), node_address))
413 return false;
415 entry_store->rankings_node = node_address.value();
416 node->contents = entry_.address().value();
418 entry_store->hash = hash;
419 entry_store->creation_time = Time::Now().ToInternalValue();
420 entry_store->key_len = static_cast<int32>(key.size());
421 if (entry_store->key_len > kMaxInternalKeyLength) {
422 Addr address(0);
423 if (!CreateBlock(entry_store->key_len + 1, &address))
424 return false;
426 entry_store->long_key = address.value();
427 File* key_file = GetBackingFile(address, kKeyFileIndex);
428 key_ = key;
430 size_t offset = 0;
431 if (address.is_block_file())
432 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
434 if (!key_file || !key_file->Write(key.data(), key.size(), offset)) {
435 DeleteData(address, kKeyFileIndex);
436 return false;
439 if (address.is_separate_file())
440 key_file->SetLength(key.size() + 1);
441 } else {
442 memcpy(entry_store->key, key.data(), key.size());
443 entry_store->key[key.size()] = '\0';
445 backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
446 CACHE_UMA(COUNTS, "KeySize", 0, static_cast<int32>(key.size()));
447 node->dirty = backend_->GetCurrentEntryId();
448 Log("Create Entry ");
449 return true;
452 bool EntryImpl::IsSameEntry(const std::string& key, uint32 hash) {
453 if (entry_.Data()->hash != hash ||
454 static_cast<size_t>(entry_.Data()->key_len) != key.size())
455 return false;
457 return (key.compare(GetKey()) == 0);
460 void EntryImpl::InternalDoom() {
461 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_DOOM);
462 DCHECK(node_.HasData());
463 if (!node_.Data()->dirty) {
464 node_.Data()->dirty = backend_->GetCurrentEntryId();
465 node_.Store();
467 doomed_ = true;
470 void EntryImpl::DeleteEntryData(bool everything) {
471 DCHECK(doomed_ || !everything);
473 if (GetEntryFlags() & PARENT_ENTRY) {
474 // We have some child entries that must go away.
475 SparseControl::DeleteChildren(this);
478 if (GetDataSize(0))
479 CACHE_UMA(COUNTS, "DeleteHeader", 0, GetDataSize(0));
480 if (GetDataSize(1))
481 CACHE_UMA(COUNTS, "DeleteData", 0, GetDataSize(1));
482 for (int index = 0; index < kNumStreams; index++) {
483 Addr address(entry_.Data()->data_addr[index]);
484 if (address.is_initialized()) {
485 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
486 unreported_size_[index], 0);
487 entry_.Data()->data_addr[index] = 0;
488 entry_.Data()->data_size[index] = 0;
489 entry_.Store();
490 DeleteData(address, index);
494 if (!everything)
495 return;
497 // Remove all traces of this entry.
498 backend_->RemoveEntry(this);
500 // Note that at this point node_ and entry_ are just two blocks of data, and
501 // even if they reference each other, nobody should be referencing them.
503 Addr address(entry_.Data()->long_key);
504 DeleteData(address, kKeyFileIndex);
505 backend_->ModifyStorageSize(entry_.Data()->key_len, 0);
507 backend_->DeleteBlock(entry_.address(), true);
508 entry_.Discard();
510 if (!LeaveRankingsBehind()) {
511 backend_->DeleteBlock(node_.address(), true);
512 node_.Discard();
516 CacheAddr EntryImpl::GetNextAddress() {
517 return entry_.Data()->next;
520 void EntryImpl::SetNextAddress(Addr address) {
521 DCHECK_NE(address.value(), entry_.address().value());
522 entry_.Data()->next = address.value();
523 bool success = entry_.Store();
524 DCHECK(success);
527 bool EntryImpl::LoadNodeAddress() {
528 Addr address(entry_.Data()->rankings_node);
529 if (!node_.LazyInit(backend_->File(address), address))
530 return false;
531 return node_.Load();
534 bool EntryImpl::Update() {
535 DCHECK(node_.HasData());
537 if (read_only_)
538 return true;
540 RankingsNode* rankings = node_.Data();
541 if (!rankings->dirty) {
542 rankings->dirty = backend_->GetCurrentEntryId();
543 if (!node_.Store())
544 return false;
546 return true;
549 void EntryImpl::SetDirtyFlag(int32 current_id) {
550 DCHECK(node_.HasData());
551 if (node_.Data()->dirty && current_id != node_.Data()->dirty)
552 dirty_ = true;
554 if (!current_id)
555 dirty_ = true;
558 void EntryImpl::SetPointerForInvalidEntry(int32 new_id) {
559 node_.Data()->dirty = new_id;
560 node_.Store();
563 bool EntryImpl::LeaveRankingsBehind() {
564 return !node_.Data()->contents;
567 // This only includes checks that relate to the first block of the entry (the
568 // first 256 bytes), and values that should be set from the entry creation.
569 // Basically, even if there is something wrong with this entry, we want to see
570 // if it is possible to load the rankings node and delete them together.
