Autofill: Add WalletIntegrationAvailable() to components.
[chromium-blink-merge.git] / net / dns / host_resolver_impl.cc
blobbd6e43198dca94319fe32227f5bc89475634f90a
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/dns/host_resolver_impl.h"
7 #if defined(OS_WIN)
8 #include <Winsock2.h>
9 #elif defined(OS_POSIX)
10 #include <netdb.h>
11 #endif
13 #include <cmath>
14 #include <utility>
15 #include <vector>
17 #include "base/basictypes.h"
18 #include "base/bind.h"
19 #include "base/bind_helpers.h"
20 #include "base/callback.h"
21 #include "base/compiler_specific.h"
22 #include "base/debug/debugger.h"
23 #include "base/debug/stack_trace.h"
24 #include "base/message_loop/message_loop_proxy.h"
25 #include "base/metrics/field_trial.h"
26 #include "base/metrics/histogram.h"
27 #include "base/profiler/scoped_tracker.h"
28 #include "base/stl_util.h"
29 #include "base/strings/string_util.h"
30 #include "base/strings/utf_string_conversions.h"
31 #include "base/threading/worker_pool.h"
32 #include "base/time/time.h"
33 #include "base/values.h"
34 #include "net/base/address_family.h"
35 #include "net/base/address_list.h"
36 #include "net/base/dns_reloader.h"
37 #include "net/base/dns_util.h"
38 #include "net/base/host_port_pair.h"
39 #include "net/base/ip_endpoint.h"
40 #include "net/base/net_errors.h"
41 #include "net/base/net_util.h"
42 #include "net/dns/address_sorter.h"
43 #include "net/dns/dns_client.h"
44 #include "net/dns/dns_config_service.h"
45 #include "net/dns/dns_protocol.h"
46 #include "net/dns/dns_response.h"
47 #include "net/dns/dns_transaction.h"
48 #include "net/dns/host_resolver_proc.h"
49 #include "net/log/net_log.h"
50 #include "net/socket/client_socket_factory.h"
51 #include "net/udp/datagram_client_socket.h"
52 #include "url/url_canon_ip.h"
54 #if defined(OS_WIN)
55 #include "net/base/winsock_init.h"
56 #endif
58 namespace net {
60 namespace {
62 // Limit the size of hostnames that will be resolved to combat issues in
63 // some platform's resolvers.
64 const size_t kMaxHostLength = 4096;
66 // Default TTL for successful resolutions with ProcTask.
67 const unsigned kCacheEntryTTLSeconds = 60;
69 // Default TTL for unsuccessful resolutions with ProcTask.
70 const unsigned kNegativeCacheEntryTTLSeconds = 0;
72 // Minimum TTL for successful resolutions with DnsTask.
73 const unsigned kMinimumTTLSeconds = kCacheEntryTTLSeconds;
75 const char kLocalhost[] = "localhost.";
77 // We use a separate histogram name for each platform to facilitate the
78 // display of error codes by their symbolic name (since each platform has
79 // different mappings).
80 const char kOSErrorsForGetAddrinfoHistogramName[] =
81 #if defined(OS_WIN)
82 "Net.OSErrorsForGetAddrinfo_Win";
83 #elif defined(OS_MACOSX)
84 "Net.OSErrorsForGetAddrinfo_Mac";
85 #elif defined(OS_LINUX)
86 "Net.OSErrorsForGetAddrinfo_Linux";
87 #else
88 "Net.OSErrorsForGetAddrinfo";
89 #endif
91 // Gets a list of the likely error codes that getaddrinfo() can return
92 // (non-exhaustive). These are the error codes that we will track via
93 // a histogram.
94 std::vector<int> GetAllGetAddrinfoOSErrors() {
95 int os_errors[] = {
96 #if defined(OS_POSIX)
97 #if !defined(OS_FREEBSD)
98 #if !defined(OS_ANDROID)
99 // EAI_ADDRFAMILY has been declared obsolete in Android's and
100 // FreeBSD's netdb.h.
101 EAI_ADDRFAMILY,
102 #endif
103 // EAI_NODATA has been declared obsolete in FreeBSD's netdb.h.
104 EAI_NODATA,
105 #endif
106 EAI_AGAIN,
107 EAI_BADFLAGS,
108 EAI_FAIL,
109 EAI_FAMILY,
110 EAI_MEMORY,
111 EAI_NONAME,
112 EAI_SERVICE,
113 EAI_SOCKTYPE,
114 EAI_SYSTEM,
115 #elif defined(OS_WIN)
116 // See: http://msdn.microsoft.com/en-us/library/ms738520(VS.85).aspx
117 WSA_NOT_ENOUGH_MEMORY,
118 WSAEAFNOSUPPORT,
119 WSAEINVAL,
120 WSAESOCKTNOSUPPORT,
121 WSAHOST_NOT_FOUND,
122 WSANO_DATA,
123 WSANO_RECOVERY,
124 WSANOTINITIALISED,
125 WSATRY_AGAIN,
126 WSATYPE_NOT_FOUND,
127 // The following are not in doc, but might be to appearing in results :-(.
128 WSA_INVALID_HANDLE,
129 #endif
132 // Ensure all errors are positive, as histogram only tracks positive values.
133 for (size_t i = 0; i < arraysize(os_errors); ++i) {
134 os_errors[i] = std::abs(os_errors[i]);
137 return base::CustomHistogram::ArrayToCustomRanges(os_errors,
138 arraysize(os_errors));
141 enum DnsResolveStatus {
142 RESOLVE_STATUS_DNS_SUCCESS = 0,
143 RESOLVE_STATUS_PROC_SUCCESS,
144 RESOLVE_STATUS_FAIL,
145 RESOLVE_STATUS_SUSPECT_NETBIOS,
146 RESOLVE_STATUS_MAX
149 // ICANN uses this localhost address to indicate a name collision.
151 // The policy in Chromium is to fail host resolving if it resolves to
152 // this special address.
154 // Not however that IP literals are exempt from this policy, so it is still
155 // possible to navigate to http://127.0.53.53/ directly.
157 // For more details: https://www.icann.org/news/announcement-2-2014-08-01-en
158 const unsigned char kIcanNameCollisionIp[] = {127, 0, 53, 53};
160 void UmaAsyncDnsResolveStatus(DnsResolveStatus result) {
161 UMA_HISTOGRAM_ENUMERATION("AsyncDNS.ResolveStatus",
162 result,
163 RESOLVE_STATUS_MAX);
166 bool ResemblesNetBIOSName(const std::string& hostname) {
167 return (hostname.size() < 16) && (hostname.find('.') == std::string::npos);
170 // True if |hostname| ends with either ".local" or ".local.".
171 bool ResemblesMulticastDNSName(const std::string& hostname) {
172 DCHECK(!hostname.empty());
173 const char kSuffix[] = ".local.";
174 const size_t kSuffixLen = sizeof(kSuffix) - 1;
175 const size_t kSuffixLenTrimmed = kSuffixLen - 1;
176 if (hostname[hostname.size() - 1] == '.') {
177 return hostname.size() > kSuffixLen &&
178 !hostname.compare(hostname.size() - kSuffixLen, kSuffixLen, kSuffix);
180 return hostname.size() > kSuffixLenTrimmed &&
181 !hostname.compare(hostname.size() - kSuffixLenTrimmed, kSuffixLenTrimmed,
182 kSuffix, kSuffixLenTrimmed);
185 // Attempts to connect a UDP socket to |dest|:53.
186 bool IsGloballyReachable(const IPAddressNumber& dest,
187 const BoundNetLog& net_log) {
188 // TODO(eroman): Remove ScopedTracker below once crbug.com/455942 is fixed.
189 tracked_objects::ScopedTracker tracking_profile_1(
190 FROM_HERE_WITH_EXPLICIT_FUNCTION("455942 IsGloballyReachable"));
192 scoped_ptr<DatagramClientSocket> socket(
193 ClientSocketFactory::GetDefaultFactory()->CreateDatagramClientSocket(
194 DatagramSocket::DEFAULT_BIND,
195 RandIntCallback(),
196 net_log.net_log(),
197 net_log.source()));
198 int rv = socket->Connect(IPEndPoint(dest, 53));
199 if (rv != OK)
200 return false;
201 IPEndPoint endpoint;
202 rv = socket->GetLocalAddress(&endpoint);
203 if (rv != OK)
204 return false;
205 DCHECK_EQ(ADDRESS_FAMILY_IPV6, endpoint.GetFamily());
206 const IPAddressNumber& address = endpoint.address();
207 bool is_link_local = (address[0] == 0xFE) && ((address[1] & 0xC0) == 0x80);
208 if (is_link_local)
209 return false;
210 const uint8 kTeredoPrefix[] = { 0x20, 0x01, 0, 0 };
211 bool is_teredo = std::equal(kTeredoPrefix,
212 kTeredoPrefix + arraysize(kTeredoPrefix),
213 address.begin());
214 if (is_teredo)
215 return false;
216 return true;
219 // Provide a common macro to simplify code and readability. We must use a
220 // macro as the underlying HISTOGRAM macro creates static variables.
221 #define DNS_HISTOGRAM(name, time) UMA_HISTOGRAM_CUSTOM_TIMES(name, time, \
222 base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromHours(1), 100)
224 // A macro to simplify code and readability.
225 #define DNS_HISTOGRAM_BY_PRIORITY(basename, priority, time) \
226 do { \
227 switch (priority) { \
228 case HIGHEST: DNS_HISTOGRAM(basename "_HIGHEST", time); break; \
229 case MEDIUM: DNS_HISTOGRAM(basename "_MEDIUM", time); break; \
230 case LOW: DNS_HISTOGRAM(basename "_LOW", time); break; \
231 case LOWEST: DNS_HISTOGRAM(basename "_LOWEST", time); break; \
232 case IDLE: DNS_HISTOGRAM(basename "_IDLE", time); break; \
233 default: NOTREACHED(); break; \
235 DNS_HISTOGRAM(basename, time); \
236 } while (0)
238 // Record time from Request creation until a valid DNS response.
239 void RecordTotalTime(bool had_dns_config,
240 bool speculative,
241 base::TimeDelta duration) {
242 if (had_dns_config) {
243 if (speculative) {
244 DNS_HISTOGRAM("AsyncDNS.TotalTime_speculative", duration);
245 } else {
246 DNS_HISTOGRAM("AsyncDNS.TotalTime", duration);
248 } else {
249 if (speculative) {
250 DNS_HISTOGRAM("DNS.TotalTime_speculative", duration);
251 } else {
252 DNS_HISTOGRAM("DNS.TotalTime", duration);
257 void RecordTTL(base::TimeDelta ttl) {
258 UMA_HISTOGRAM_CUSTOM_TIMES("AsyncDNS.TTL", ttl,
259 base::TimeDelta::FromSeconds(1),
260 base::TimeDelta::FromDays(1), 100);
263 bool ConfigureAsyncDnsNoFallbackFieldTrial() {
264 const bool kDefault = false;
266 // Configure the AsyncDns field trial as follows:
267 // groups AsyncDnsNoFallbackA and AsyncDnsNoFallbackB: return true,
268 // groups AsyncDnsA and AsyncDnsB: return false,
269 // groups SystemDnsA and SystemDnsB: return false,
270 // otherwise (trial absent): return default.
