Make BackgroundSyncRegistration a proper class
[chromium-blink-merge.git] / skia / ext / convolver_SSE2.cc
bloba77a1f45c41942834ca0d3668557bd41bd9c885b
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <algorithm>
7 #include "skia/ext/convolver.h"
8 #include "skia/ext/convolver_SSE2.h"
9 #include "third_party/skia/include/core/SkTypes.h"
11 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
13 namespace skia {
15 // Convolves horizontally along a single row. The row data is given in
16 // |src_data| and continues for the num_values() of the filter.
17 void ConvolveHorizontally_SSE2(const unsigned char* src_data,
18 const ConvolutionFilter1D& filter,
19 unsigned char* out_row,
20 bool /*has_alpha*/) {
21 int num_values = filter.num_values();
23 int filter_offset, filter_length;
24 __m128i zero = _mm_setzero_si128();
25 __m128i mask[4];
26 // |mask| will be used to decimate all extra filter coefficients that are
27 // loaded by SIMD when |filter_length| is not divisible by 4.
28 // mask[0] is not used in following algorithm.
29 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
30 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
31 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
33 // Output one pixel each iteration, calculating all channels (RGBA) together.
34 for (int out_x = 0; out_x < num_values; out_x++) {
35 const ConvolutionFilter1D::Fixed* filter_values =
36 filter.FilterForValue(out_x, &filter_offset, &filter_length);
38 __m128i accum = _mm_setzero_si128();
40 // Compute the first pixel in this row that the filter affects. It will
41 // touch |filter_length| pixels (4 bytes each) after this.
42 const __m128i* row_to_filter =
43 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
45 // We will load and accumulate with four coefficients per iteration.
46 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
48 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
49 __m128i coeff, coeff16;
50 // [16] xx xx xx xx c3 c2 c1 c0
51 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
52 // [16] xx xx xx xx c1 c1 c0 c0
53 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
54 // [16] c1 c1 c1 c1 c0 c0 c0 c0
55 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
57 // Load four pixels => unpack the first two pixels to 16 bits =>
58 // multiply with coefficients => accumulate the convolution result.
59 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
60 __m128i src8 = _mm_loadu_si128(row_to_filter);
61 // [16] a1 b1 g1 r1 a0 b0 g0 r0
62 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
63 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
64 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
65 // [32] a0*c0 b0*c0 g0*c0 r0*c0
66 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
67 accum = _mm_add_epi32(accum, t);
68 // [32] a1*c1 b1*c1 g1*c1 r1*c1
69 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
70 accum = _mm_add_epi32(accum, t);
72 // Duplicate 3rd and 4th coefficients for all channels =>
73 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
74 // => accumulate the convolution results.
75 // [16] xx xx xx xx c3 c3 c2 c2
76 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
77 // [16] c3 c3 c3 c3 c2 c2 c2 c2
78 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
79 // [16] a3 g3 b3 r3 a2 g2 b2 r2
80 src16 = _mm_unpackhi_epi8(src8, zero);
81 mul_hi = _mm_mulhi_epi16(src16, coeff16);
82 mul_lo = _mm_mullo_epi16(src16, coeff16);
83 // [32] a2*c2 b2*c2 g2*c2 r2*c2
84 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
85 accum = _mm_add_epi32(accum, t);
86 // [32] a3*c3 b3*c3 g3*c3 r3*c3
87 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
88 accum = _mm_add_epi32(accum, t);
90 // Advance the pixel and coefficients pointers.
91 row_to_filter += 1;
92 filter_values += 4;
95 // When |filter_length| is not divisible by 4, we need to decimate some of
96 // the filter coefficient that was loaded incorrectly to zero; Other than
97 // that the algorithm is same with above, exceot that the 4th pixel will be
98 // always absent.
99 int r = filter_length&3;
100 if (r) {
101 // Note: filter_values must be padded to align_up(filter_offset, 8).
102 __m128i coeff, coeff16;
103 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
104 // Mask out extra filter taps.