571 bool EntryImpl::SanityCheck() {
572 if (!entry_.VerifyHash())
573 return false;
575 EntryStore* stored = entry_.Data();
576 if (!stored->rankings_node || stored->key_len <= 0)
577 return false;
579 if (stored->reuse_count < 0 || stored->refetch_count < 0)
580 return false;
582 Addr rankings_addr(stored->rankings_node);
583 if (!rankings_addr.SanityCheckForRankings())
584 return false;
586 Addr next_addr(stored->next);
587 if (next_addr.is_initialized() && !next_addr.SanityCheckForEntryV2()) {
588 STRESS_NOTREACHED();
589 return false;
591 STRESS_DCHECK(next_addr.value() != entry_.address().value());
593 if (stored->state > ENTRY_DOOMED || stored->state < ENTRY_NORMAL)
594 return false;
596 Addr key_addr(stored->long_key);
597 if ((stored->key_len <= kMaxInternalKeyLength && key_addr.is_initialized()) ||
598 (stored->key_len > kMaxInternalKeyLength && !key_addr.is_initialized()))
599 return false;
601 if (!key_addr.SanityCheckV2())
602 return false;
604 if (key_addr.is_initialized() &&
605 ((stored->key_len < kMaxBlockSize && key_addr.is_separate_file()) ||
606 (stored->key_len >= kMaxBlockSize && key_addr.is_block_file())))
607 return false;
609 int num_blocks = NumBlocksForEntry(stored->key_len);
610 if (entry_.address().num_blocks() != num_blocks)
611 return false;
613 return true;
616 bool EntryImpl::DataSanityCheck() {
617 EntryStore* stored = entry_.Data();
618 Addr key_addr(stored->long_key);
620 // The key must be NULL terminated.
621 if (!key_addr.is_initialized() && stored->key[stored->key_len])
622 return false;
624 if (stored->hash != base::Hash(GetKey()))
625 return false;
627 for (int i = 0; i < kNumStreams; i++) {
628 Addr data_addr(stored->data_addr[i]);
629 int data_size = stored->data_size[i];
630 if (data_size < 0)
631 return false;
632 if (!data_size && data_addr.is_initialized())
633 return false;
634 if (!data_addr.SanityCheckV2())
635 return false;
636 if (!data_size)
637 continue;
638 if (data_size <= kMaxBlockSize && data_addr.is_separate_file())
639 return false;
640 if (data_size > kMaxBlockSize && data_addr.is_block_file())
641 return false;
643 return true;
646 void EntryImpl::FixForDelete() {
647 EntryStore* stored = entry_.Data();
648 Addr key_addr(stored->long_key);
650 if (!key_addr.is_initialized())
651 stored->key[stored->key_len] = '\0';
653 for (int i = 0; i < kNumStreams; i++) {
654 Addr data_addr(stored->data_addr[i]);
655 int data_size = stored->data_size[i];
656 if (data_addr.is_initialized()) {
657 if ((data_size <= kMaxBlockSize && data_addr.is_separate_file()) ||
658 (data_size > kMaxBlockSize && data_addr.is_block_file()) ||
659 !data_addr.SanityCheckV2()) {
660 STRESS_NOTREACHED();
661 // The address is weird so don't attempt to delete it.
662 stored->data_addr[i] = 0;
663 // In general, trust the stored size as it should be in sync with the
664 // total size tracked by the backend.
667 if (data_size < 0)
668 stored->data_size[i] = 0;
670 entry_.Store();
673 void EntryImpl::IncrementIoCount() {
674 backend_->IncrementIoCount();
677 void EntryImpl::DecrementIoCount() {
678 if (backend_.get())
679 backend_->DecrementIoCount();
682 void EntryImpl::OnEntryCreated(BackendImpl* backend) {
683 // Just grab a reference to the backround queue.
684 background_queue_ = backend->GetBackgroundQueue();
687 void EntryImpl::SetTimes(base::Time last_used, base::Time last_modified) {
688 node_.Data()->last_used = last_used.ToInternalValue();
689 node_.Data()->last_modified = last_modified.ToInternalValue();
690 node_.set_modified();
693 void EntryImpl::ReportIOTime(Operation op, const base::TimeTicks& start) {
694 if (!backend_.get())
695 return;
697 switch (op) {
698 case kRead:
699 CACHE_UMA(AGE_MS, "ReadTime", 0, start);
700 break;
701 case kWrite:
702 CACHE_UMA(AGE_MS, "WriteTime", 0, start);
703 break;
704 case kSparseRead:
705 CACHE_UMA(AGE_MS, "SparseReadTime", 0, start);
706 break;
707 case kSparseWrite:
708 CACHE_UMA(AGE_MS, "SparseWriteTime", 0, start);
709 break;
710 case kAsyncIO:
711 CACHE_UMA(AGE_MS, "AsyncIOTime", 0, start);
712 break;
713 case kReadAsync1:
714 CACHE_UMA(AGE_MS, "AsyncReadDispatchTime", 0, start);
715 break;
716 case kWriteAsync1:
717 CACHE_UMA(AGE_MS, "AsyncWriteDispatchTime", 0, start);
718 break;
719 default:
720 NOTREACHED();
724 void EntryImpl::BeginLogging(net::NetLog* net_log, bool created) {
725 DCHECK(!net_log_.net_log());
726 net_log_ = net::BoundNetLog::Make(
727 net_log, net::NetLog::SOURCE_DISK_CACHE_ENTRY);
728 net_log_.BeginEvent(
729 net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL,
730 CreateNetLogEntryCreationCallback(this, created));
733 const net::BoundNetLog& EntryImpl::net_log() const {
734 return net_log_;
737 // static
738 int EntryImpl::NumBlocksForEntry(int key_size) {
739 // The longest key that can be stored using one block.