271 std::string group_name = base::FieldTrialList::FindFullName("AsyncDns");
272 if (!group_name.empty())
273 return StartsWithASCII(group_name, "AsyncDnsNoFallback", false);
274 return kDefault;
277 //-----------------------------------------------------------------------------
279 AddressList EnsurePortOnAddressList(const AddressList& list, uint16 port) {
280 if (list.empty() || list.front().port() == port)
281 return list;
282 return AddressList::CopyWithPort(list, port);
285 // Returns true if |addresses| contains only IPv4 loopback addresses.
286 bool IsAllIPv4Loopback(const AddressList& addresses) {
287 for (unsigned i = 0; i < addresses.size(); ++i) {
288 const IPAddressNumber& address = addresses[i].address();
289 switch (addresses[i].GetFamily()) {
290 case ADDRESS_FAMILY_IPV4:
291 if (address[0] != 127)
292 return false;
293 break;
294 case ADDRESS_FAMILY_IPV6:
295 return false;
296 default:
297 NOTREACHED();
298 return false;
301 return true;
304 // Creates NetLog parameters when the resolve failed.
305 base::Value* NetLogProcTaskFailedCallback(
306 uint32 attempt_number,
307 int net_error,
308 int os_error,
309 NetLogCaptureMode /* capture_mode */) {
310 base::DictionaryValue* dict = new base::DictionaryValue();
311 if (attempt_number)
312 dict->SetInteger("attempt_number", attempt_number);
314 dict->SetInteger("net_error", net_error);
316 if (os_error) {
317 dict->SetInteger("os_error", os_error);
318 #if defined(OS_POSIX)
319 dict->SetString("os_error_string", gai_strerror(os_error));
320 #elif defined(OS_WIN)
321 // Map the error code to a human-readable string.
322 LPWSTR error_string = NULL;
323 FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM,
324 0, // Use the internal message table.
325 os_error,
326 0, // Use default language.
327 (LPWSTR)&error_string,
328 0, // Buffer size.
329 0); // Arguments (unused).
330 dict->SetString("os_error_string", base::WideToUTF8(error_string));
331 LocalFree(error_string);
332 #endif
335 return dict;
338 // Creates NetLog parameters when the DnsTask failed.
339 base::Value* NetLogDnsTaskFailedCallback(int net_error,
340 int dns_error,
341 NetLogCaptureMode /* capture_mode */) {
342 base::DictionaryValue* dict = new base::DictionaryValue();
343 dict->SetInteger("net_error", net_error);
344 if (dns_error)
345 dict->SetInteger("dns_error", dns_error);
346 return dict;
349 // Creates NetLog parameters containing the information in a RequestInfo object,
350 // along with the associated NetLog::Source.
351 base::Value* NetLogRequestInfoCallback(const HostResolver::RequestInfo* info,
352 NetLogCaptureMode /* capture_mode */) {
353 base::DictionaryValue* dict = new base::DictionaryValue();
355 dict->SetString("host", info->host_port_pair().ToString());
356 dict->SetInteger("address_family",
357 static_cast<int>(info->address_family()));
358 dict->SetBoolean("allow_cached_response", info->allow_cached_response());
359 dict->SetBoolean("is_speculative", info->is_speculative());
360 return dict;
363 // Creates NetLog parameters for the creation of a HostResolverImpl::Job.
364 base::Value* NetLogJobCreationCallback(const NetLog::Source& source,
365 const std::string* host,
366 NetLogCaptureMode /* capture_mode */) {
367 base::DictionaryValue* dict = new base::DictionaryValue();
368 source.AddToEventParameters(dict);
369 dict->SetString("host", *host);
370 return dict;
373 // Creates NetLog parameters for HOST_RESOLVER_IMPL_JOB_ATTACH/DETACH events.
374 base::Value* NetLogJobAttachCallback(const NetLog::Source& source,
375 RequestPriority priority,
376 NetLogCaptureMode /* capture_mode */) {
377 base::DictionaryValue* dict = new base::DictionaryValue();
378 source.AddToEventParameters(dict);
379 dict->SetString("priority", RequestPriorityToString(priority));
380 return dict;
383 // Creates NetLog parameters for the DNS_CONFIG_CHANGED event.
384 base::Value* NetLogDnsConfigCallback(const DnsConfig* config,
385 NetLogCaptureMode /* capture_mode */) {
386 return config->ToValue();
389 // The logging routines are defined here because some requests are resolved
390 // without a Request object.
392 // Logs when a request has just been started.
393 void LogStartRequest(const BoundNetLog& source_net_log,
394 const HostResolver::RequestInfo& info) {
395 source_net_log.BeginEvent(
396 NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST,
397 base::Bind(&NetLogRequestInfoCallback, &info));
400 // Logs when a request has just completed (before its callback is run).
401 void LogFinishRequest(const BoundNetLog& source_net_log,
402 const HostResolver::RequestInfo& info,
403 int net_error) {
404 source_net_log.EndEventWithNetErrorCode(
405 NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST, net_error);
408 // Logs when a request has been cancelled.
409 void LogCancelRequest(const BoundNetLog& source_net_log,
410 const HostResolverImpl::RequestInfo& info) {
411 source_net_log.AddEvent(NetLog::TYPE_CANCELLED);
412 source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST);
415 //-----------------------------------------------------------------------------
417 // Keeps track of the highest priority.
418 class PriorityTracker {
419 public:
420 explicit PriorityTracker(RequestPriority initial_priority)
421 : highest_priority_(initial_priority), total_count_(0) {
422 memset(counts_, 0, sizeof(counts_));
425 RequestPriority highest_priority() const {
426 return highest_priority_;
429 size_t total_count() const {
430 return total_count_;
433 void Add(RequestPriority req_priority) {
434 ++total_count_;
435 ++counts_[req_priority];
436 if (highest_priority_ < req_priority)
437 highest_priority_ = req_priority;
440 void Remove(RequestPriority req_priority) {
441 DCHECK_GT(total_count_, 0u);
442 DCHECK_GT(counts_[req_priority], 0u);
443 --total_count_;
444 --counts_[req_priority];
445 size_t i;
446 for (i = highest_priority_; i > MINIMUM_PRIORITY && !counts_[i]; --i);
447 highest_priority_ = static_cast<RequestPriority>(i);
449 // In absence of requests, default to MINIMUM_PRIORITY.
450 if (total_count_ == 0)
451 DCHECK_EQ(MINIMUM_PRIORITY, highest_priority_);
454 private:
455 RequestPriority highest_priority_;
456 size_t total_count_;
457 size_t counts_[NUM_PRIORITIES];
460 } // namespace
462 //-----------------------------------------------------------------------------
464 const unsigned HostResolverImpl::kMaximumDnsFailures = 16;
466 // Holds the data for a request that could not be completed synchronously.
467 // It is owned by a Job. Canceled Requests are only marked as canceled rather
468 // than removed from the Job's |requests_| list.
469 class HostResolverImpl::Request {
470 public:
471 Request(const BoundNetLog& source_net_log,
472 const RequestInfo& info,
473 RequestPriority priority,
474 const CompletionCallback& callback,
475 AddressList* addresses)
476 : source_net_log_(source_net_log),
477 info_(info),
478 priority_(priority),
479 job_(NULL),
480 callback_(callback),
481 addresses_(addresses),
482 request_time_(base::TimeTicks::Now()) {}
484 // Mark the request as canceled.
485 void MarkAsCanceled() {
486 job_ = NULL;
487 addresses_ = NULL;
488 callback_.Reset();
491 bool was_canceled() const {
492 return callback_.is_null();
495 void set_job(Job* job) {
496 DCHECK(job);
497 // Identify which job the request is waiting on.
498 job_ = job;
501 // Prepare final AddressList and call completion callback.
502 void OnComplete(int error, const AddressList& addr_list) {
503 DCHECK(!was_canceled());
504 if (error == OK)
505 *addresses_ = EnsurePortOnAddressList(addr_list, info_.port());
506 CompletionCallback callback = callback_;
507 MarkAsCanceled();
508 callback.Run(error);
511 Job* job() const {
512 return job_;
515 // NetLog for the source, passed in HostResolver::Resolve.
516 const BoundNetLog& source_net_log() {
517 return source_net_log_;
520 const RequestInfo& info() const {
521 return info_;
524 RequestPriority priority() const { return priority_; }
526 base::TimeTicks request_time() const { return request_time_; }
528 private:
529 const BoundNetLog source_net_log_;
531 // The request info that started the request.
532 const RequestInfo info_;
534 // TODO(akalin): Support reprioritization.
535 const RequestPriority priority_;
537 // The resolve job that this request is dependent on.
538 Job* job_;
540 // The user's callback to invoke when the request completes.
541 CompletionCallback callback_;
543 // The address list to save result into.
544 AddressList* addresses_;
546 const base::TimeTicks request_time_;
548 DISALLOW_COPY_AND_ASSIGN(Request);
551 //------------------------------------------------------------------------------
553 // Calls HostResolverProc on the WorkerPool. Performs retries if necessary.
555 // Whenever we try to resolve the host, we post a delayed task to check if host
556 // resolution (OnLookupComplete) is completed or not. If the original attempt
557 // hasn't completed, then we start another attempt for host resolution. We take
558 // the results from the first attempt that finishes and ignore the results from
559 // all other attempts.
561 // TODO(szym): Move to separate source file for testing and mocking.
563 class HostResolverImpl::ProcTask
564 : public base::RefCountedThreadSafe<HostResolverImpl::ProcTask> {
565 public:
566 typedef base::Callback<void(int net_error,
567 const AddressList& addr_list)> Callback;
569 ProcTask(const Key& key,
570 const ProcTaskParams& params,
571 const Callback& callback,
572 const BoundNetLog& job_net_log)
573 : key_(key),
574 params_(params),
575 callback_(callback),
576 origin_loop_(base::MessageLoopProxy::current()),
577 attempt_number_(0),
578 completed_attempt_number_(0),
579 completed_attempt_error_(ERR_UNEXPECTED),
580 had_non_speculative_request_(false),
581 net_log_(job_net_log) {
582 if (!params_.resolver_proc.get())
583 params_.resolver_proc = HostResolverProc::GetDefault();
584 // If default is unset, use the system proc.
585 if (!params_.resolver_proc.get())
586 params_.resolver_proc = new SystemHostResolverProc();
589 void Start() {
590 DCHECK(origin_loop_->BelongsToCurrentThread());
591 net_log_.BeginEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK);
592 StartLookupAttempt();
595 // Cancels this ProcTask. It will be orphaned. Any outstanding resolve
596 // attempts running on worker threads will continue running. Only once all the
597 // attempts complete will the final reference to this ProcTask be released.
