Clean-up: Removes gfx::FontList::GetStringWidth(text).
[chromium-blink-merge.git] / media / base / sinc_resampler.cc
blob82168dbc64adf0155986d24392b050903c9b5e59
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 //
5 // Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
6 // and r4_ will move after the first load):
7 //
8 // |----------------|-----------------------------------------|----------------|
9 //
10 // request_frames_
11 // <--------------------------------------------------------->
12 // r0_ (during first load)
14 // kKernelSize / 2 kKernelSize / 2 kKernelSize / 2 kKernelSize / 2
15 // <---------------> <---------------> <---------------> <--------------->
16 // r1_ r2_ r3_ r4_
18 // block_size_ == r4_ - r2_
19 // <--------------------------------------->
21 // request_frames_
22 // <------------------ ... ----------------->
23 // r0_ (during second load)
25 // On the second request r0_ slides to the right by kKernelSize / 2 and r3_, r4_
26 // and block_size_ are reinitialized via step (3) in the algorithm below.
28 // These new regions remain constant until a Flush() occurs. While complicated,
29 // this allows us to reduce jitter by always requesting the same amount from the
30 // provided callback.
32 // The algorithm:
34 // 1) Allocate input_buffer of size: request_frames_ + kKernelSize; this ensures
35 // there's enough room to read request_frames_ from the callback into region
36 // r0_ (which will move between the first and subsequent passes).
38 // 2) Let r1_, r2_ each represent half the kernel centered around r0_:
40 // r0_ = input_buffer_ + kKernelSize / 2
41 // r1_ = input_buffer_
42 // r2_ = r0_
44 // r0_ is always request_frames_ in size. r1_, r2_ are kKernelSize / 2 in
45 // size. r1_ must be zero initialized to avoid convolution with garbage (see
46 // step (5) for why).
48 // 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
49 // r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
51 // r3_ = r0_ + request_frames_ - kKernelSize
52 // r4_ = r0_ + request_frames_ - kKernelSize / 2
53 // block_size_ = r4_ - r2_ = request_frames_ - kKernelSize / 2
55 // 4) Consume request_frames_ frames into r0_.
57 // 5) Position kernel centered at start of r2_ and generate output frames until
58 // the kernel is centered at the start of r4_ or we've finished generating
59 // all the output frames.
61 // 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
63 // 7) If we're on the second load, in order to avoid overwriting the frames we
64 // just wrapped from r4_ we need to slide r0_ to the right by the size of
65 // r4_, which is kKernelSize / 2:
67 // r0_ = r0_ + kKernelSize / 2 = input_buffer_ + kKernelSize
69 // r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
71 // 8) Else, if we're not on the second load, goto (4).
73 // Note: we're glossing over how the sub-sample handling works with
74 // |virtual_source_idx_|, etc.
76 // MSVC++ requires this to be set before any other includes to get M_PI.
77 #define _USE_MATH_DEFINES
79 #include "media/base/sinc_resampler.h"
81 #include <cmath>
82 #include <limits>
84 #include "base/cpu.h"
85 #include "base/logging.h"
87 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
88 #include <arm_neon.h>
89 #endif
91 namespace media {
93 static double SincScaleFactor(double io_ratio) {
94 // |sinc_scale_factor| is basically the normalized cutoff frequency of the
95 // low-pass filter.
96 double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
98 // The sinc function is an idealized brick-wall filter, but since we're
99 // windowing it the transition from pass to stop does not happen right away.
100 // So we should adjust the low pass filter cutoff slightly downward to avoid
101 // some aliasing at the very high-end.
102 // TODO(crogers): this value is empirical and to be more exact should vary
103 // depending on kKernelSize.
104 sinc_scale_factor *= 0.9;
106 return sinc_scale_factor;
109 // If we know the minimum architecture at compile time, avoid CPU detection.
110 // Force NaCl code to use C routines since (at present) nothing there uses these
111 // methods and plumbing the -msse built library is non-trivial.
112 #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
113 #if defined(__SSE__)
114 #define CONVOLVE_FUNC Convolve_SSE
115 void SincResampler::InitializeCPUSpecificFeatures() {}
116 #else
117 // X86 CPU detection required. Functions will be set by
118 // InitializeCPUSpecificFeatures().
119 // TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
120 #define CONVOLVE_FUNC g_convolve_proc_
122 typedef float (*ConvolveProc)(const float*, const float*, const float*, double);
123 static ConvolveProc g_convolve_proc_ = NULL;
125 void SincResampler::InitializeCPUSpecificFeatures() {
126 CHECK(!g_convolve_proc_);
127 g_convolve_proc_ = base::CPU().has_sse() ? Convolve_SSE : Convolve_C;
129 #endif
130 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
131 #define CONVOLVE_FUNC Convolve_NEON
132 void SincResampler::InitializeCPUSpecificFeatures() {}
133 #else
134 // Unknown architecture.