740 int key1_len =
741 static_cast<int>(sizeof(EntryStore) - offsetof(EntryStore, key));
743 if (key_size < key1_len || key_size > kMaxInternalKeyLength)
744 return 1;
746 return ((key_size - key1_len) / 256 + 2);
749 // ------------------------------------------------------------------------
751 void EntryImpl::Doom() {
752 if (background_queue_.get())
753 background_queue_->DoomEntryImpl(this);
756 void EntryImpl::Close() {
757 if (background_queue_.get())
758 background_queue_->CloseEntryImpl(this);
761 std::string EntryImpl::GetKey() const {
762 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
763 int key_len = entry->Data()->key_len;
764 if (key_len <= kMaxInternalKeyLength)
765 return std::string(entry->Data()->key);
767 // We keep a copy of the key so that we can always return it, even if the
768 // backend is disabled.
769 if (!key_.empty())
770 return key_;
772 Addr address(entry->Data()->long_key);
773 DCHECK(address.is_initialized());
774 size_t offset = 0;
775 if (address.is_block_file())
776 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
778 static_assert(kNumStreams == kKeyFileIndex, "invalid key index");
779 File* key_file = const_cast<EntryImpl*>(this)->GetBackingFile(address,
780 kKeyFileIndex);
781 if (!key_file)
782 return std::string();
784 ++key_len; // We store a trailing \0 on disk that we read back below.
785 if (!offset && key_file->GetLength() != static_cast<size_t>(key_len))
786 return std::string();
788 if (!key_file->Read(base::WriteInto(&key_, key_len), key_len, offset))
789 key_.clear();
790 return key_;
793 Time EntryImpl::GetLastUsed() const {
794 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
795 return Time::FromInternalValue(node->Data()->last_used);
798 Time EntryImpl::GetLastModified() const {
799 CacheRankingsBlock* node = const_cast<CacheRankingsBlock*>(&node_);
800 return Time::FromInternalValue(node->Data()->last_modified);
803 int32 EntryImpl::GetDataSize(int index) const {
804 if (index < 0 || index >= kNumStreams)
805 return 0;
807 CacheEntryBlock* entry = const_cast<CacheEntryBlock*>(&entry_);
808 return entry->Data()->data_size[index];
811 int EntryImpl::ReadData(int index, int offset, IOBuffer* buf, int buf_len,
812 const CompletionCallback& callback) {
813 if (callback.is_null())
814 return ReadDataImpl(index, offset, buf, buf_len, callback);
816 DCHECK(node_.Data()->dirty || read_only_);
817 if (index < 0 || index >= kNumStreams)
818 return net::ERR_INVALID_ARGUMENT;
820 int entry_size = entry_.Data()->data_size[index];
821 if (offset >= entry_size || offset < 0 || !buf_len)
822 return 0;
824 if (buf_len < 0)
825 return net::ERR_INVALID_ARGUMENT;
827 if (!background_queue_.get())
828 return net::ERR_UNEXPECTED;
830 background_queue_->ReadData(this, index, offset, buf, buf_len, callback);
831 return net::ERR_IO_PENDING;
834 int EntryImpl::WriteData(int index, int offset, IOBuffer* buf, int buf_len,
835 const CompletionCallback& callback, bool truncate) {
836 if (callback.is_null())
837 return WriteDataImpl(index, offset, buf, buf_len, callback, truncate);
839 DCHECK(node_.Data()->dirty || read_only_);
840 if (index < 0 || index >= kNumStreams)
841 return net::ERR_INVALID_ARGUMENT;
843 if (offset < 0 || buf_len < 0)
844 return net::ERR_INVALID_ARGUMENT;
846 if (!background_queue_.get())
847 return net::ERR_UNEXPECTED;
849 background_queue_->WriteData(this, index, offset, buf, buf_len, truncate,
850 callback);
851 return net::ERR_IO_PENDING;
854 int EntryImpl::ReadSparseData(int64 offset, IOBuffer* buf, int buf_len,
855 const CompletionCallback& callback) {
856 if (callback.is_null())
857 return ReadSparseDataImpl(offset, buf, buf_len, callback);
859 if (!background_queue_.get())
860 return net::ERR_UNEXPECTED;
862 background_queue_->ReadSparseData(this, offset, buf, buf_len, callback);
863 return net::ERR_IO_PENDING;
866 int EntryImpl::WriteSparseData(int64 offset, IOBuffer* buf, int buf_len,
867 const CompletionCallback& callback) {
868 if (callback.is_null())
869 return WriteSparseDataImpl(offset, buf, buf_len, callback);
871 if (!background_queue_.get())