598 void Cancel() {
599 DCHECK(origin_loop_->BelongsToCurrentThread());
601 if (was_canceled() || was_completed())
602 return;
604 callback_.Reset();
605 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK);
608 void set_had_non_speculative_request() {
609 DCHECK(origin_loop_->BelongsToCurrentThread());
610 had_non_speculative_request_ = true;
613 bool was_canceled() const {
614 DCHECK(origin_loop_->BelongsToCurrentThread());
615 return callback_.is_null();
618 bool was_completed() const {
619 DCHECK(origin_loop_->BelongsToCurrentThread());
620 return completed_attempt_number_ > 0;
623 private:
624 friend class base::RefCountedThreadSafe<ProcTask>;
625 ~ProcTask() {}
627 void StartLookupAttempt() {
628 DCHECK(origin_loop_->BelongsToCurrentThread());
629 base::TimeTicks start_time = base::TimeTicks::Now();
630 ++attempt_number_;
631 // Dispatch the lookup attempt to a worker thread.
632 if (!base::WorkerPool::PostTask(
633 FROM_HERE,
634 base::Bind(&ProcTask::DoLookup, this, start_time, attempt_number_),
635 true)) {
636 NOTREACHED();
638 // Since we could be running within Resolve() right now, we can't just
639 // call OnLookupComplete(). Instead we must wait until Resolve() has
640 // returned (IO_PENDING).
641 origin_loop_->PostTask(
642 FROM_HERE,
643 base::Bind(&ProcTask::OnLookupComplete, this, AddressList(),
644 start_time, attempt_number_, ERR_UNEXPECTED, 0));
645 return;
648 net_log_.AddEvent(
649 NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_STARTED,
650 NetLog::IntegerCallback("attempt_number", attempt_number_));
652 // If we don't get the results within a given time, RetryIfNotComplete
653 // will start a new attempt on a different worker thread if none of our
654 // outstanding attempts have completed yet.
655 if (attempt_number_ <= params_.max_retry_attempts) {
656 origin_loop_->PostDelayedTask(
657 FROM_HERE,
658 base::Bind(&ProcTask::RetryIfNotComplete, this),
659 params_.unresponsive_delay);
663 // WARNING: This code runs inside a worker pool. The shutdown code cannot
664 // wait for it to finish, so we must be very careful here about using other
665 // objects (like MessageLoops, Singletons, etc). During shutdown these objects
666 // may no longer exist. Multiple DoLookups() could be running in parallel, so
667 // any state inside of |this| must not mutate .
668 void DoLookup(const base::TimeTicks& start_time,
669 const uint32 attempt_number) {
670 AddressList results;
671 int os_error = 0;
672 // Running on the worker thread
673 int error = params_.resolver_proc->Resolve(key_.hostname,
674 key_.address_family,
675 key_.host_resolver_flags,
676 &results,
677 &os_error);
679 // Fail the resolution if the result contains 127.0.53.53. See the comment
680 // block of kIcanNameCollisionIp for details on why.
681 for (const auto& it : results) {
682 const IPAddressNumber& cur = it.address();
683 if (cur.size() == arraysize(kIcanNameCollisionIp) &&
684 0 == memcmp(&cur.front(), kIcanNameCollisionIp, cur.size())) {
685 error = ERR_ICANN_NAME_COLLISION;
686 break;
690 origin_loop_->PostTask(
691 FROM_HERE,
692 base::Bind(&ProcTask::OnLookupComplete, this, results, start_time,
693 attempt_number, error, os_error));
696 // Makes next attempt if DoLookup() has not finished (runs on origin thread).
697 void RetryIfNotComplete() {
698 DCHECK(origin_loop_->BelongsToCurrentThread());
700 if (was_completed() || was_canceled())
701 return;
703 params_.unresponsive_delay *= params_.retry_factor;
704 StartLookupAttempt();
707 // Callback for when DoLookup() completes (runs on origin thread).
708 void OnLookupComplete(const AddressList& results,
709 const base::TimeTicks& start_time,
710 const uint32 attempt_number,
711 int error,
712 const int os_error) {
713 DCHECK(origin_loop_->BelongsToCurrentThread());
714 // If results are empty, we should return an error.
715 bool empty_list_on_ok = (error == OK && results.empty());
716 UMA_HISTOGRAM_BOOLEAN("DNS.EmptyAddressListAndNoError", empty_list_on_ok);
717 if (empty_list_on_ok)
718 error = ERR_NAME_NOT_RESOLVED;
720 bool was_retry_attempt = attempt_number > 1;
722 // Ideally the following code would be part of host_resolver_proc.cc,
723 // however it isn't safe to call NetworkChangeNotifier from worker threads.
724 // So we do it here on the IO thread instead.
725 if (error != OK && NetworkChangeNotifier::IsOffline())
726 error = ERR_INTERNET_DISCONNECTED;
728 // If this is the first attempt that is finishing later, then record data
729 // for the first attempt. Won't contaminate with retry attempt's data.
730 if (!was_retry_attempt)
731 RecordPerformanceHistograms(start_time, error, os_error);
733 RecordAttemptHistograms(start_time, attempt_number, error, os_error);
735 if (was_canceled())
736 return;
738 NetLog::ParametersCallback net_log_callback;
739 if (error != OK) {
740 net_log_callback = base::Bind(&NetLogProcTaskFailedCallback,
741 attempt_number,
742 error,
743 os_error);
744 } else {
745 net_log_callback = NetLog::IntegerCallback("attempt_number",
746 attempt_number);
748 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_FINISHED,
749 net_log_callback);
751 if (was_completed())
752 return;
754 // Copy the results from the first worker thread that resolves the host.
755 results_ = results;
756 completed_attempt_number_ = attempt_number;
757 completed_attempt_error_ = error;
759 if (was_retry_attempt) {
760 // If retry attempt finishes before 1st attempt, then get stats on how
761 // much time is saved by having spawned an extra attempt.
762 retry_attempt_finished_time_ = base::TimeTicks::Now();
765 if (error != OK) {
766 net_log_callback = base::Bind(&NetLogProcTaskFailedCallback,
767 0, error, os_error);
768 } else {
769 net_log_callback = results_.CreateNetLogCallback();
771 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK,
772 net_log_callback);
774 callback_.Run(error, results_);
777 void RecordPerformanceHistograms(const base::TimeTicks& start_time,
778 const int error,
779 const int os_error) const {
780 DCHECK(origin_loop_->BelongsToCurrentThread());
781 enum Category { // Used in UMA_HISTOGRAM_ENUMERATION.
782 RESOLVE_SUCCESS,
783 RESOLVE_FAIL,
784 RESOLVE_SPECULATIVE_SUCCESS,
785 RESOLVE_SPECULATIVE_FAIL,
786 RESOLVE_MAX, // Bounding value.
788 int category = RESOLVE_MAX; // Illegal value for later DCHECK only.
790 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
791 if (error == OK) {
792 if (had_non_speculative_request_) {
793 category = RESOLVE_SUCCESS;
794 DNS_HISTOGRAM("DNS.ResolveSuccess", duration);
795 } else {
796 category = RESOLVE_SPECULATIVE_SUCCESS;
797 DNS_HISTOGRAM("DNS.ResolveSpeculativeSuccess", duration);
800 // Log DNS lookups based on |address_family|. This will help us determine
801 // if IPv4 or IPv4/6 lookups are faster or slower.
802 switch(key_.address_family) {
803 case ADDRESS_FAMILY_IPV4:
804 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV4", duration);
805 break;
806 case ADDRESS_FAMILY_IPV6:
807 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV6", duration);
808 break;
809 case ADDRESS_FAMILY_UNSPECIFIED:
810 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_UNSPEC", duration);
811 break;
813 } else {
814 if (had_non_speculative_request_) {
815 category = RESOLVE_FAIL;
816 DNS_HISTOGRAM("DNS.ResolveFail", duration);
817 } else {
818 category = RESOLVE_SPECULATIVE_FAIL;
819 DNS_HISTOGRAM("DNS.ResolveSpeculativeFail", duration);
821 // Log DNS lookups based on |address_family|. This will help us determine
822 // if IPv4 or IPv4/6 lookups are faster or slower.
823 switch(key_.address_family) {
824 case ADDRESS_FAMILY_IPV4:
825 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV4", duration);
826 break;
827 case ADDRESS_FAMILY_IPV6:
828 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV6", duration);
829 break;
830 case ADDRESS_FAMILY_UNSPECIFIED:
831 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_UNSPEC", duration);
832 break;
834 UMA_HISTOGRAM_CUSTOM_ENUMERATION(kOSErrorsForGetAddrinfoHistogramName,
835 std::abs(os_error),
836 GetAllGetAddrinfoOSErrors());
838 DCHECK_LT(category, static_cast<int>(RESOLVE_MAX)); // Be sure it was set.
840 UMA_HISTOGRAM_ENUMERATION("DNS.ResolveCategory", category, RESOLVE_MAX);
843 void RecordAttemptHistograms(const base::TimeTicks& start_time,
844 const uint32 attempt_number,
845 const int error,
846 const int os_error) const {
847 DCHECK(origin_loop_->BelongsToCurrentThread());
848 bool first_attempt_to_complete =
849 completed_attempt_number_ == attempt_number;
850 bool is_first_attempt = (attempt_number == 1);
852 if (first_attempt_to_complete) {
853 // If this was first attempt to complete, then record the resolution
854 // status of the attempt.
855 if (completed_attempt_error_ == OK) {
856 UMA_HISTOGRAM_ENUMERATION(
857 "DNS.AttemptFirstSuccess", attempt_number, 100);
858 } else {
859 UMA_HISTOGRAM_ENUMERATION(
860 "DNS.AttemptFirstFailure", attempt_number, 100);
864 if (error == OK)
865 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptSuccess", attempt_number, 100);
866 else
867 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptFailure", attempt_number, 100);
869 // If first attempt didn't finish before retry attempt, then calculate stats
870 // on how much time is saved by having spawned an extra attempt.
871 if (!first_attempt_to_complete && is_first_attempt && !was_canceled()) {
872 DNS_HISTOGRAM("DNS.AttemptTimeSavedByRetry",
873 base::TimeTicks::Now() - retry_attempt_finished_time_);
876 if (was_canceled() || !first_attempt_to_complete) {
877 // Count those attempts which completed after the job was already canceled
878 // OR after the job was already completed by an earlier attempt (so in
879 // effect).
880 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptDiscarded", attempt_number, 100);
882 // Record if job is canceled.
883 if (was_canceled())
884 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptCancelled", attempt_number, 100);
887 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
888 if (error == OK)
889 DNS_HISTOGRAM("DNS.AttemptSuccessDuration", duration);
890 else
891 DNS_HISTOGRAM("DNS.AttemptFailDuration", duration);
894 // Set on the origin thread, read on the worker thread.
895 Key key_;
897 // Holds an owning reference to the HostResolverProc that we are going to use.
898 // This may not be the current resolver procedure by the time we call
899 // ResolveAddrInfo, but that's OK... we'll use it anyways, and the owning
900 // reference ensures that it remains valid until we are done.
901 ProcTaskParams params_;
903 // The listener to the results of this ProcTask.
904 Callback callback_;
906 // Used to post ourselves onto the origin thread.
907 scoped_refptr<base::MessageLoopProxy> origin_loop_;
909 // Keeps track of the number of attempts we have made so far to resolve the
910 // host. Whenever we start an attempt to resolve the host, we increase this
911 // number.
912 uint32 attempt_number_;
914 // The index of the attempt which finished first (or 0 if the job is still in
915 // progress).
