Enable swapping a frame back in to its parent process
[chromium-blink-merge.git] / media / base / sinc_resampler.cc
blob280cd68eb19cad6643f6eccb85e13168024e0b02
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 //
5 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
6 // and r4_ will move after the first load):
7 //
8 // |----------------|-----------------------------------------|----------------|
9 //
10 // request_frames_
11 // <--------------------------------------------------------->
12 // r0_ (during first load)
14 // kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2
15 // <---------------> <---------------> <---------------> <--------------->
16 // r1_ r2_ r3_ r4_
18 // block_size_ == r4_ - r2_
19 // <--------------------------------------->
21 // request_frames_
22 // <------------------ ... ----------------->
23 // r0_ (during second load)
25 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
26 // and block_size_ are reinitialized via step (3) in the algorithm below.
28 // These new regions remain constant until a Flush() occurs. While complicated,
29 // this allows us to reduce jitter by always requesting the same amount from the
30 // provided callback.
32 // The algorithm:
34 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
35 // there's enough room to read request_frames_ from the callback into region
36 // r0_ (which will move between the first and subsequent passes).
38 // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
40 // r0_ = input_buffer_ + kKernelSize / 2
41 // r1_ = input_buffer_
42 // r2_ = r0_
44 // r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in
45 // size. r1_ must be zero initialized to avoid convolution with garbage (see
46 // step (5) for why).
48 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
49 // r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
51 // r3_ = r0_ + request_frames_ - kKernelSize
52 // r4_ = r0_ + request_frames_ - kKernelSize / 2
53 // block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
55 // 4) Consume request_frames_ frames into r0_.
57 // 5) Position kernel centered at start of r2_ and generate output frames until
58 // the kernel is centered at the start of r4_ or we've finished generating
59 // all the output frames.
61 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
63 // 7) If we're on the second load, in order to avoid overwriting the frames we
64 // just wrapped from r4_ we need to slide r0_ to the right by the size of
65 // r4_, which is kKernelSize / 2:
67 // r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
69 // r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
71 // 8) Else, if we're not on the second load, goto (4).
73 // Note: we're glossing over how the sub-sample handling works with
74 // |virtual_source_idx_|, etc.
76 // MSVC++ requires this to be set before any other includes to get M_PI.
77 #define _USE_MATH_DEFINES
79 #include "media/base/sinc_resampler.h"
81 #include <cmath>
82 #include <limits>
84 #include "base/logging.h"
86 #if defined(ARCH_CPU_X86_FAMILY)
87 #include <xmmintrin.h>
88 #define CONVOLVE_FUNC Convolve_SSE
89 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
90 #include <arm_neon.h>
91 #define CONVOLVE_FUNC Convolve_NEON
92 #else
93 #define CONVOLVE_FUNC Convolve_C
94 #endif
96 namespace media {
98 static double SincScaleFactor(double io_ratio) {
99 // |sinc_scale_factor| is basically the normalized cutoff frequency of the
100 // low-pass filter.
101 double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
103 // The sinc function is an idealized brick-wall filter, but since we're
104 // windowing it the transition from pass to stop does not happen right away.
105 // So we should adjust the low pass filter cutoff slightly downward to avoid
106 // some aliasing at the very high-end.
107 // TODO(crogers): this value is empirical and to be more exact should vary
108 // depending on kKernelSize.
109 sinc_scale_factor *= 0.9;
111 return sinc_scale_factor;
114 SincResampler::SincResampler(double io_sample_rate_ratio,
115 int request_frames,
116 const ReadCB& read_cb)
117 : io_sample_rate_ratio_(io_sample_rate_ratio),
118 read_cb_(read_cb),
119 request_frames_(request_frames),
120 input_buffer_size_(request_frames_ + kKernelSize),
121 // Create input buffers with a 16-byte alignment for SSE optimizations.
122 kernel_storage_(static_cast<float*>(
123 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
124 kernel_pre_sinc_storage_(static_cast<float*>(
125 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
126 kernel_window_storage_(static_cast<float*>(
127 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
128 input_buffer_(static_cast<float*>(
129 base::AlignedAlloc(sizeof(float) * input_buffer_size_, 16))),
130 r1_(input_buffer_.get()),
131 r2_(input_buffer_.get() + kKernelSize / 2) {
132 CHECK_GT(request_frames_, 0);
133 Flush();
134 CHECK_GT(block_size_, kKernelSize)
135 << "block_size must be greater than kKernelSize!";
137 memset(kernel_storage_.get(), 0,
138 sizeof(*kernel_storage_.get()) * kKernelStorageSize);
139 memset(kernel_pre_sinc_storage_.get(), 0,
140 sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
141 memset(kernel_window_storage_.get(), 0,
142 sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
144 InitializeKernel();
147 SincResampler::~SincResampler() {}
149 void SincResampler::UpdateRegions(bool second_load) {
150 // Setup various region pointers in the buffer (see diagram above). If we're
151 // on the second load we need to slide r0_ to the right by kKernelSize / 2.