872 return net::ERR_UNEXPECTED;
874 background_queue_->WriteSparseData(this, offset, buf, buf_len, callback);
875 return net::ERR_IO_PENDING;
878 int EntryImpl::GetAvailableRange(int64 offset, int len, int64* start,
879 const CompletionCallback& callback) {
880 if (!background_queue_.get())
881 return net::ERR_UNEXPECTED;
883 background_queue_->GetAvailableRange(this, offset, len, start, callback);
884 return net::ERR_IO_PENDING;
887 bool EntryImpl::CouldBeSparse() const {
888 if (sparse_.get())
889 return true;
891 scoped_ptr<SparseControl> sparse;
892 sparse.reset(new SparseControl(const_cast<EntryImpl*>(this)));
893 return sparse->CouldBeSparse();
896 void EntryImpl::CancelSparseIO() {
897 if (background_queue_.get())
898 background_queue_->CancelSparseIO(this);
901 int EntryImpl::ReadyForSparseIO(const CompletionCallback& callback) {
902 if (!sparse_.get())
903 return net::OK;
905 if (!background_queue_.get())
906 return net::ERR_UNEXPECTED;
908 background_queue_->ReadyForSparseIO(this, callback);
909 return net::ERR_IO_PENDING;
912 // When an entry is deleted from the cache, we clean up all the data associated
913 // with it for two reasons: to simplify the reuse of the block (we know that any
914 // unused block is filled with zeros), and to simplify the handling of write /
915 // read partial information from an entry (don't have to worry about returning
916 // data related to a previous cache entry because the range was not fully
917 // written before).
918 EntryImpl::~EntryImpl() {
919 if (!backend_.get()) {
920 entry_.clear_modified();
921 node_.clear_modified();
922 return;
924 Log("~EntryImpl in");
926 // Save the sparse info to disk. This will generate IO for this entry and
927 // maybe for a child entry, so it is important to do it before deleting this
928 // entry.
929 sparse_.reset();
931 // Remove this entry from the list of open entries.
932 backend_->OnEntryDestroyBegin(entry_.address());
934 if (doomed_) {
935 DeleteEntryData(true);
936 } else {
937 #if defined(NET_BUILD_STRESS_CACHE)
938 SanityCheck();
939 #endif
940 net_log_.AddEvent(net::NetLog::TYPE_ENTRY_CLOSE);
941 bool ret = true;
942 for (int index = 0; index < kNumStreams; index++) {
943 if (user_buffers_[index].get()) {
944 ret = Flush(index, 0);
945 if (!ret)
946 LOG(ERROR) << "Failed to save user data";
948 if (unreported_size_[index]) {
949 backend_->ModifyStorageSize(
950 entry_.Data()->data_size[index] - unreported_size_[index],
951 entry_.Data()->data_size[index]);
955 if (!ret) {
956 // There was a failure writing the actual data. Mark the entry as dirty.
957 int current_id = backend_->GetCurrentEntryId();
958 node_.Data()->dirty = current_id == 1 ? -1 : current_id - 1;
959 node_.Store();
960 } else if (node_.HasData() && !dirty_ && node_.Data()->dirty) {
961 node_.Data()->dirty = 0;
962 node_.Store();
966 Trace("~EntryImpl out 0x%p", reinterpret_cast<void*>(this));
967 net_log_.EndEvent(net::NetLog::TYPE_DISK_CACHE_ENTRY_IMPL);
968 backend_->OnEntryDestroyEnd();
971 // ------------------------------------------------------------------------
973 int EntryImpl::InternalReadData(int index, int offset,
974 IOBuffer* buf, int buf_len,
975 const CompletionCallback& callback) {
976 DCHECK(node_.Data()->dirty || read_only_);
977 DVLOG(2) << "Read from " << index << " at " << offset << " : " << buf_len;
978 if (index < 0 || index >= kNumStreams)
979 return net::ERR_INVALID_ARGUMENT;
981 int entry_size = entry_.Data()->data_size[index];
982 if (offset >= entry_size || offset < 0 || !buf_len)
983 return 0;
985 if (buf_len < 0)
986 return net::ERR_INVALID_ARGUMENT;
988 if (!backend_.get())
989 return net::ERR_UNEXPECTED;
991 TimeTicks start = TimeTicks::Now();
993 if (offset + buf_len > entry_size)
994 buf_len = entry_size - offset;
996 UpdateRank(false);
998 backend_->OnEvent(Stats::READ_DATA);
999 backend_->OnRead(buf_len);
1001 Addr address(entry_.Data()->data_addr[index]);
1002 int eof = address.is_initialized() ? entry_size : 0;
1003 if (user_buffers_[index].get() &&
1004 user_buffers_[index]->PreRead(eof, offset, &buf_len)) {
1005 // Complete the operation locally.