916 uint32 completed_attempt_number_;
918 // The result (a net error code) from the first attempt to complete.
919 int completed_attempt_error_;
921 // The time when retry attempt was finished.
922 base::TimeTicks retry_attempt_finished_time_;
924 // True if a non-speculative request was ever attached to this job
925 // (regardless of whether or not it was later canceled.
926 // This boolean is used for histogramming the duration of jobs used to
927 // service non-speculative requests.
928 bool had_non_speculative_request_;
930 AddressList results_;
932 BoundNetLog net_log_;
934 DISALLOW_COPY_AND_ASSIGN(ProcTask);
937 //-----------------------------------------------------------------------------
939 // Wraps a call to HaveOnlyLoopbackAddresses to be executed on the WorkerPool as
940 // it takes 40-100ms and should not block initialization.
941 class HostResolverImpl::LoopbackProbeJob {
942 public:
943 explicit LoopbackProbeJob(const base::WeakPtr<HostResolverImpl>& resolver)
944 : resolver_(resolver),
945 result_(false) {
946 DCHECK(resolver.get());
947 const bool kIsSlow = true;
948 base::WorkerPool::PostTaskAndReply(
949 FROM_HERE,
950 base::Bind(&LoopbackProbeJob::DoProbe, base::Unretained(this)),
951 base::Bind(&LoopbackProbeJob::OnProbeComplete, base::Owned(this)),
952 kIsSlow);
955 virtual ~LoopbackProbeJob() {}
957 private:
958 // Runs on worker thread.
959 void DoProbe() {
960 result_ = HaveOnlyLoopbackAddresses();
963 void OnProbeComplete() {
964 if (!resolver_.get())
965 return;
966 resolver_->SetHaveOnlyLoopbackAddresses(result_);
969 // Used/set only on origin thread.
970 base::WeakPtr<HostResolverImpl> resolver_;
972 bool result_;
974 DISALLOW_COPY_AND_ASSIGN(LoopbackProbeJob);
977 //-----------------------------------------------------------------------------
979 // Resolves the hostname using DnsTransaction.
980 // TODO(szym): This could be moved to separate source file as well.
981 class HostResolverImpl::DnsTask : public base::SupportsWeakPtr<DnsTask> {
982 public:
983 class Delegate {
984 public:
985 virtual void OnDnsTaskComplete(base::TimeTicks start_time,
986 int net_error,
987 const AddressList& addr_list,
988 base::TimeDelta ttl) = 0;
990 // Called when the first of two jobs succeeds. If the first completed
991 // transaction fails, this is not called. Also not called when the DnsTask
992 // only needs to run one transaction.
993 virtual void OnFirstDnsTransactionComplete() = 0;
995 protected:
996 Delegate() {}
997 virtual ~Delegate() {}
1000 DnsTask(DnsClient* client,
1001 const Key& key,
1002 Delegate* delegate,
1003 const BoundNetLog& job_net_log)
1004 : client_(client),
1005 key_(key),
1006 delegate_(delegate),
1007 net_log_(job_net_log),
1008 num_completed_transactions_(0),
1009 task_start_time_(base::TimeTicks::Now()) {
1010 DCHECK(client);
1011 DCHECK(delegate_);
1014 bool needs_two_transactions() const {
1015 return key_.address_family == ADDRESS_FAMILY_UNSPECIFIED;
1018 bool needs_another_transaction() const {
1019 return needs_two_transactions() && !transaction_aaaa_;
1022 void StartFirstTransaction() {
1023 DCHECK_EQ(0u, num_completed_transactions_);
1024 net_log_.BeginEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK);
1025 if (key_.address_family == ADDRESS_FAMILY_IPV6) {
1026 StartAAAA();
1027 } else {
1028 StartA();
1032 void StartSecondTransaction() {
1033 DCHECK(needs_two_transactions());
1034 StartAAAA();
1037 private:
1038 void StartA() {
1039 DCHECK(!transaction_a_);
1040 DCHECK_NE(ADDRESS_FAMILY_IPV6, key_.address_family);
1041 transaction_a_ = CreateTransaction(ADDRESS_FAMILY_IPV4);
1042 transaction_a_->Start();
1045 void StartAAAA() {
1046 DCHECK(!transaction_aaaa_);
1047 DCHECK_NE(ADDRESS_FAMILY_IPV4, key_.address_family);
1048 transaction_aaaa_ = CreateTransaction(ADDRESS_FAMILY_IPV6);
1049 transaction_aaaa_->Start();
1052 scoped_ptr<DnsTransaction> CreateTransaction(AddressFamily family) {
1053 DCHECK_NE(ADDRESS_FAMILY_UNSPECIFIED, family);
1054 return client_->GetTransactionFactory()->CreateTransaction(
1055 key_.hostname,
1056 family == ADDRESS_FAMILY_IPV6 ? dns_protocol::kTypeAAAA :
1057 dns_protocol::kTypeA,
1058 base::Bind(&DnsTask::OnTransactionComplete, base::Unretained(this),
1059 base::TimeTicks::Now()),
1060 net_log_);
1063 void OnTransactionComplete(const base::TimeTicks& start_time,
1064 DnsTransaction* transaction,
1065 int net_error,
1066 const DnsResponse* response) {
1067 DCHECK(transaction);
1068 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1069 if (net_error != OK) {
1070 DNS_HISTOGRAM("AsyncDNS.TransactionFailure", duration);
1071 OnFailure(net_error, DnsResponse::DNS_PARSE_OK);
1072 return;
1075 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess", duration);
1076 switch (transaction->GetType()) {
1077 case dns_protocol::kTypeA:
1078 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess_A", duration);
1079 break;
1080 case dns_protocol::kTypeAAAA:
1081 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess_AAAA", duration);
1082 break;
1085 AddressList addr_list;
1086 base::TimeDelta ttl;
1087 DnsResponse::Result result = response->ParseToAddressList(&addr_list, &ttl);
1088 UMA_HISTOGRAM_ENUMERATION("AsyncDNS.ParseToAddressList",
1089 result,
1090 DnsResponse::DNS_PARSE_RESULT_MAX);
1091 if (result != DnsResponse::DNS_PARSE_OK) {
1092 // Fail even if the other query succeeds.
1093 OnFailure(ERR_DNS_MALFORMED_RESPONSE, result);
1094 return;
1097 ++num_completed_transactions_;
1098 if (num_completed_transactions_ == 1) {
1099 ttl_ = ttl;
1100 } else {
1101 ttl_ = std::min(ttl_, ttl);
1104 if (transaction->GetType() == dns_protocol::kTypeA) {
1105 DCHECK_EQ(transaction_a_.get(), transaction);
1106 // Place IPv4 addresses after IPv6.
1107 addr_list_.insert(addr_list_.end(), addr_list.begin(), addr_list.end());
1108 } else {
1109 DCHECK_EQ(transaction_aaaa_.get(), transaction);
1110 // Place IPv6 addresses before IPv4.
1111 addr_list_.insert(addr_list_.begin(), addr_list.begin(), addr_list.end());
1114 if (needs_two_transactions() && num_completed_transactions_ == 1) {
1115 // No need to repeat the suffix search.
1116 key_.hostname = transaction->GetHostname();
1117 delegate_->OnFirstDnsTransactionComplete();
1118 return;
1121 if (addr_list_.empty()) {
1122 // TODO(szym): Don't fallback to ProcTask in this case.
1123 OnFailure(ERR_NAME_NOT_RESOLVED, DnsResponse::DNS_PARSE_OK);
1124 return;
1127 // If there are multiple addresses, and at least one is IPv6, need to sort
1128 // them. Note that IPv6 addresses are always put before IPv4 ones, so it's
1129 // sufficient to just check the family of the first address.
1130 if (addr_list_.size() > 1 &&
1131 addr_list_[0].GetFamily() == ADDRESS_FAMILY_IPV6) {
1132 // Sort addresses if needed. Sort could complete synchronously.
1133 client_->GetAddressSorter()->Sort(
1134 addr_list_,
1135 base::Bind(&DnsTask::OnSortComplete,
1136 AsWeakPtr(),
1137 base::TimeTicks::Now()));
1138 } else {
1139 OnSuccess(addr_list_);
1143 void OnSortComplete(base::TimeTicks start_time,
1144 bool success,
1145 const AddressList& addr_list) {
1146 if (!success) {
1147 DNS_HISTOGRAM("AsyncDNS.SortFailure",
1148 base::TimeTicks::Now() - start_time);
1149 OnFailure(ERR_DNS_SORT_ERROR, DnsResponse::DNS_PARSE_OK);
1150 return;
1153 DNS_HISTOGRAM("AsyncDNS.SortSuccess",
1154 base::TimeTicks::Now() - start_time);
1156 // AddressSorter prunes unusable destinations.
1157 if (addr_list.empty()) {
1158 LOG(WARNING) << "Address list empty after RFC3484 sort";
1159 OnFailure(ERR_NAME_NOT_RESOLVED, DnsResponse::DNS_PARSE_OK);
1160 return;
1163 OnSuccess(addr_list);
1166 void OnFailure(int net_error, DnsResponse::Result result) {
1167 DCHECK_NE(OK, net_error);
1168 net_log_.EndEvent(
1169 NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK,
1170 base::Bind(&NetLogDnsTaskFailedCallback, net_error, result));
1171 delegate_->OnDnsTaskComplete(task_start_time_, net_error, AddressList(),
1172 base::TimeDelta());
1175 void OnSuccess(const AddressList& addr_list) {
1176 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK,
1177 addr_list.CreateNetLogCallback());
1178 delegate_->OnDnsTaskComplete(task_start_time_, OK, addr_list, ttl_);
1181 DnsClient* client_;
1182 Key key_;
1184 // The listener to the results of this DnsTask.
1185 Delegate* delegate_;
1186 const BoundNetLog net_log_;
1188 scoped_ptr<DnsTransaction> transaction_a_;
1189 scoped_ptr<DnsTransaction> transaction_aaaa_;
1191 unsigned num_completed_transactions_;
1193 // These are updated as each transaction completes.
1194 base::TimeDelta ttl_;
1195 // IPv6 addresses must appear first in the list.
1196 AddressList addr_list_;
1198 base::TimeTicks task_start_time_;
1200 DISALLOW_COPY_AND_ASSIGN(DnsTask);
1203 //-----------------------------------------------------------------------------
1205 // Aggregates all Requests for the same Key. Dispatched via PriorityDispatch.
1206 class HostResolverImpl::Job : public PrioritizedDispatcher::Job,
1207 public HostResolverImpl::DnsTask::Delegate {
1208 public:
1209 // Creates new job for |key| where |request_net_log| is bound to the
1210 // request that spawned it.