152 r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
153 r3_ = r0_ + request_frames_ - kKernelSize;
154 r4_ = r0_ + request_frames_ - kKernelSize / 2;
155 block_size_ = r4_ - r2_;
157 // r1_ at the beginning of the buffer.
158 CHECK_EQ(r1_, input_buffer_.get());
159 // r1_ left of r2_, r4_ left of r3_ and size correct.
160 CHECK_EQ(r2_ - r1_, r4_ - r3_);
161 // r2_ left of r3.
162 CHECK_LT(r2_, r3_);
165 void SincResampler::InitializeKernel() {
166 // Blackman window parameters.
167 static const double kAlpha = 0.16;
168 static const double kA0 = 0.5 * (1.0 - kAlpha);
169 static const double kA1 = 0.5;
170 static const double kA2 = 0.5 * kAlpha;
172 // Generates a set of windowed sinc() kernels.
173 // We generate a range of sub-sample offsets from 0.0 to 1.0.
174 const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
175 for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
176 const float subsample_offset =
177 static_cast<float>(offset_idx) / kKernelOffsetCount;
179 for (int i = 0; i < kKernelSize; ++i) {
180 const int idx = i + offset_idx * kKernelSize;
181 const float pre_sinc =
182 static_cast<float>(M_PI * (i - kKernelSize / 2 - subsample_offset));
183 kernel_pre_sinc_storage_[idx] = pre_sinc;
185 // Compute Blackman window, matching the offset of the sinc().
186 const float x = (i - subsample_offset) / kKernelSize;
187 const float window = static_cast<float>(kA0 - kA1 * cos(2.0 * M_PI * x) +
188 kA2 * cos(4.0 * M_PI * x));
189 kernel_window_storage_[idx] = window;
191 // Compute the sinc with offset, then window the sinc() function and store
192 // at the correct offset.
193 kernel_storage_[idx] = static_cast<float>(window *
194 ((pre_sinc == 0) ?
195 sinc_scale_factor :
196 (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
201 void SincResampler::SetRatio(double io_sample_rate_ratio) {
202 if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
203 std::numeric_limits<double>::epsilon()) {
204 return;
207 io_sample_rate_ratio_ = io_sample_rate_ratio;
209 // Optimize reinitialization by reusing values which are independent of
210 // |sinc_scale_factor|. Provides a 3x speedup.
211 const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
212 for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
213 for (int i = 0; i < kKernelSize; ++i) {
214 const int idx = i + offset_idx * kKernelSize;
215 const float window = kernel_window_storage_[idx];
216 const float pre_sinc = kernel_pre_sinc_storage_[idx];
218 kernel_storage_[idx] = static_cast<float>(window *
219 ((pre_sinc == 0) ?
220 sinc_scale_factor :
221 (sin(sinc_scale_factor * pre_sinc) / pre_sinc)));
226 void SincResampler::Resample(int frames, float* destination) {
227 int remaining_frames = frames;
229 // Step (1) -- Prime the input buffer at the start of the input stream.
230 if (!buffer_primed_ && remaining_frames) {
231 read_cb_.Run(request_frames_, r0_);
232 buffer_primed_ = true;
235 // Step (2) -- Resample! const what we can outside of the loop for speed. It
236 // actually has an impact on ARM performance. See inner loop comment below.
237 const double current_io_ratio = io_sample_rate_ratio_;
238 const float* const kernel_ptr = kernel_storage_.get();
239 while (remaining_frames) {
240 // Note: The loop construct here can severely impact performance on ARM
241 // or when built with clang. See https://codereview.chromium.org/18566009/
242 int source_idx = static_cast<int>(virtual_source_idx_);
243 while (source_idx < block_size_) {
244 // |virtual_source_idx_| lies in between two kernel offsets so figure out
245 // what they are.
246 const double subsample_remainder = virtual_source_idx_ - source_idx;
248 const double virtual_offset_idx =
249 subsample_remainder * kKernelOffsetCount;
250 const int offset_idx = static_cast<int>(virtual_offset_idx);
252 // We'll compute "convolutions" for the two kernels which straddle
253 // |virtual_source_idx_|.
254 const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
255 const float* const k2 = k1 + kKernelSize;
257 // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage. Should always be
258 // true so long as kKernelSize is a multiple of 16.