1006 buf_len = user_buffers_[index]->Read(offset, buf, buf_len);
1007 ReportIOTime(kRead, start);
1008 return buf_len;
1011 address.set_value(entry_.Data()->data_addr[index]);
1012 DCHECK(address.is_initialized());
1013 if (!address.is_initialized()) {
1014 DoomImpl();
1015 return net::ERR_FAILED;
1018 File* file = GetBackingFile(address, index);
1019 if (!file) {
1020 DoomImpl();
1021 LOG(ERROR) << "No file for " << std::hex << address.value();
1022 return net::ERR_FILE_NOT_FOUND;
1025 size_t file_offset = offset;
1026 if (address.is_block_file()) {
1027 DCHECK_LE(offset + buf_len, kMaxBlockSize);
1028 file_offset += address.start_block() * address.BlockSize() +
1029 kBlockHeaderSize;
1032 SyncCallback* io_callback = NULL;
1033 if (!callback.is_null()) {
1034 io_callback = new SyncCallback(this, buf, callback,
1035 net::NetLog::TYPE_ENTRY_READ_DATA);
1038 TimeTicks start_async = TimeTicks::Now();
1040 bool completed;
1041 if (!file->Read(buf->data(), buf_len, file_offset, io_callback, &completed)) {
1042 if (io_callback)
1043 io_callback->Discard();
1044 DoomImpl();
1045 return net::ERR_CACHE_READ_FAILURE;
1048 if (io_callback && completed)
1049 io_callback->Discard();
1051 if (io_callback)
1052 ReportIOTime(kReadAsync1, start_async);
1054 ReportIOTime(kRead, start);
1055 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
1058 int EntryImpl::InternalWriteData(int index, int offset,
1059 IOBuffer* buf, int buf_len,
1060 const CompletionCallback& callback,
1061 bool truncate) {
1062 DCHECK(node_.Data()->dirty || read_only_);
1063 DVLOG(2) << "Write to " << index << " at " << offset << " : " << buf_len;
1064 if (index < 0 || index >= kNumStreams)
1065 return net::ERR_INVALID_ARGUMENT;
1067 if (offset < 0 || buf_len < 0)
1068 return net::ERR_INVALID_ARGUMENT;
1070 if (!backend_.get())
1071 return net::ERR_UNEXPECTED;
1073 int max_file_size = backend_->MaxFileSize();
1075 // offset or buf_len could be negative numbers.
1076 if (offset > max_file_size || buf_len > max_file_size ||
1077 offset + buf_len > max_file_size) {
1078 int size = offset + buf_len;
1079 if (size <= max_file_size)
1080 size = kint32max;
1081 backend_->TooMuchStorageRequested(size);
1082 return net::ERR_FAILED;
1085 TimeTicks start = TimeTicks::Now();
1087 // Read the size at this point (it may change inside prepare).
1088 int entry_size = entry_.Data()->data_size[index];
1089 bool extending = entry_size < offset + buf_len;
1090 truncate = truncate && entry_size > offset + buf_len;
1091 Trace("To PrepareTarget 0x%x", entry_.address().value());
1092 if (!PrepareTarget(index, offset, buf_len, truncate))
1093 return net::ERR_FAILED;
1095 Trace("From PrepareTarget 0x%x", entry_.address().value());
1096 if (extending || truncate)
1097 UpdateSize(index, entry_size, offset + buf_len);
1099 UpdateRank(true);
1101 backend_->OnEvent(Stats::WRITE_DATA);
1102 backend_->OnWrite(buf_len);
1104 if (user_buffers_[index].get()) {
1105 // Complete the operation locally.