1211 Job(const base::WeakPtr<HostResolverImpl>& resolver,
1212 const Key& key,
1213 RequestPriority priority,
1214 const BoundNetLog& source_net_log)
1215 : resolver_(resolver),
1216 key_(key),
1217 priority_tracker_(priority),
1218 had_non_speculative_request_(false),
1219 had_dns_config_(false),
1220 num_occupied_job_slots_(0),
1221 dns_task_error_(OK),
1222 creation_time_(base::TimeTicks::Now()),
1223 priority_change_time_(creation_time_),
1224 net_log_(BoundNetLog::Make(source_net_log.net_log(),
1225 NetLog::SOURCE_HOST_RESOLVER_IMPL_JOB)) {
1226 source_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CREATE_JOB);
1228 net_log_.BeginEvent(
1229 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1230 base::Bind(&NetLogJobCreationCallback,
1231 source_net_log.source(),
1232 &key_.hostname));
1235 ~Job() override {
1236 if (is_running()) {
1237 // |resolver_| was destroyed with this Job still in flight.
1238 // Clean-up, record in the log, but don't run any callbacks.
1239 if (is_proc_running()) {
1240 proc_task_->Cancel();
1241 proc_task_ = NULL;
1243 // Clean up now for nice NetLog.
1244 KillDnsTask();
1245 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1246 ERR_ABORTED);
1247 } else if (is_queued()) {
1248 // |resolver_| was destroyed without running this Job.
1249 // TODO(szym): is there any benefit in having this distinction?
1250 net_log_.AddEvent(NetLog::TYPE_CANCELLED);
1251 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB);
1253 // else CompleteRequests logged EndEvent.
1255 // Log any remaining Requests as cancelled.
1256 for (RequestsList::const_iterator it = requests_.begin();
1257 it != requests_.end(); ++it) {
1258 Request* req = *it;
1259 if (req->was_canceled())
1260 continue;
1261 DCHECK_EQ(this, req->job());
1262 LogCancelRequest(req->source_net_log(), req->info());
1266 // Add this job to the dispatcher. If "at_head" is true, adds at the front
1267 // of the queue.
1268 void Schedule(bool at_head) {
1269 DCHECK(!is_queued());
1270 PrioritizedDispatcher::Handle handle;
1271 if (!at_head) {
1272 handle = resolver_->dispatcher_->Add(this, priority());
1273 } else {
1274 handle = resolver_->dispatcher_->AddAtHead(this, priority());
1276 // The dispatcher could have started |this| in the above call to Add, which
1277 // could have called Schedule again. In that case |handle| will be null,
1278 // but |handle_| may have been set by the other nested call to Schedule.
1279 if (!handle.is_null()) {
1280 DCHECK(handle_.is_null());
1281 handle_ = handle;
1285 void AddRequest(scoped_ptr<Request> req) {
1286 // .localhost queries are redirected to "localhost." to make sure
1287 // that they are never sent out on the network, per RFC 6761.
1288 if (IsLocalhostTLD(req->info().hostname())) {
1289 DCHECK_EQ(key_.hostname, kLocalhost);
1290 } else {
1291 DCHECK_EQ(key_.hostname, req->info().hostname());
1294 req->set_job(this);
1295 priority_tracker_.Add(req->priority());
1297 req->source_net_log().AddEvent(
1298 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_ATTACH,
1299 net_log_.source().ToEventParametersCallback());
1301 net_log_.AddEvent(
1302 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_REQUEST_ATTACH,
1303 base::Bind(&NetLogJobAttachCallback,
1304 req->source_net_log().source(),
1305 priority()));
1307 // TODO(szym): Check if this is still needed.
1308 if (!req->info().is_speculative()) {
1309 had_non_speculative_request_ = true;
1310 if (proc_task_.get())
1311 proc_task_->set_had_non_speculative_request();
1314 requests_.push_back(req.release());
1316 UpdatePriority();
1319 // Marks |req| as cancelled. If it was the last active Request, also finishes
1320 // this Job, marking it as cancelled, and deletes it.
1321 void CancelRequest(Request* req) {
1322 DCHECK_EQ(key_.hostname, req->info().hostname());
1323 DCHECK(!req->was_canceled());
1325 // Don't remove it from |requests_| just mark it canceled.
1326 req->MarkAsCanceled();
1327 LogCancelRequest(req->source_net_log(), req->info());
1329 priority_tracker_.Remove(req->priority());
1330 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_REQUEST_DETACH,
1331 base::Bind(&NetLogJobAttachCallback,
1332 req->source_net_log().source(),
1333 priority()));
1335 if (num_active_requests() > 0) {
1336 UpdatePriority();
1337 } else {
1338 // If we were called from a Request's callback within CompleteRequests,
1339 // that Request could not have been cancelled, so num_active_requests()
1340 // could not be 0. Therefore, we are not in CompleteRequests().
1341 CompleteRequestsWithError(OK /* cancelled */);
1345 // Called from AbortAllInProgressJobs. Completes all requests and destroys
1346 // the job. This currently assumes the abort is due to a network change.
1347 void Abort() {
1348 DCHECK(is_running());
1349 CompleteRequestsWithError(ERR_NETWORK_CHANGED);
1352 // If DnsTask present, abort it and fall back to ProcTask.
1353 void AbortDnsTask() {
1354 if (dns_task_) {
1355 KillDnsTask();
1356 dns_task_error_ = OK;
1357 StartProcTask();
1361 // Called by HostResolverImpl when this job is evicted due to queue overflow.
1362 // Completes all requests and destroys the job.
1363 void OnEvicted() {
1364 DCHECK(!is_running());
1365 DCHECK(is_queued());
1366 handle_.Reset();
1368 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_EVICTED);
1370 // This signals to CompleteRequests that this job never ran.
1371 CompleteRequestsWithError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE);
1374 // Attempts to serve the job from HOSTS. Returns true if succeeded and
1375 // this Job was destroyed.
1376 bool ServeFromHosts() {
1377 DCHECK_GT(num_active_requests(), 0u);
1378 AddressList addr_list;
1379 if (resolver_->ServeFromHosts(key(),
1380 requests_.front()->info(),
1381 &addr_list)) {
1382 // This will destroy the Job.
1383 CompleteRequests(
1384 HostCache::Entry(OK, MakeAddressListForRequest(addr_list)),
1385 base::TimeDelta());
1386 return true;
1388 return false;
1391 const Key key() const {
1392 return key_;
1395 bool is_queued() const {
1396 return !handle_.is_null();
1399 bool is_running() const {
1400 return is_dns_running() || is_proc_running();
1403 private:
1404 void KillDnsTask() {
1405 if (dns_task_) {
1406 ReduceToOneJobSlot();
1407 dns_task_.reset();
1411 // Reduce the number of job slots occupied and queued in the dispatcher
1412 // to one. If the second Job slot is queued in the dispatcher, cancels the
1413 // queued job. Otherwise, the second Job has been started by the
1414 // PrioritizedDispatcher, so signals it is complete.
1415 void ReduceToOneJobSlot() {
1416 DCHECK_GE(num_occupied_job_slots_, 1u);
1417 if (is_queued()) {
1418 resolver_->dispatcher_->Cancel(handle_);
1419 handle_.Reset();
1420 } else if (num_occupied_job_slots_ > 1) {
1421 resolver_->dispatcher_->OnJobFinished();
1422 --num_occupied_job_slots_;
1424 DCHECK_EQ(1u, num_occupied_job_slots_);
1427 void UpdatePriority() {
1428 if (is_queued()) {
1429 if (priority() != static_cast<RequestPriority>(handle_.priority()))
1430 priority_change_time_ = base::TimeTicks::Now();
1431 handle_ = resolver_->dispatcher_->ChangePriority(handle_, priority());
1435 AddressList MakeAddressListForRequest(const AddressList& list) const {
1436 if (requests_.empty())
1437 return list;
1438 return AddressList::CopyWithPort(list, requests_.front()->info().port());
1441 // PriorityDispatch::Job:
1442 void Start() override {
1443 DCHECK_LE(num_occupied_job_slots_, 1u);
1445 handle_.Reset();
1446 ++num_occupied_job_slots_;
1448 if (num_occupied_job_slots_ == 2) {
1449 StartSecondDnsTransaction();
1450 return;
1453 DCHECK(!is_running());
1455 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_STARTED);
1457 had_dns_config_ = resolver_->HaveDnsConfig();
1459 base::TimeTicks now = base::TimeTicks::Now();
1460 base::TimeDelta queue_time = now - creation_time_;
1461 base::TimeDelta queue_time_after_change = now - priority_change_time_;
1463 if (had_dns_config_) {
1464 DNS_HISTOGRAM_BY_PRIORITY("AsyncDNS.JobQueueTime", priority(),
1465 queue_time);
1466 DNS_HISTOGRAM_BY_PRIORITY("AsyncDNS.JobQueueTimeAfterChange", priority(),
1467 queue_time_after_change);
1468 } else {
1469 DNS_HISTOGRAM_BY_PRIORITY("DNS.JobQueueTime", priority(), queue_time);
1470 DNS_HISTOGRAM_BY_PRIORITY("DNS.JobQueueTimeAfterChange", priority(),
1471 queue_time_after_change);
1474 bool system_only =
1475 (key_.host_resolver_flags & HOST_RESOLVER_SYSTEM_ONLY) != 0;
1477 // Caution: Job::Start must not complete synchronously.
1478 if (!system_only && had_dns_config_ &&
1479 !ResemblesMulticastDNSName(key_.hostname)) {
1480 StartDnsTask();
1481 } else {
1482 StartProcTask();
1486 // TODO(szym): Since DnsTransaction does not consume threads, we can increase
1487 // the limits on |dispatcher_|. But in order to keep the number of WorkerPool
1488 // threads low, we will need to use an "inner" PrioritizedDispatcher with
1489 // tighter limits.
1490 void StartProcTask() {
1491 DCHECK(!is_dns_running());
1492 proc_task_ = new ProcTask(
1493 key_,
1494 resolver_->proc_params_,
1495 base::Bind(&Job::OnProcTaskComplete, base::Unretained(this),
1496 base::TimeTicks::Now()),
1497 net_log_);
1499 if (had_non_speculative_request_)
1500 proc_task_->set_had_non_speculative_request();
1501 // Start() could be called from within Resolve(), hence it must NOT directly
1502 // call OnProcTaskComplete, for example, on synchronous failure.
1503 proc_task_->Start();
1506 // Called by ProcTask when it completes.
1507 void OnProcTaskComplete(base::TimeTicks start_time,
1508 int net_error,
1509 const AddressList& addr_list) {
1510 DCHECK(is_proc_running());
1512 if (!resolver_->resolved_known_ipv6_hostname_ &&
1513 net_error == OK &&
1514 key_.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
1515 if (key_.hostname == "www.google.com") {
1516 resolver_->resolved_known_ipv6_hostname_ = true;
1517 bool got_ipv6_address = false;
1518 for (size_t i = 0; i < addr_list.size(); ++i) {
1519 if (addr_list[i].GetFamily() == ADDRESS_FAMILY_IPV6) {
1520 got_ipv6_address = true;
1521 break;
1524 UMA_HISTOGRAM_BOOLEAN("Net.UnspecResolvedIPv6", got_ipv6_address);
1528 if (dns_task_error_ != OK) {
1529 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1530 if (net_error == OK) {
1531 DNS_HISTOGRAM("AsyncDNS.FallbackSuccess", duration);
1532 if ((dns_task_error_ == ERR_NAME_NOT_RESOLVED) &&
1533 ResemblesNetBIOSName(key_.hostname)) {
1534 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_SUSPECT_NETBIOS);
1535 } else {
1536 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_PROC_SUCCESS);
1538 UMA_HISTOGRAM_CUSTOM_ENUMERATION("AsyncDNS.ResolveError",
1539 std::abs(dns_task_error_),
1540 GetAllErrorCodesForUma());
1541 resolver_->OnDnsTaskResolve(dns_task_error_);
1542 } else {
1543 DNS_HISTOGRAM("AsyncDNS.FallbackFail", duration);
1544 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_FAIL);
1548 base::TimeDelta ttl =
1549 base::TimeDelta::FromSeconds(kNegativeCacheEntryTTLSeconds);
1550 if (net_error == OK)
1551 ttl = base::TimeDelta::FromSeconds(kCacheEntryTTLSeconds);
1553 // Don't store the |ttl| in cache since it's not obtained from the server.