105 coeff = _mm_and_si128(coeff, mask[r]);
106 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
107 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
109 // Note: line buffer must be padded to align_up(filter_offset, 16).
110 // We resolve this by use C-version for the last horizontal line.
111 __m128i src8 = _mm_loadu_si128(row_to_filter);
112 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
113 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
114 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
115 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
116 accum = _mm_add_epi32(accum, t);
117 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
118 accum = _mm_add_epi32(accum, t);
120 src16 = _mm_unpackhi_epi8(src8, zero);
121 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
122 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
123 mul_hi = _mm_mulhi_epi16(src16, coeff16);
124 mul_lo = _mm_mullo_epi16(src16, coeff16);
125 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
126 accum = _mm_add_epi32(accum, t);
129 // Shift right for fixed point implementation.
130 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
132 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
133 accum = _mm_packs_epi32(accum, zero);
134 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
135 accum = _mm_packus_epi16(accum, zero);
137 // Store the pixel value of 32 bits.
138 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
139 out_row += 4;
143 // Convolves horizontally along four rows. The row data is given in
144 // |src_data| and continues for the num_values() of the filter.
145 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
146 // refer to that function for detailed comments.
147 void Convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4],
148 const ConvolutionFilter1D& filter,
149 unsigned char* out_row[4]) {
150 int num_values = filter.num_values();
152 int filter_offset, filter_length;
153 __m128i zero = _mm_setzero_si128();
154 __m128i mask[4];
155 // |mask| will be used to decimate all extra filter coefficients that are
156 // loaded by SIMD when |filter_length| is not divisible by 4.
157 // mask[0] is not used in following algorithm.
158 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
159 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
160 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
162 // Output one pixel each iteration, calculating all channels (RGBA) together.
163 for (int out_x = 0; out_x < num_values; out_x++) {
164 const ConvolutionFilter1D::Fixed* filter_values =
165 filter.FilterForValue(out_x, &filter_offset, &filter_length);
167 // four pixels in a column per iteration.
168 __m128i accum0 = _mm_setzero_si128();
169 __m128i accum1 = _mm_setzero_si128();
170 __m128i accum2 = _mm_setzero_si128();
171 __m128i accum3 = _mm_setzero_si128();
172 int start = (filter_offset<<2);
173 // We will load and accumulate with four coefficients per iteration.
174 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
175 __m128i coeff, coeff16lo, coeff16hi;
176 // [16] xx xx xx xx c3 c2 c1 c0
177 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
178 // [16] xx xx xx xx c1 c1 c0 c0
179 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
180 // [16] c1 c1 c1 c1 c0 c0 c0 c0
181 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
182 // [16] xx xx xx xx c3 c3 c2 c2
183 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
184 // [16] c3 c3 c3 c3 c2 c2 c2 c2
185 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
187 __m128i src8, src16, mul_hi, mul_lo, t;
189 #define ITERATION(src, accum) \
190 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
191 src16 = _mm_unpacklo_epi8(src8, zero); \
192 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
193 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
194 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
195 accum = _mm_add_epi32(accum, t); \
196 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
197 accum = _mm_add_epi32(accum, t); \
198 src16 = _mm_unpackhi_epi8(src8, zero); \
199 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
200 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
201 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
202 accum = _mm_add_epi32(accum, t); \
203 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
204 accum = _mm_add_epi32(accum, t)
206 ITERATION(src_data[0] + start, accum0);
207 ITERATION(src_data[1] + start, accum1);
208 ITERATION(src_data[2] + start, accum2);
209 ITERATION(src_data[3] + start, accum3);
211 start += 16;
212 filter_values += 4;
215 int r = filter_length & 3;
216 if (r) {
217 // Note: filter_values must be padded to align_up(filter_offset, 8);
218 __m128i coeff;
219 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
220 // Mask out extra filter taps.