1106 user_buffers_[index]->Write(offset, buf, buf_len);
1107 ReportIOTime(kWrite, start);
1108 return buf_len;
1111 Addr address(entry_.Data()->data_addr[index]);
1112 if (offset + buf_len == 0) {
1113 if (truncate) {
1114 DCHECK(!address.is_initialized());
1116 return 0;
1119 File* file = GetBackingFile(address, index);
1120 if (!file)
1121 return net::ERR_FILE_NOT_FOUND;
1123 size_t file_offset = offset;
1124 if (address.is_block_file()) {
1125 DCHECK_LE(offset + buf_len, kMaxBlockSize);
1126 file_offset += address.start_block() * address.BlockSize() +
1127 kBlockHeaderSize;
1128 } else if (truncate || (extending && !buf_len)) {
1129 if (!file->SetLength(offset + buf_len))
1130 return net::ERR_FAILED;
1133 if (!buf_len)
1134 return 0;
1136 SyncCallback* io_callback = NULL;
1137 if (!callback.is_null()) {
1138 io_callback = new SyncCallback(this, buf, callback,
1139 net::NetLog::TYPE_ENTRY_WRITE_DATA);
1142 TimeTicks start_async = TimeTicks::Now();
1144 bool completed;
1145 if (!file->Write(buf->data(), buf_len, file_offset, io_callback,
1146 &completed)) {
1147 if (io_callback)
1148 io_callback->Discard();
1149 return net::ERR_CACHE_WRITE_FAILURE;
1152 if (io_callback && completed)
1153 io_callback->Discard();
1155 if (io_callback)
1156 ReportIOTime(kWriteAsync1, start_async);
1158 ReportIOTime(kWrite, start);
1159 return (completed || callback.is_null()) ? buf_len : net::ERR_IO_PENDING;
1162 // ------------------------------------------------------------------------
1164 bool EntryImpl::CreateDataBlock(int index, int size) {
1165 DCHECK(index >= 0 && index < kNumStreams);
1167 Addr address(entry_.Data()->data_addr[index]);
1168 if (!CreateBlock(size, &address))
1169 return false;
1171 entry_.Data()->data_addr[index] = address.value();
1172 entry_.Store();
1173 return true;
1176 bool EntryImpl::CreateBlock(int size, Addr* address) {
1177 DCHECK(!address->is_initialized());
1178 if (!backend_.get())
1179 return false;
1181 FileType file_type = Addr::RequiredFileType(size);
1182 if (EXTERNAL == file_type) {
1183 if (size > backend_->MaxFileSize())
1184 return false;
1185 if (!backend_->CreateExternalFile(address))
1186 return false;
1187 } else {
1188 int num_blocks = Addr::RequiredBlocks(size, file_type);
1190 if (!backend_->CreateBlock(file_type, num_blocks, address))
1191 return false;
1193 return true;
1196 // Note that this method may end up modifying a block file so upon return the
1197 // involved block will be free, and could be reused for something else. If there
1198 // is a crash after that point (and maybe before returning to the caller), the
1199 // entry will be left dirty... and at some point it will be discarded; it is
1200 // important that the entry doesn't keep a reference to this address, or we'll
1201 // end up deleting the contents of |address| once again.
1202 void EntryImpl::DeleteData(Addr address, int index) {
1203 DCHECK(backend_.get());
1204 if (!address.is_initialized())
1205 return;
1206 if (address.is_separate_file()) {
1207 int failure = !DeleteCacheFile(backend_->GetFileName(address));
1208 CACHE_UMA(COUNTS, "DeleteFailed", 0, failure);
1209 if (failure) {
1210 LOG(ERROR) << "Failed to delete " <<
1211 backend_->GetFileName(address).value() << " from the cache.";
1213 if (files_[index].get())
1214 files_[index] = NULL; // Releases the object.
1215 } else {
1216 backend_->DeleteBlock(address, true);
1220 void EntryImpl::UpdateRank(bool modified) {
1221 if (!backend_.get())
1222 return;
1224 if (!doomed_) {
1225 // Everything is handled by the backend.
1226 backend_->UpdateRank(this, modified);
1227 return;
1230 Time current = Time::Now();
1231 node_.Data()->last_used = current.ToInternalValue();
1233 if (modified)
1234 node_.Data()->last_modified = current.ToInternalValue();
1237 File* EntryImpl::GetBackingFile(Addr address, int index) {
1238 if (!backend_.get())
1239 return NULL;
1241 File* file;
1242 if (address.is_separate_file())
1243 file = GetExternalFile(address, index);
1244 else
1245 file = backend_->File(address);
1246 return file;
1249 File* EntryImpl::GetExternalFile(Addr address, int index) {
1250 DCHECK(index >= 0 && index <= kKeyFileIndex);
1251 if (!files_[index].get()) {
1252 // For a key file, use mixed mode IO.
1253 scoped_refptr<File> file(new File(kKeyFileIndex == index));
1254 if (file->Init(backend_->GetFileName(address)))
1255 files_[index].swap(file);
1257 return files_[index].get();
1260 // We keep a memory buffer for everything that ends up stored on a block file
1261 // (because we don't know yet the final data size), and for some of the data
1262 // that end up on external files. This function will initialize that memory
1263 // buffer and / or the files needed to store the data.
1265 // In general, a buffer may overlap data already stored on disk, and in that
1266 // case, the contents of the buffer are the most accurate. It may also extend
1267 // the file, but we don't want to read from disk just to keep the buffer up to
1268 // date. This means that as soon as there is a chance to get confused about what
1269 // is the most recent version of some part of a file, we'll flush the buffer and
1270 // reuse it for the new data. Keep in mind that the normal use pattern is quite
1271 // simple (write sequentially from the beginning), so we optimize for handling
1272 // that case.