1554 CompleteRequests(
1555 HostCache::Entry(net_error, MakeAddressListForRequest(addr_list)),
1556 ttl);
1559 void StartDnsTask() {
1560 DCHECK(resolver_->HaveDnsConfig());
1561 dns_task_.reset(new DnsTask(resolver_->dns_client_.get(), key_, this,
1562 net_log_));
1564 dns_task_->StartFirstTransaction();
1565 // Schedule a second transaction, if needed.
1566 if (dns_task_->needs_two_transactions())
1567 Schedule(true);
1570 void StartSecondDnsTransaction() {
1571 DCHECK(dns_task_->needs_two_transactions());
1572 dns_task_->StartSecondTransaction();
1575 // Called if DnsTask fails. It is posted from StartDnsTask, so Job may be
1576 // deleted before this callback. In this case dns_task is deleted as well,
1577 // so we use it as indicator whether Job is still valid.
1578 void OnDnsTaskFailure(const base::WeakPtr<DnsTask>& dns_task,
1579 base::TimeDelta duration,
1580 int net_error) {
1581 DNS_HISTOGRAM("AsyncDNS.ResolveFail", duration);
1583 if (dns_task == NULL)
1584 return;
1586 dns_task_error_ = net_error;
1588 // TODO(szym): Run ServeFromHosts now if nsswitch.conf says so.
1589 // http://crbug.com/117655
1591 // TODO(szym): Some net errors indicate lack of connectivity. Starting
1592 // ProcTask in that case is a waste of time.
1593 if (resolver_->fallback_to_proctask_) {
1594 KillDnsTask();
1595 StartProcTask();
1596 } else {
1597 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_FAIL);
1598 CompleteRequestsWithError(net_error);
1603 // HostResolverImpl::DnsTask::Delegate implementation:
1605 void OnDnsTaskComplete(base::TimeTicks start_time,
1606 int net_error,
1607 const AddressList& addr_list,
1608 base::TimeDelta ttl) override {
1609 DCHECK(is_dns_running());
1611 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1612 if (net_error != OK) {
1613 OnDnsTaskFailure(dns_task_->AsWeakPtr(), duration, net_error);
1614 return;
1616 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess", duration);
1617 // Log DNS lookups based on |address_family|.
1618 switch(key_.address_family) {
1619 case ADDRESS_FAMILY_IPV4:
1620 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_IPV4", duration);
1621 break;
1622 case ADDRESS_FAMILY_IPV6:
1623 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_IPV6", duration);
1624 break;
1625 case ADDRESS_FAMILY_UNSPECIFIED:
1626 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_UNSPEC", duration);
1627 break;
1630 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_DNS_SUCCESS);
1631 RecordTTL(ttl);
1633 resolver_->OnDnsTaskResolve(OK);
1635 base::TimeDelta bounded_ttl =
1636 std::max(ttl, base::TimeDelta::FromSeconds(kMinimumTTLSeconds));
1638 CompleteRequests(
1639 HostCache::Entry(net_error, MakeAddressListForRequest(addr_list), ttl),
1640 bounded_ttl);
1643 void OnFirstDnsTransactionComplete() override {
1644 DCHECK(dns_task_->needs_two_transactions());
1645 DCHECK_EQ(dns_task_->needs_another_transaction(), is_queued());
1646 // No longer need to occupy two dispatcher slots.
1647 ReduceToOneJobSlot();
1649 // We already have a job slot at the dispatcher, so if the second
1650 // transaction hasn't started, reuse it now instead of waiting in the queue
1651 // for the second slot.
1652 if (dns_task_->needs_another_transaction())
1653 dns_task_->StartSecondTransaction();
1656 // Performs Job's last rites. Completes all Requests. Deletes this.
1657 void CompleteRequests(const HostCache::Entry& entry,
1658 base::TimeDelta ttl) {
1659 CHECK(resolver_.get());
1661 // This job must be removed from resolver's |jobs_| now to make room for a
1662 // new job with the same key in case one of the OnComplete callbacks decides
1663 // to spawn one. Consequently, the job deletes itself when CompleteRequests
1664 // is done.
1665 scoped_ptr<Job> self_deleter(this);
1667 resolver_->RemoveJob(this);
1669 if (is_running()) {
1670 if (is_proc_running()) {
1671 DCHECK(!is_queued());
1672 proc_task_->Cancel();
1673 proc_task_ = NULL;
1675 KillDnsTask();
1677 // Signal dispatcher that a slot has opened.
1678 resolver_->dispatcher_->OnJobFinished();
1679 } else if (is_queued()) {
1680 resolver_->dispatcher_->Cancel(handle_);
1681 handle_.Reset();
1684 if (num_active_requests() == 0) {
1685 net_log_.AddEvent(NetLog::TYPE_CANCELLED);
1686 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1687 OK);
1688 return;
1691 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1692 entry.error);
1694 DCHECK(!requests_.empty());
1696 if (entry.error == OK) {
1697 // Record this histogram here, when we know the system has a valid DNS
1698 // configuration.
1699 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.HaveDnsConfig",
1700 resolver_->received_dns_config_);
1703 bool did_complete = (entry.error != ERR_NETWORK_CHANGED) &&
1704 (entry.error != ERR_HOST_RESOLVER_QUEUE_TOO_LARGE);
1705 if (did_complete)
1706 resolver_->CacheResult(key_, entry, ttl);
1708 // Complete all of the requests that were attached to the job.
1709 for (RequestsList::const_iterator it = requests_.begin();
1710 it != requests_.end(); ++it) {
1711 Request* req = *it;
1713 if (req->was_canceled())
1714 continue;
1716 DCHECK_EQ(this, req->job());
1717 // Update the net log and notify registered observers.
1718 LogFinishRequest(req->source_net_log(), req->info(), entry.error);
1719 if (did_complete) {
1720 // Record effective total time from creation to completion.
1721 RecordTotalTime(had_dns_config_, req->info().is_speculative(),
1722 base::TimeTicks::Now() - req->request_time());
1724 req->OnComplete(entry.error, entry.addrlist);
1726 // Check if the resolver was destroyed as a result of running the
1727 // callback. If it was, we could continue, but we choose to bail.
1728 if (!resolver_.get())
1729 return;
1733 // Convenience wrapper for CompleteRequests in case of failure.
1734 void CompleteRequestsWithError(int net_error) {
1735 CompleteRequests(HostCache::Entry(net_error, AddressList()),
1736 base::TimeDelta());
1739 RequestPriority priority() const {
1740 return priority_tracker_.highest_priority();
1743 // Number of non-canceled requests in |requests_|.
1744 size_t num_active_requests() const {
1745 return priority_tracker_.total_count();
1748 bool is_dns_running() const {
1749 return dns_task_.get() != NULL;
1752 bool is_proc_running() const {
1753 return proc_task_.get() != NULL;
1756 base::WeakPtr<HostResolverImpl> resolver_;
1758 Key key_;
1760 // Tracks the highest priority across |requests_|.
1761 PriorityTracker priority_tracker_;
1763 bool had_non_speculative_request_;
1765 // Distinguishes measurements taken while DnsClient was fully configured.
1766 bool had_dns_config_;
1768 // Number of slots occupied by this Job in resolver's PrioritizedDispatcher.
1769 unsigned num_occupied_job_slots_;
1771 // Result of DnsTask.
1772 int dns_task_error_;
1774 const base::TimeTicks creation_time_;
1775 base::TimeTicks priority_change_time_;
1777 BoundNetLog net_log_;
1779 // Resolves the host using a HostResolverProc.
1780 scoped_refptr<ProcTask> proc_task_;
1782 // Resolves the host using a DnsTransaction.
1783 scoped_ptr<DnsTask> dns_task_;
1785 // All Requests waiting for the result of this Job. Some can be canceled.
1786 RequestsList requests_;
1788 // A handle used in |HostResolverImpl::dispatcher_|.
1789 PrioritizedDispatcher::Handle handle_;
1792 //-----------------------------------------------------------------------------
1794 HostResolverImpl::ProcTaskParams::ProcTaskParams(
1795 HostResolverProc* resolver_proc,
1796 size_t max_retry_attempts)
1797 : resolver_proc(resolver_proc),
1798 max_retry_attempts(max_retry_attempts),
1799 unresponsive_delay(base::TimeDelta::FromMilliseconds(6000)),
1800 retry_factor(2) {
1801 // Maximum of 4 retry attempts for host resolution.
1802 static const size_t kDefaultMaxRetryAttempts = 4u;
1803 if (max_retry_attempts == HostResolver::kDefaultRetryAttempts)
1804 max_retry_attempts = kDefaultMaxRetryAttempts;
1807 HostResolverImpl::ProcTaskParams::~ProcTaskParams() {}
1809 HostResolverImpl::HostResolverImpl(const Options& options, NetLog* net_log)
1810 : max_queued_jobs_(0),
1811 proc_params_(NULL, options.max_retry_attempts),
1812 net_log_(net_log),
1813 default_address_family_(ADDRESS_FAMILY_UNSPECIFIED),
1814 received_dns_config_(false),
1815 num_dns_failures_(0),
1816 probe_ipv6_support_(true),
1817 use_local_ipv6_(false),
1818 resolved_known_ipv6_hostname_(false),
1819 additional_resolver_flags_(0),
1820 fallback_to_proctask_(true),
1821 weak_ptr_factory_(this),
1822 probe_weak_ptr_factory_(this) {
1823 if (options.enable_caching)
1824 cache_ = HostCache::CreateDefaultCache();
1826 PrioritizedDispatcher::Limits job_limits = options.GetDispatcherLimits();
1827 dispatcher_.reset(new PrioritizedDispatcher(job_limits));
1828 max_queued_jobs_ = job_limits.total_jobs * 100u;
1830 DCHECK_GE(dispatcher_->num_priorities(), static_cast<size_t>(NUM_PRIORITIES));
1832 #if defined(OS_WIN)
1833 EnsureWinsockInit();
1834 #endif
1835 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_ANDROID)
1836 new LoopbackProbeJob(weak_ptr_factory_.GetWeakPtr());
1837 #endif
1838 NetworkChangeNotifier::AddIPAddressObserver(this);
1839 NetworkChangeNotifier::AddDNSObserver(this);
1840 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_OPENBSD) && \
1841 !defined(OS_ANDROID)
1842 EnsureDnsReloaderInit();
1843 #endif
1846 DnsConfig dns_config;
1847 NetworkChangeNotifier::GetDnsConfig(&dns_config);
1848 received_dns_config_ = dns_config.IsValid();
1849 // Conservatively assume local IPv6 is needed when DnsConfig is not valid.