135 #define CONVOLVE_FUNC Convolve_C
136 void SincResampler::InitializeCPUSpecificFeatures() {}
137 #endif
139 SincResampler::SincResampler(double io_sample_rate_ratio,
140 int request_frames,
141 const ReadCB& read_cb)
142 : io_sample_rate_ratio_(io_sample_rate_ratio),
143 read_cb_(read_cb),
144 request_frames_(request_frames),
145 input_buffer_size_(request_frames_ + kKernelSize),
146 // Create input buffers with a 16-byte alignment for SSE optimizations.
147 kernel_storage_(static_cast<float*>(
148 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
149 kernel_pre_sinc_storage_(static_cast<float*>(
150 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
151 kernel_window_storage_(static_cast<float*>(
152 base::AlignedAlloc(sizeof(float) * kKernelStorageSize, 16))),
153 input_buffer_(static_cast<float*>(
154 base::AlignedAlloc(sizeof(float) * input_buffer_size_, 16))),
155 r1_(input_buffer_.get()),
156 r2_(input_buffer_.get() + kKernelSize / 2),
157 currently_resampling_(0) {
158 CHECK_GT(request_frames_, 0);
159 Flush();
160 CHECK_GT(block_size_, kKernelSize)
161 << "block_size must be greater than kKernelSize!";
163 memset(kernel_storage_.get(), 0,
164 sizeof(*kernel_storage_.get()) * kKernelStorageSize);
165 memset(kernel_pre_sinc_storage_.get(), 0,
166 sizeof(*kernel_pre_sinc_storage_.get()) * kKernelStorageSize);
167 memset(kernel_window_storage_.get(), 0,
168 sizeof(*kernel_window_storage_.get()) * kKernelStorageSize);
170 InitializeKernel();
173 SincResampler::~SincResampler() {
174 // TODO(dalecurtis): Remove debugging for http://crbug.com/295278
175 CHECK(base::AtomicRefCountIsZero(&currently_resampling_));
178 void SincResampler::UpdateRegions(bool second_load) {
179 // Setup various region pointers in the buffer (see diagram above). If we're
180 // on the second load we need to slide r0_ to the right by kKernelSize / 2.
181 r0_ = input_buffer_.get() + (second_load ? kKernelSize : kKernelSize / 2);
182 r3_ = r0_ + request_frames_ - kKernelSize;
183 r4_ = r0_ + request_frames_ - kKernelSize / 2;
184 block_size_ = r4_ - r2_;
186 // r1_ at the beginning of the buffer.
187 CHECK_EQ(r1_, input_buffer_.get());
188 // r1_ left of r2_, r4_ left of r3_ and size correct.
189 CHECK_EQ(r2_ - r1_, r4_ - r3_);
190 // r2_ left of r3.
191 CHECK_LT(r2_, r3_);
194 void SincResampler::InitializeKernel() {
195 // Blackman window parameters.
196 static const double kAlpha = 0.16;
197 static const double kA0 = 0.5 * (1.0 - kAlpha);
198 static const double kA1 = 0.5;
199 static const double kA2 = 0.5 * kAlpha;
201 // Generates a set of windowed sinc() kernels.
202 // We generate a range of sub-sample offsets from 0.0 to 1.0.
203 const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
204 for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
205 const float subsample_offset =
206 static_cast<float>(offset_idx) / kKernelOffsetCount;
208 for (int i = 0; i < kKernelSize; ++i) {
209 const int idx = i + offset_idx * kKernelSize;
210 const float pre_sinc = M_PI * (i - kKernelSize / 2 - subsample_offset);
211 kernel_pre_sinc_storage_[idx] = pre_sinc;
213 // Compute Blackman window, matching the offset of the sinc().
214 const float x = (i - subsample_offset) / kKernelSize;
215 const float window = kA0 - kA1 * cos(2.0 * M_PI * x) + kA2
216 * cos(4.0 * M_PI * x);
217 kernel_window_storage_[idx] = window;
219 // Compute the sinc with offset, then window the sinc() function and store
220 // at the correct offset.
221 if (pre_sinc == 0) {
222 kernel_storage_[idx] = sinc_scale_factor * window;
223 } else {
224 kernel_storage_[idx] =
225 window * sin(sinc_scale_factor * pre_sinc) / pre_sinc;
231 void SincResampler::SetRatio(double io_sample_rate_ratio) {
232 if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
233 std::numeric_limits<double>::epsilon()) {
234 return;
237 io_sample_rate_ratio_ = io_sample_rate_ratio;
239 // Optimize reinitialization by reusing values which are independent of
240 // |sinc_scale_factor|. Provides a 3x speedup.
241 const double sinc_scale_factor = SincScaleFactor(io_sample_rate_ratio_);
242 for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
243 for (int i = 0; i < kKernelSize; ++i) {
244 const int idx = i + offset_idx * kKernelSize;
245 const float window = kernel_window_storage_[idx];
246 const float pre_sinc = kernel_pre_sinc_storage_[idx];
248 if (pre_sinc == 0) {
249 kernel_storage_[idx] = sinc_scale_factor * window;
250 } else {
251 kernel_storage_[idx] =
252 window * sin(sinc_scale_factor * pre_sinc) / pre_sinc;
258 void SincResampler::Resample(int frames, float* destination) {
259 base::AtomicRefCountInc(&currently_resampling_);
261 int remaining_frames = frames;
263 // Step (1) -- Prime the input buffer at the start of the input stream.