1273 bool EntryImpl::PrepareTarget(int index, int offset, int buf_len,
1274 bool truncate) {
1275 if (truncate)
1276 return HandleTruncation(index, offset, buf_len);
1278 if (!offset && !buf_len)
1279 return true;
1281 Addr address(entry_.Data()->data_addr[index]);
1282 if (address.is_initialized()) {
1283 if (address.is_block_file() && !MoveToLocalBuffer(index))
1284 return false;
1286 if (!user_buffers_[index].get() && offset < kMaxBlockSize) {
1287 // We are about to create a buffer for the first 16KB, make sure that we
1288 // preserve existing data.
1289 if (!CopyToLocalBuffer(index))
1290 return false;
1294 if (!user_buffers_[index].get())
1295 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1297 return PrepareBuffer(index, offset, buf_len);
1300 // We get to this function with some data already stored. If there is a
1301 // truncation that results on data stored internally, we'll explicitly
1302 // handle the case here.
1303 bool EntryImpl::HandleTruncation(int index, int offset, int buf_len) {
1304 Addr address(entry_.Data()->data_addr[index]);
1306 int current_size = entry_.Data()->data_size[index];
1307 int new_size = offset + buf_len;
1309 if (!new_size) {
1310 // This is by far the most common scenario.
1311 backend_->ModifyStorageSize(current_size - unreported_size_[index], 0);
1312 entry_.Data()->data_addr[index] = 0;
1313 entry_.Data()->data_size[index] = 0;
1314 unreported_size_[index] = 0;
1315 entry_.Store();
1316 DeleteData(address, index);
1318 user_buffers_[index].reset();
1319 return true;
1322 // We never postpone truncating a file, if there is one, but we may postpone
1323 // telling the backend about the size reduction.
1324 if (user_buffers_[index].get()) {
1325 DCHECK_GE(current_size, user_buffers_[index]->Start());
1326 if (!address.is_initialized()) {
1327 // There is no overlap between the buffer and disk.
1328 if (new_size > user_buffers_[index]->Start()) {
1329 // Just truncate our buffer.
1330 DCHECK_LT(new_size, user_buffers_[index]->End());
1331 user_buffers_[index]->Truncate(new_size);
1332 return true;
1335 // Just discard our buffer.
1336 user_buffers_[index]->Reset();
1337 return PrepareBuffer(index, offset, buf_len);
1340 // There is some overlap or we need to extend the file before the
1341 // truncation.
1342 if (offset > user_buffers_[index]->Start())
1343 user_buffers_[index]->Truncate(new_size);
1344 UpdateSize(index, current_size, new_size);
1345 if (!Flush(index, 0))
1346 return false;
1347 user_buffers_[index].reset();
1350 // We have data somewhere, and it is not in a buffer.
1351 DCHECK(!user_buffers_[index].get());
1352 DCHECK(address.is_initialized());
1354 if (new_size > kMaxBlockSize)
1355 return true; // Let the operation go directly to disk.
1357 return ImportSeparateFile(index, offset + buf_len);
1360 bool EntryImpl::CopyToLocalBuffer(int index) {
1361 Addr address(entry_.Data()->data_addr[index]);
1362 DCHECK(!user_buffers_[index].get());
1363 DCHECK(address.is_initialized());
1365 int len = std::min(entry_.Data()->data_size[index], kMaxBlockSize);
1366 user_buffers_[index].reset(new UserBuffer(backend_.get()));
1367 user_buffers_[index]->Write(len, NULL, 0);
1369 File* file = GetBackingFile(address, index);
1370 int offset = 0;
1372 if (address.is_block_file())
1373 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1375 if (!file ||
1376 !file->Read(user_buffers_[index]->Data(), len, offset, NULL, NULL)) {
1377 user_buffers_[index].reset();
1378 return false;
1380 return true;
1383 bool EntryImpl::MoveToLocalBuffer(int index) {
1384 if (!CopyToLocalBuffer(index))
1385 return false;
1387 Addr address(entry_.Data()->data_addr[index]);
1388 entry_.Data()->data_addr[index] = 0;
1389 entry_.Store();
1390 DeleteData(address, index);
1392 // If we lose this entry we'll see it as zero sized.
1393 int len = entry_.Data()->data_size[index];
1394 backend_->ModifyStorageSize(len - unreported_size_[index], 0);
1395 unreported_size_[index] = len;
1396 return true;
1399 bool EntryImpl::ImportSeparateFile(int index, int new_size) {
1400 if (entry_.Data()->data_size[index] > new_size)
1401 UpdateSize(index, entry_.Data()->data_size[index], new_size);
1403 return MoveToLocalBuffer(index);
1406 bool EntryImpl::PrepareBuffer(int index, int offset, int buf_len) {
1407 DCHECK(user_buffers_[index].get());
1408 if ((user_buffers_[index]->End() && offset > user_buffers_[index]->End()) ||
1409 offset > entry_.Data()->data_size[index]) {
1410 // We are about to extend the buffer or the file (with zeros), so make sure
1411 // that we are not overwriting anything.