221 coeff = _mm_and_si128(coeff, mask[r]);
223 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
224 /* c1 c1 c1 c1 c0 c0 c0 c0 */
225 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
226 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
227 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
229 __m128i src8, src16, mul_hi, mul_lo, t;
231 ITERATION(src_data[0] + start, accum0);
232 ITERATION(src_data[1] + start, accum1);
233 ITERATION(src_data[2] + start, accum2);
234 ITERATION(src_data[3] + start, accum3);
237 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
238 accum0 = _mm_packs_epi32(accum0, zero);
239 accum0 = _mm_packus_epi16(accum0, zero);
240 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
241 accum1 = _mm_packs_epi32(accum1, zero);
242 accum1 = _mm_packus_epi16(accum1, zero);
243 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
244 accum2 = _mm_packs_epi32(accum2, zero);
245 accum2 = _mm_packus_epi16(accum2, zero);
246 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
247 accum3 = _mm_packs_epi32(accum3, zero);
248 accum3 = _mm_packus_epi16(accum3, zero);
250 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
251 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
252 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
253 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
255 out_row[0] += 4;
256 out_row[1] += 4;
257 out_row[2] += 4;
258 out_row[3] += 4;
262 // Does vertical convolution to produce one output row. The filter values and
263 // length are given in the first two parameters. These are applied to each
264 // of the rows pointed to in the |source_data_rows| array, with each row
265 // being |pixel_width| wide.
267 // The output must have room for |pixel_width * 4| bytes.
268 template<bool has_alpha>
269 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
270 int filter_length,
271 unsigned char* const* source_data_rows,
272 int pixel_width,
273 unsigned char* out_row) {
274 int width = pixel_width & ~3;
276 __m128i zero = _mm_setzero_si128();
277 __m128i accum0, accum1, accum2, accum3, coeff16;
278 const __m128i* src;
279 // Output four pixels per iteration (16 bytes).
280 for (int out_x = 0; out_x < width; out_x += 4) {
282 // Accumulated result for each pixel. 32 bits per RGBA channel.
283 accum0 = _mm_setzero_si128();
284 accum1 = _mm_setzero_si128();
285 accum2 = _mm_setzero_si128();
286 accum3 = _mm_setzero_si128();
288 // Convolve with one filter coefficient per iteration.
289 for (int filter_y = 0; filter_y < filter_length; filter_y++) {
291 // Duplicate the filter coefficient 8 times.
292 // [16] cj cj cj cj cj cj cj cj
293 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
295 // Load four pixels (16 bytes) together.
296 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
297 src = reinterpret_cast<const __m128i*>(
298 &source_data_rows[filter_y][out_x << 2]);
299 __m128i src8 = _mm_loadu_si128(src);
301 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
302 // multiply with current coefficient => accumulate the result.
303 // [16] a1 b1 g1 r1 a0 b0 g0 r0
304 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
305 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
306 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
307 // [32] a0 b0 g0 r0
308 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
309 accum0 = _mm_add_epi32(accum0, t);
310 // [32] a1 b1 g1 r1
311 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
312 accum1 = _mm_add_epi32(accum1, t);
314 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
315 // multiply with current coefficient => accumulate the result.
316 // [16] a3 b3 g3 r3 a2 b2 g2 r2
317 src16 = _mm_unpackhi_epi8(src8, zero);
318 mul_hi = _mm_mulhi_epi16(src16, coeff16);
319 mul_lo = _mm_mullo_epi16(src16, coeff16);
320 // [32] a2 b2 g2 r2
321 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
322 accum2 = _mm_add_epi32(accum2, t);
323 // [32] a3 b3 g3 r3
324 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
325 accum3 = _mm_add_epi32(accum3, t);
328 // Shift right for fixed point implementation.