264 if (!buffer_primed_ && remaining_frames) {
265 read_cb_.Run(request_frames_, r0_);
266 buffer_primed_ = true;
269 // Step (2) -- Resample! const what we can outside of the loop for speed. It
270 // actually has an impact on ARM performance. See inner loop comment below.
271 const double current_io_ratio = io_sample_rate_ratio_;
272 const float* const kernel_ptr = kernel_storage_.get();
273 while (remaining_frames) {
274 // |i| may be negative if the last Resample() call ended on an iteration
275 // that put |virtual_source_idx_| over the limit.
277 // Note: The loop construct here can severely impact performance on ARM
278 // or when built with clang. See https://codereview.chromium.org/18566009/
279 for (int i = ceil((block_size_ - virtual_source_idx_) / current_io_ratio);
280 i > 0; --i) {
281 DCHECK_LT(virtual_source_idx_, block_size_);
283 // |virtual_source_idx_| lies in between two kernel offsets so figure out
284 // what they are.
285 const int source_idx = virtual_source_idx_;
286 const double subsample_remainder = virtual_source_idx_ - source_idx;
288 const double virtual_offset_idx =
289 subsample_remainder * kKernelOffsetCount;
290 const int offset_idx = virtual_offset_idx;
292 // We'll compute "convolutions" for the two kernels which straddle
293 // |virtual_source_idx_|.
294 const float* const k1 = kernel_ptr + offset_idx * kKernelSize;
295 const float* const k2 = k1 + kKernelSize;
297 // Ensure |k1|, |k2| are 16-byte aligned for SIMD usage. Should always be
298 // true so long as kKernelSize is a multiple of 16.
299 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1) & 0x0F);
300 DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2) & 0x0F);
302 // Initialize input pointer based on quantized |virtual_source_idx_|.
303 const float* const input_ptr = r1_ + source_idx;
305 // Figure out how much to weight each kernel's "convolution".
306 const double kernel_interpolation_factor =
307 virtual_offset_idx - offset_idx;
308 *destination++ = CONVOLVE_FUNC(
309 input_ptr, k1, k2, kernel_interpolation_factor);
311 // Advance the virtual index.
312 virtual_source_idx_ += current_io_ratio;
314 if (!--remaining_frames) {
315 CHECK(!base::AtomicRefCountDec(&currently_resampling_));
316 return;
320 // Wrap back around to the start.
321 virtual_source_idx_ -= block_size_;
323 // Step (3) -- Copy r3_, r4_ to r1_, r2_.
324 // This wraps the last input frames back to the start of the buffer.
325 memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kKernelSize);
327 // Step (4) -- Reinitialize regions if necessary.
328 if (r0_ == r2_)
329 UpdateRegions(true);
331 // Step (5) -- Refresh the buffer with more input.
332 read_cb_.Run(request_frames_, r0_);
335 CHECK(!base::AtomicRefCountDec(&currently_resampling_));
338 #undef CONVOLVE_FUNC
340 int SincResampler::ChunkSize() const {
341 return block_size_ / io_sample_rate_ratio_;
344 void SincResampler::Flush() {
345 CHECK(base::AtomicRefCountIsZero(&currently_resampling_));
346 virtual_source_idx_ = 0;
347 buffer_primed_ = false;
348 memset(input_buffer_.get(), 0,
349 sizeof(*input_buffer_.get()) * input_buffer_size_);
350 UpdateRegions(false);
353 float SincResampler::Convolve_C(const float* input_ptr, const float* k1,
354 const float* k2,
355 double kernel_interpolation_factor) {
356 float sum1 = 0;
357 float sum2 = 0;
359 // Generate a single output sample. Unrolling this loop hurt performance in
360 // local testing.
361 int n = kKernelSize;
362 while (n--) {
363 sum1 += *input_ptr * *k1++;
364 sum2 += *input_ptr++ * *k2++;
367 // Linearly interpolate the two "convolutions".
368 return (1.0 - kernel_interpolation_factor) * sum1
369 + kernel_interpolation_factor * sum2;
372 #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
373 float SincResampler::Convolve_NEON(const float* input_ptr, const float* k1,
374 const float* k2,
375 double kernel_interpolation_factor) {
376 float32x4_t m_input;
377 float32x4_t m_sums1 = vmovq_n_f32(0);
378 float32x4_t m_sums2 = vmovq_n_f32(0);
380 const float* upper = input_ptr + kKernelSize;
381 for (; input_ptr < upper; ) {
382 m_input = vld1q_f32(input_ptr);
383 input_ptr += 4;
384 m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1));
385 k1 += 4;
386 m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2));
387 k2 += 4;
390 // Linearly interpolate the two "convolutions".
391 m_sums1 = vmlaq_f32(
392 vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)),
393 m_sums2, vmovq_n_f32(kernel_interpolation_factor));
395 // Sum components together.
396 float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1));
397 return vget_lane_f32(vpadd_f32(m_half, m_half), 0);
399 #endif
401 } // namespace media