1412 Addr address(entry_.Data()->data_addr[index]);
1413 if (address.is_initialized() && address.is_separate_file()) {
1414 if (!Flush(index, 0))
1415 return false;
1416 // There is an actual file already, and we don't want to keep track of
1417 // its length so we let this operation go straight to disk.
1418 // The only case when a buffer is allowed to extend the file (as in fill
1419 // with zeros before the start) is when there is no file yet to extend.
1420 user_buffers_[index].reset();
1421 return true;
1425 if (!user_buffers_[index]->PreWrite(offset, buf_len)) {
1426 if (!Flush(index, offset + buf_len))
1427 return false;
1429 // Lets try again.
1430 if (offset > user_buffers_[index]->End() ||
1431 !user_buffers_[index]->PreWrite(offset, buf_len)) {
1432 // We cannot complete the operation with a buffer.
1433 DCHECK(!user_buffers_[index]->Size());
1434 DCHECK(!user_buffers_[index]->Start());
1435 user_buffers_[index].reset();
1438 return true;
1441 bool EntryImpl::Flush(int index, int min_len) {
1442 Addr address(entry_.Data()->data_addr[index]);
1443 DCHECK(user_buffers_[index].get());
1444 DCHECK(!address.is_initialized() || address.is_separate_file());
1445 DVLOG(3) << "Flush";
1447 int size = std::max(entry_.Data()->data_size[index], min_len);
1448 if (size && !address.is_initialized() && !CreateDataBlock(index, size))
1449 return false;
1451 if (!entry_.Data()->data_size[index]) {
1452 DCHECK(!user_buffers_[index]->Size());
1453 return true;
1456 address.set_value(entry_.Data()->data_addr[index]);
1458 int len = user_buffers_[index]->Size();
1459 int offset = user_buffers_[index]->Start();
1460 if (!len && !offset)
1461 return true;
1463 if (address.is_block_file()) {
1464 DCHECK_EQ(len, entry_.Data()->data_size[index]);
1465 DCHECK(!offset);
1466 offset = address.start_block() * address.BlockSize() + kBlockHeaderSize;
1469 File* file = GetBackingFile(address, index);
1470 if (!file)
1471 return false;
1473 if (!file->Write(user_buffers_[index]->Data(), len, offset, NULL, NULL))
1474 return false;
1475 user_buffers_[index]->Reset();
1477 return true;
1480 void EntryImpl::UpdateSize(int index, int old_size, int new_size) {
1481 if (entry_.Data()->data_size[index] == new_size)
1482 return;
1484 unreported_size_[index] += new_size - old_size;
1485 entry_.Data()->data_size[index] = new_size;
1486 entry_.set_modified();
1489 int EntryImpl::InitSparseData() {
1490 if (sparse_.get())
1491 return net::OK;
1493 // Use a local variable so that sparse_ never goes from 'valid' to NULL.
1494 scoped_ptr<SparseControl> sparse(new SparseControl(this));
1495 int result = sparse->Init();
1496 if (net::OK == result)
1497 sparse_.swap(sparse);
1499 return result;
1502 void EntryImpl::SetEntryFlags(uint32 flags) {
1503 entry_.Data()->flags |= flags;
1504 entry_.set_modified();
1507 uint32 EntryImpl::GetEntryFlags() {
1508 return entry_.Data()->flags;
1511 void EntryImpl::GetData(int index, char** buffer, Addr* address) {
1512 DCHECK(backend_.get());
1513 if (user_buffers_[index].get() && user_buffers_[index]->Size() &&
1514 !user_buffers_[index]->Start()) {
1515 // The data is already in memory, just copy it and we're done.
1516 int data_len = entry_.Data()->data_size[index];
1517 if (data_len <= user_buffers_[index]->Size()) {
1518 DCHECK(!user_buffers_[index]->Start());
1519 *buffer = new char[data_len];
1520 memcpy(*buffer, user_buffers_[index]->Data(), data_len);
1521 return;
1525 // Bad news: we'd have to read the info from disk so instead we'll just tell
1526 // the caller where to read from.
1527 *buffer = NULL;
1528 address->set_value(entry_.Data()->data_addr[index]);
1529 if (address->is_initialized()) {
1530 // Prevent us from deleting the block from the backing store.
1531 backend_->ModifyStorageSize(entry_.Data()->data_size[index] -
1532 unreported_size_[index], 0);
1533 entry_.Data()->data_addr[index] = 0;
1534 entry_.Data()->data_size[index] = 0;
1538 void EntryImpl::Log(const char* msg) {
1539 int dirty = 0;
1540 if (node_.HasData()) {
1541 dirty = node_.Data()->dirty;
1544 Trace("%s 0x%p 0x%x 0x%x", msg, reinterpret_cast<void*>(this),
1545 entry_.address().value(), node_.address().value());
1547 Trace(" data: 0x%x 0x%x 0x%x", entry_.Data()->data_addr[0],
1548 entry_.Data()->data_addr[1], entry_.Data()->long_key);
1550 Trace(" doomed: %d 0x%x", doomed_, dirty);
1553 } // namespace disk_cache