259 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1) & 0x0F);
260 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2) & 0x0F);
262 // Initialize input pointer based on quantized |virtual_source_idx_|.
263 const float* const input_ptr = r1_ + source_idx;
265 // Figure out how much to weight each kernel's "convolution".
266 const double kernel_interpolation_factor =
267 virtual_offset_idx - offset_idx;
268 *destination++ = CONVOLVE_FUNC(
269 input_ptr, k1, k2, kernel_interpolation_factor);
271 // Advance the virtual index.
272 virtual_source_idx_ += current_io_ratio;
273 source_idx = static_cast<int>(virtual_source_idx_);
275 if (!--remaining_frames)
276 return;
279 // Wrap back around to the start.
280 DCHECK_GE(virtual_source_idx_, block_size_);
281 virtual_source_idx_ -= block_size_;
283 // Step (3) -- Copy r3_, r4_ to r1_, r2_.
284 // This wraps the last input frames back to the start of the buffer.
285 memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
287 // Step (4) -- Reinitialize regions if necessary.
288 if (r0_ == r2_)
289 UpdateRegions(true);
291 // Step (5) -- Refresh the buffer with more input.
292 read_cb_.Run(request_frames_, r0_);
296 int SincResampler::ChunkSize() const {
297 return static_cast<int>(block_size_ / io_sample_rate_ratio_);
300 void SincResampler::Flush() {
301 virtual_source_idx_ = 0;
302 buffer_primed_ = false;
303 memset(input_buffer_.get(), 0,
304 sizeof(*input_buffer_.get()) * input_buffer_size_);
305 UpdateRegions(false);
308 float SincResampler::Convolve_C(const float* input_ptr, const float* k1,
309 const float* k2,
310 double kernel_interpolation_factor) {
311 float sum1 = 0;
312 float sum2 = 0;
314 // Generate a single output sample. Unrolling this loop hurt performance in
315 // local testing.
316 int n = kKernelSize;
317 while (n--) {
318 sum1 += *input_ptr * *k1++;
319 sum2 += *input_ptr++ * *k2++;
322 // Linearly interpolate the two "convolutions".
323 return static_cast<float>((1.0 - kernel_interpolation_factor) * sum1 +
324 kernel_interpolation_factor * sum2);
327 #if defined(ARCH_CPU_X86_FAMILY)
328 float SincResampler::Convolve_SSE(const float* input_ptr, const float* k1,
329 const float* k2,
330 double kernel_interpolation_factor) {
331 __m128 m_input;
332 __m128 m_sums1 = _mm_setzero_ps();
333 __m128 m_sums2 = _mm_setzero_ps();
335 // Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
336 // these loops hurt performance in local testing.
337 if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
338 for (int i = 0; i < kKernelSize; i += 4) {
339 m_input = _mm_loadu_ps(input_ptr + i);
340 m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
341 m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
343 } else {
344 for (int i = 0; i < kKernelSize; i += 4) {
345 m_input = _mm_load_ps(input_ptr + i);
346 m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
347 m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
351 // Linearly interpolate the two "convolutions".
352 m_sums1 = _mm_mul_ps(m_sums1, _mm_set_ps1(
353 static_cast<float>(1.0 - kernel_interpolation_factor)));
354 m_sums2 = _mm_mul_ps(m_sums2, _mm_set_ps1(
355 static_cast<float>(kernel_interpolation_factor)));
356 m_sums1 = _mm_add_ps(m_sums1, m_sums2);
358 // Sum components together.
359 float result;
360 m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1);
361 _mm_store_ss(&result, _mm_add_ss(m_sums2, _mm_shuffle_ps(
362 m_sums2, m_sums2, 1)));
364 return result;
366 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
367 float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1,
368 const float* k2,
369 double kernel_interpolation_factor) {
370 float32x4_t m_input;
371 float32x4_t m_sums1 = vmovq_n_f32(0);
372 float32x4_t m_sums2 = vmovq_n_f32(0);
374 const float* upper = input_ptr + kKernelSize;
375 for (; input_ptr < upper; ) {
376 m_input = vld1q_f32(input_ptr);
377 input_ptr += 4;
378 m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1));
379 k1 += 4;
380 m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2));
381 k2 += 4;
384 // Linearly interpolate the two "convolutions".
385 m_sums1 = vmlaq_f32(
386 vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)),
387 m_sums2, vmovq_n_f32(kernel_interpolation_factor));
389 // Sum components together.
390 float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1));
391 return vget_lane_f32(vpadd_f32(m_half, m_half), 0);
393 #endif
395 } // namespace media