329 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
330 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
331 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
332 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
334 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
335 // [16] a1 b1 g1 r1 a0 b0 g0 r0
336 accum0 = _mm_packs_epi32(accum0, accum1);
337 // [16] a3 b3 g3 r3 a2 b2 g2 r2
338 accum2 = _mm_packs_epi32(accum2, accum3);
340 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
341 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
342 accum0 = _mm_packus_epi16(accum0, accum2);
344 if (has_alpha) {
345 // Compute the max(ri, gi, bi) for each pixel.
346 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
347 __m128i a = _mm_srli_epi32(accum0, 8);
348 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
349 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
350 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
351 a = _mm_srli_epi32(accum0, 16);
352 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
353 b = _mm_max_epu8(a, b); // Max of r and g and b.
354 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
355 b = _mm_slli_epi32(b, 24);
357 // Make sure the value of alpha channel is always larger than maximum
358 // value of color channels.
359 accum0 = _mm_max_epu8(b, accum0);
360 } else {
361 // Set value of alpha channels to 0xFF.
362 __m128i mask = _mm_set1_epi32(0xff000000);
363 accum0 = _mm_or_si128(accum0, mask);
366 // Store the convolution result (16 bytes) and advance the pixel pointers.
367 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
368 out_row += 16;
371 // When the width of the output is not divisible by 4, We need to save one
372 // pixel (4 bytes) each time. And also the fourth pixel is always absent.
373 if (pixel_width & 3) {
374 accum0 = _mm_setzero_si128();
375 accum1 = _mm_setzero_si128();
376 accum2 = _mm_setzero_si128();
377 for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
378 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
379 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
380 src = reinterpret_cast<const __m128i*>(
381 &source_data_rows[filter_y][width<<2]);
382 __m128i src8 = _mm_loadu_si128(src);
383 // [16] a1 b1 g1 r1 a0 b0 g0 r0
384 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
385 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
386 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
387 // [32] a0 b0 g0 r0
388 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
389 accum0 = _mm_add_epi32(accum0, t);
390 // [32] a1 b1 g1 r1
391 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
392 accum1 = _mm_add_epi32(accum1, t);
393 // [16] a3 b3 g3 r3 a2 b2 g2 r2
394 src16 = _mm_unpackhi_epi8(src8, zero);
395 mul_hi = _mm_mulhi_epi16(src16, coeff16);
396 mul_lo = _mm_mullo_epi16(src16, coeff16);
397 // [32] a2 b2 g2 r2
398 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
399 accum2 = _mm_add_epi32(accum2, t);
402 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
403 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
404 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
405 // [16] a1 b1 g1 r1 a0 b0 g0 r0
406 accum0 = _mm_packs_epi32(accum0, accum1);
407 // [16] a3 b3 g3 r3 a2 b2 g2 r2
408 accum2 = _mm_packs_epi32(accum2, zero);
409 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
410 accum0 = _mm_packus_epi16(accum0, accum2);
411 if (has_alpha) {
412 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
413 __m128i a = _mm_srli_epi32(accum0, 8);
414 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
415 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
416 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
417 a = _mm_srli_epi32(accum0, 16);
418 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
419 b = _mm_max_epu8(a, b); // Max of r and g and b.
420 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
421 b = _mm_slli_epi32(b, 24);
422 accum0 = _mm_max_epu8(b, accum0);
423 } else {
424 __m128i mask = _mm_set1_epi32(0xff000000);
425 accum0 = _mm_or_si128(accum0, mask);
428 for (int out_x = width; out_x < pixel_width; out_x++) {
429 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
430 accum0 = _mm_srli_si128(accum0, 4);
431 out_row += 4;
436 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
437 int filter_length,
438 unsigned char* const* source_data_rows,
439 int pixel_width,
440 unsigned char* out_row,
441 bool has_alpha) {
442 if (has_alpha) {
443 ConvolveVertically_SSE2<true>(filter_values,
444 filter_length,
445 source_data_rows,
446 pixel_width,
447 out_row);
448 } else {
449 ConvolveVertically_SSE2<false>(filter_values,
450 filter_length,
451 source_data_rows,
452 pixel_width,
453 out_row);
457 } // namespace skia