1850 use_local_ipv6_ = !dns_config.IsValid() || dns_config.use_local_ipv6;
1853 fallback_to_proctask_ = !ConfigureAsyncDnsNoFallbackFieldTrial();
1856 HostResolverImpl::~HostResolverImpl() {
1857 // Prevent the dispatcher from starting new jobs.
1858 dispatcher_->SetLimitsToZero();
1859 // It's now safe for Jobs to call KillDsnTask on destruction, because
1860 // OnJobComplete will not start any new jobs.
1861 STLDeleteValues(&jobs_);
1863 NetworkChangeNotifier::RemoveIPAddressObserver(this);
1864 NetworkChangeNotifier::RemoveDNSObserver(this);
1867 void HostResolverImpl::SetMaxQueuedJobs(size_t value) {
1868 DCHECK_EQ(0u, dispatcher_->num_queued_jobs());
1869 DCHECK_GT(value, 0u);
1870 max_queued_jobs_ = value;
1873 int HostResolverImpl::Resolve(const RequestInfo& info,
1874 RequestPriority priority,
1875 AddressList* addresses,
1876 const CompletionCallback& callback,
1877 RequestHandle* out_req,
1878 const BoundNetLog& source_net_log) {
1879 DCHECK(addresses);
1880 DCHECK(CalledOnValidThread());
1881 DCHECK_EQ(false, callback.is_null());
1883 // Check that the caller supplied a valid hostname to resolve.
1884 std::string labeled_hostname;
1885 if (!DNSDomainFromDot(info.hostname(), &labeled_hostname))
1886 return ERR_NAME_NOT_RESOLVED;
1888 LogStartRequest(source_net_log, info);
1890 IPAddressNumber ip_number;
1891 IPAddressNumber* ip_number_ptr = nullptr;
1892 if (ParseIPLiteralToNumber(info.hostname(), &ip_number))
1893 ip_number_ptr = &ip_number;
1895 // Build a key that identifies the request in the cache and in the
1896 // outstanding jobs map.
1897 Key key = GetEffectiveKeyForRequest(info, ip_number_ptr, source_net_log);
1899 int rv = ResolveHelper(key, info, ip_number_ptr, addresses, source_net_log);
1900 if (rv != ERR_DNS_CACHE_MISS) {
1901 LogFinishRequest(source_net_log, info, rv);
1902 RecordTotalTime(HaveDnsConfig(), info.is_speculative(), base::TimeDelta());
1903 return rv;
1906 // Next we need to attach our request to a "job". This job is responsible for
1907 // calling "getaddrinfo(hostname)" on a worker thread.
1909 JobMap::iterator jobit = jobs_.find(key);
1910 Job* job;
1911 if (jobit == jobs_.end()) {
1912 job =
1913 new Job(weak_ptr_factory_.GetWeakPtr(), key, priority, source_net_log);
1914 job->Schedule(false);
1916 // Check for queue overflow.
1917 if (dispatcher_->num_queued_jobs() > max_queued_jobs_) {
1918 Job* evicted = static_cast<Job*>(dispatcher_->EvictOldestLowest());
1919 DCHECK(evicted);
1920 evicted->OnEvicted(); // Deletes |evicted|.
1921 if (evicted == job) {
1922 rv = ERR_HOST_RESOLVER_QUEUE_TOO_LARGE;
1923 LogFinishRequest(source_net_log, info, rv);
1924 return rv;
1927 jobs_.insert(jobit, std::make_pair(key, job));
1928 } else {
1929 job = jobit->second;
1932 // Can't complete synchronously. Create and attach request.
1933 scoped_ptr<Request> req(new Request(
1934 source_net_log, info, priority, callback, addresses));
1935 if (out_req)
1936 *out_req = reinterpret_cast<RequestHandle>(req.get());
1938 job->AddRequest(req.Pass());
1939 // Completion happens during Job::CompleteRequests().
1940 return ERR_IO_PENDING;
1943 int HostResolverImpl::ResolveHelper(const Key& key,
1944 const RequestInfo& info,
1945 const IPAddressNumber* ip_number,
1946 AddressList* addresses,
1947 const BoundNetLog& source_net_log) {
1948 // The result of |getaddrinfo| for empty hosts is inconsistent across systems.
1949 // On Windows it gives the default interface's address, whereas on Linux it
1950 // gives an error. We will make it fail on all platforms for consistency.
1951 if (info.hostname().empty() || info.hostname().size() > kMaxHostLength)
1952 return ERR_NAME_NOT_RESOLVED;
1954 int net_error = ERR_UNEXPECTED;
1955 if (ResolveAsIP(key, info, ip_number, &net_error, addresses))
1956 return net_error;
1957 if (ServeFromCache(key, info, &net_error, addresses)) {
1958 source_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CACHE_HIT);
1959 return net_error;
1961 // TODO(szym): Do not do this if nsswitch.conf instructs not to.
1962 // http://crbug.com/117655
1963 if (ServeFromHosts(key, info, addresses)) {
1964 source_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_HOSTS_HIT);
1965 return OK;
1967 return ERR_DNS_CACHE_MISS;
1970 int HostResolverImpl::ResolveFromCache(const RequestInfo& info,
1971 AddressList* addresses,
1972 const BoundNetLog& source_net_log) {
1973 DCHECK(CalledOnValidThread());
1974 DCHECK(addresses);
1976 // Update the net log and notify registered observers.
1977 LogStartRequest(source_net_log, info);
1979 IPAddressNumber ip_number;
1980 IPAddressNumber* ip_number_ptr = nullptr;
1981 if (ParseIPLiteralToNumber(info.hostname(), &ip_number))
1982 ip_number_ptr = &ip_number;
1984 Key key = GetEffectiveKeyForRequest(info, ip_number_ptr, source_net_log);
1986 int rv = ResolveHelper(key, info, ip_number_ptr, addresses, source_net_log);
1987 LogFinishRequest(source_net_log, info, rv);
1988 return rv;
1991 void HostResolverImpl::CancelRequest(RequestHandle req_handle) {
1992 DCHECK(CalledOnValidThread());
1993 Request* req = reinterpret_cast<Request*>(req_handle);
1994 DCHECK(req);
1995 Job* job = req->job();
1996 DCHECK(job);
1997 job->CancelRequest(req);
2000 void HostResolverImpl::SetDefaultAddressFamily(AddressFamily address_family) {
2001 DCHECK(CalledOnValidThread());
2002 default_address_family_ = address_family;
2003 probe_ipv6_support_ = false;
2006 AddressFamily HostResolverImpl::GetDefaultAddressFamily() const {
2007 return default_address_family_;
2010 void HostResolverImpl::SetDnsClientEnabled(bool enabled) {
2011 DCHECK(CalledOnValidThread());
2012 #if defined(ENABLE_BUILT_IN_DNS)
2013 if (enabled && !dns_client_) {
2014 SetDnsClient(DnsClient::CreateClient(net_log_));
2015 } else if (!enabled && dns_client_) {
2016 SetDnsClient(scoped_ptr<DnsClient>());
2018 #endif
2021 HostCache* HostResolverImpl::GetHostCache() {
2022 return cache_.get();
2025 base::Value* HostResolverImpl::GetDnsConfigAsValue() const {
2026 // Check if async DNS is disabled.
2027 if (!dns_client_.get())
2028 return NULL;
2030 // Check if async DNS is enabled, but we currently have no configuration
2031 // for it.
2032 const DnsConfig* dns_config = dns_client_->GetConfig();
2033 if (dns_config == NULL)
2034 return new base::DictionaryValue();
2036 return dns_config->ToValue();
2039 bool HostResolverImpl::ResolveAsIP(const Key& key,
2040 const RequestInfo& info,
2041 const IPAddressNumber* ip_number,
2042 int* net_error,
2043 AddressList* addresses) {
2044 DCHECK(addresses);
2045 DCHECK(net_error);
2046 if (ip_number == nullptr)
2047 return false;
2049 DCHECK_EQ(key.host_resolver_flags &
2050 ~(HOST_RESOLVER_CANONNAME | HOST_RESOLVER_LOOPBACK_ONLY |
2051 HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6),
2052 0) << " Unhandled flag";
2054 *net_error = OK;
2055 AddressFamily family = GetAddressFamily(*ip_number);
2056 if (family == ADDRESS_FAMILY_IPV6 &&
2057 !probe_ipv6_support_ &&
2058 default_address_family_ == ADDRESS_FAMILY_IPV4) {
2059 // Don't return IPv6 addresses if default address family is set to IPv4,
2060 // and probes are disabled.
2061 *net_error = ERR_NAME_NOT_RESOLVED;
2062 } else if (key.address_family != ADDRESS_FAMILY_UNSPECIFIED &&
2063 key.address_family != family) {
2064 // Don't return IPv6 addresses for IPv4 queries, and vice versa.
2065 *net_error = ERR_NAME_NOT_RESOLVED;
2066 } else {
2067 *addresses = AddressList::CreateFromIPAddress(*ip_number, info.port());
2068 if (key.host_resolver_flags & HOST_RESOLVER_CANONNAME)
2069 addresses->SetDefaultCanonicalName();
2071 return true;
2074 bool HostResolverImpl::ServeFromCache(const Key& key,
2075 const RequestInfo& info,
2076 int* net_error,
2077 AddressList* addresses) {
2078 DCHECK(addresses);
2079 DCHECK(net_error);
2080 if (!info.allow_cached_response() || !cache_.get())
2081 return false;
2083 const HostCache::Entry* cache_entry = cache_->Lookup(
2084 key, base::TimeTicks::Now());
2085 if (!cache_entry)
2086 return false;
2088 *net_error = cache_entry->error;
2089 if (*net_error == OK) {
2090 if (cache_entry->has_ttl())
2091 RecordTTL(cache_entry->ttl);
2092 *addresses = EnsurePortOnAddressList(cache_entry->addrlist, info.port());
2094 return true;
2097 bool HostResolverImpl::ServeFromHosts(const Key& key,
2098 const RequestInfo& info,
2099 AddressList* addresses) {
2100 DCHECK(addresses);
2101 if (!HaveDnsConfig())
2102 return false;
2103 addresses->clear();
2105 // HOSTS lookups are case-insensitive.
2106 std::string hostname = base::StringToLowerASCII(key.hostname);
2108 const DnsHosts& hosts = dns_client_->GetConfig()->hosts;
2110 // If |address_family| is ADDRESS_FAMILY_UNSPECIFIED other implementations
2111 // (glibc and c-ares) return the first matching line. We have more
2112 // flexibility, but lose implicit ordering.
2113 // We prefer IPv6 because "happy eyeballs" will fall back to IPv4 if
2114 // necessary.
2115 if (key.address_family == ADDRESS_FAMILY_IPV6 ||
2116 key.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
2117 DnsHosts::const_iterator it = hosts.find(
2118 DnsHostsKey(hostname, ADDRESS_FAMILY_IPV6));
2119 if (it != hosts.end())
2120 addresses->push_back(IPEndPoint(it->second, info.port()));
2123 if (key.address_family == ADDRESS_FAMILY_IPV4 ||
2124 key.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
2125 DnsHosts::const_iterator it = hosts.find(
2126 DnsHostsKey(hostname, ADDRESS_FAMILY_IPV4));
2127 if (it != hosts.end())
2128 addresses->push_back(IPEndPoint(it->second, info.port()));
2131 // If got only loopback addresses and the family was restricted, resolve
2132 // again, without restrictions. See SystemHostResolverCall for rationale.
2133 if ((key.host_resolver_flags &
2134 HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6) &&
2135 IsAllIPv4Loopback(*addresses)) {
2136 Key new_key(key);
2137 new_key.address_family = ADDRESS_FAMILY_UNSPECIFIED;
2138 new_key.host_resolver_flags &=
2139 ~HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
2140 return ServeFromHosts(new_key, info, addresses);
2142 return !addresses->empty();
2145 void HostResolverImpl::CacheResult(const Key& key,
2146 const HostCache::Entry& entry,
2147 base::TimeDelta ttl) {
2148 if (cache_.get())
2149 cache_->Set(key, entry, base::TimeTicks::Now(), ttl);
2152 void HostResolverImpl::RemoveJob(Job* job) {
2153 DCHECK(job);
2154 JobMap::iterator it = jobs_.find(job->key());
2155 if (it != jobs_.end() && it->second == job)
2156 jobs_.erase(it);
2159 void HostResolverImpl::SetHaveOnlyLoopbackAddresses(bool result) {
2160 if (result) {
2161 additional_resolver_flags_ |= HOST_RESOLVER_LOOPBACK_ONLY;
2162 } else {
2163 additional_resolver_flags_ &= ~HOST_RESOLVER_LOOPBACK_ONLY;
2167 HostResolverImpl::Key HostResolverImpl::GetEffectiveKeyForRequest(
2168 const RequestInfo& info,
2169 const IPAddressNumber* ip_number,
2170 const BoundNetLog& net_log) const {
2171 HostResolverFlags effective_flags =
2172 info.host_resolver_flags() | additional_resolver_flags_;
2173 AddressFamily effective_address_family = info.address_family();
2175 if (info.address_family() == ADDRESS_FAMILY_UNSPECIFIED) {
2176 if (probe_ipv6_support_ && !use_local_ipv6_ &&
2177 // When resolving IPv4 literals, there's no need to probe for IPv6.
2178 // When resolving IPv6 literals, there's no benefit to artificially
2179 // limiting our resolution based on a probe. Prior logic ensures
2180 // that this query is UNSPECIFIED (see info.address_family()
2181 // check above) and that |default_address_family_| is UNSPECIFIED
2182 // (|prove_ipv6_support_| is false if |default_address_family_| is
2183 // set) so the code requesting the resolution should be amenable to
2184 // receiving a IPv6 resolution.
2185 ip_number == nullptr) {
2186 // Google DNS address.
2187 const uint8 kIPv6Address[] =
2188 { 0x20, 0x01, 0x48, 0x60, 0x48, 0x60, 0x00, 0x00,
2189 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x88, 0x88 };
2190 IPAddressNumber address(kIPv6Address,
2191 kIPv6Address + arraysize(kIPv6Address));
2192 bool rv6 = IsGloballyReachable(address, net_log);
2193 net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_IPV6_REACHABILITY_CHECK,
2194 NetLog::BoolCallback("ipv6_available", rv6));
2195 if (!rv6) {
2196 effective_address_family = ADDRESS_FAMILY_IPV4;
2197 effective_flags |= HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
2199 } else {
2200 effective_address_family = default_address_family_;
2204 std::string hostname = info.hostname();
2205 // Redirect .localhost queries to "localhost." to make sure that they
2206 // are never sent out on the network, per RFC 6761.
2207 if (IsLocalhostTLD(info.hostname()))
2208 hostname = kLocalhost;
2210 return Key(hostname, effective_address_family, effective_flags);
2213 void HostResolverImpl::AbortAllInProgressJobs() {
2214 // In Abort, a Request callback could spawn new Jobs with matching keys, so
2215 // first collect and remove all running jobs from |jobs_|.
2216 ScopedVector<Job> jobs_to_abort;
2217 for (JobMap::iterator it = jobs_.begin(); it != jobs_.end(); ) {
2218 Job* job = it->second;
2219 if (job->is_running()) {
2220 jobs_to_abort.push_back(job);
2221 jobs_.erase(it++);
2222 } else {
2223 DCHECK(job->is_queued());
2224 ++it;
2228 // Pause the dispatcher so it won't start any new dispatcher jobs while
2229 // aborting the old ones. This is needed so that it won't start the second
2230 // DnsTransaction for a job in |jobs_to_abort| if the DnsConfig just became
2231 // invalid.
2232 PrioritizedDispatcher::Limits limits = dispatcher_->GetLimits();
2233 dispatcher_->SetLimits(
2234 PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
2236 // Life check to bail once |this| is deleted.
2237 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2239 // Then Abort them.
2240 for (size_t i = 0; self.get() && i < jobs_to_abort.size(); ++i) {
2241 jobs_to_abort[i]->Abort();
2242 jobs_to_abort[i] = NULL;
2245 if (self)
2246 dispatcher_->SetLimits(limits);
2249 void HostResolverImpl::AbortDnsTasks() {
2250 // Pause the dispatcher so it won't start any new dispatcher jobs while
2251 // aborting the old ones. This is needed so that it won't start the second
2252 // DnsTransaction for a job if the DnsConfig just changed.
2253 PrioritizedDispatcher::Limits limits = dispatcher_->GetLimits();
2254 dispatcher_->SetLimits(
2255 PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
2257 for (JobMap::iterator it = jobs_.begin(); it != jobs_.end(); ++it)
2258 it->second->AbortDnsTask();
2259 dispatcher_->SetLimits(limits);
2262 void HostResolverImpl::TryServingAllJobsFromHosts() {
2263 if (!HaveDnsConfig())
2264 return;
2266 // TODO(szym): Do not do this if nsswitch.conf instructs not to.
2267 // http://crbug.com/117655
2269 // Life check to bail once |this| is deleted.
2270 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2272 for (JobMap::iterator it = jobs_.begin(); self.get() && it != jobs_.end();) {
2273 Job* job = it->second;
2274 ++it;
2275 // This could remove |job| from |jobs_|, but iterator will remain valid.
2276 job->ServeFromHosts();
2280 void HostResolverImpl::OnIPAddressChanged() {
2281 resolved_known_ipv6_hostname_ = false;
2282 // Abandon all ProbeJobs.
2283 probe_weak_ptr_factory_.InvalidateWeakPtrs();
2284 if (cache_.get())
2285 cache_->clear();
2286 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_ANDROID)
2287 new LoopbackProbeJob(probe_weak_ptr_factory_.GetWeakPtr());
2288 #endif
2289 AbortAllInProgressJobs();
2290 // |this| may be deleted inside AbortAllInProgressJobs().
2293 void HostResolverImpl::OnInitialDNSConfigRead() {
2294 UpdateDNSConfig(false);
2297 void HostResolverImpl::OnDNSChanged() {
2298 UpdateDNSConfig(true);
2301 void HostResolverImpl::UpdateDNSConfig(bool config_changed) {
2302 DnsConfig dns_config;
2303 NetworkChangeNotifier::GetDnsConfig(&dns_config);
2305 if (net_log_) {
2306 net_log_->AddGlobalEntry(
2307 NetLog::TYPE_DNS_CONFIG_CHANGED,
2308 base::Bind(&NetLogDnsConfigCallback, &dns_config));
2311 // TODO(szym): Remove once http://crbug.com/137914 is resolved.
2312 received_dns_config_ = dns_config.IsValid();
2313 // Conservatively assume local IPv6 is needed when DnsConfig is not valid.
2314 use_local_ipv6_ = !dns_config.IsValid() || dns_config.use_local_ipv6;
2316 num_dns_failures_ = 0;
2318 // We want a new DnsSession in place, before we Abort running Jobs, so that
2319 // the newly started jobs use the new config.
2320 if (dns_client_.get()) {
2321 dns_client_->SetConfig(dns_config);
2322 if (dns_client_->GetConfig()) {
2323 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", true);
2324 // If we just switched DnsClients, restart jobs using new resolver.
2325 // TODO(pauljensen): Is this necessary?
2326 config_changed = true;
2330 if (config_changed) {
2331 // If the DNS server has changed, existing cached info could be wrong so we
2332 // have to drop our internal cache :( Note that OS level DNS caches, such
2333 // as NSCD's cache should be dropped automatically by the OS when
2334 // resolv.conf changes so we don't need to do anything to clear that cache.
2335 if (cache_.get())
2336 cache_->clear();
2338 // Life check to bail once |this| is deleted.
2339 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2341 // Existing jobs will have been sent to the original server so they need to
2342 // be aborted.
2343 AbortAllInProgressJobs();
2345 // |this| may be deleted inside AbortAllInProgressJobs().
2346 if (self.get())
2347 TryServingAllJobsFromHosts();
2351 bool HostResolverImpl::HaveDnsConfig() const {
2352 // Use DnsClient only if it's fully configured and there is no override by
2353 // ScopedDefaultHostResolverProc.
2354 // The alternative is to use NetworkChangeNotifier to override DnsConfig,
2355 // but that would introduce construction order requirements for NCN and SDHRP.
2356 return (dns_client_.get() != NULL) && (dns_client_->GetConfig() != NULL) &&
2357 !(proc_params_.resolver_proc.get() == NULL &&
2358 HostResolverProc::GetDefault() != NULL);
2361 void HostResolverImpl::OnDnsTaskResolve(int net_error) {
2362 DCHECK(dns_client_);
2363 if (net_error == OK) {
2364 num_dns_failures_ = 0;
2365 return;
2367 ++num_dns_failures_;
2368 if (num_dns_failures_ < kMaximumDnsFailures)
2369 return;
2371 // Disable DnsClient until the next DNS change. Must be done before aborting
2372 // DnsTasks, since doing so may start new jobs.
2373 dns_client_->SetConfig(DnsConfig());
2375 // Switch jobs with active DnsTasks over to using ProcTasks.
2376 AbortDnsTasks();
2378 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", false);
2379 UMA_HISTOGRAM_CUSTOM_ENUMERATION("AsyncDNS.DnsClientDisabledReason",
2380 std::abs(net_error),
2381 GetAllErrorCodesForUma());
2384 void HostResolverImpl::SetDnsClient(scoped_ptr<DnsClient> dns_client) {
2385 // DnsClient and config must be updated before aborting DnsTasks, since doing
2386 // so may start new jobs.
2387 dns_client_ = dns_client.Pass();
2388 if (dns_client_ && !dns_client_->GetConfig() &&
2389 num_dns_failures_ < kMaximumDnsFailures) {
2390 DnsConfig dns_config;
2391 NetworkChangeNotifier::GetDnsConfig(&dns_config);
2392 dns_client_->SetConfig(dns_config);
2393 num_dns_failures_ = 0;
2394 if (dns_client_->GetConfig())
2395 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", true);
2398 AbortDnsTasks();
2401 } // namespace net