1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/time/time.h"
7 #include <CoreFoundation/CFDate.h>
8 #include <CoreFoundation/CFTimeZone.h>
10 #include <mach/mach_time.h>
11 #include <sys/sysctl.h>
13 #include <sys/types.h>
16 #include "base/basictypes.h"
17 #include "base/logging.h"
18 #include "base/mac/mach_logging.h"
19 #include "base/mac/scoped_cftyperef.h"
20 #include "base/mac/scoped_mach_port.h"
24 uint64_t ComputeCurrentTicks() {
26 // On iOS mach_absolute_time stops while the device is sleeping. Instead use
27 // now - KERN_BOOTTIME to get a time difference that is not impacted by clock
28 // changes. KERN_BOOTTIME will be updated by the system whenever the system
30 struct timeval boottime
;
31 int mib
[2] = {CTL_KERN
, KERN_BOOTTIME
};
32 size_t size
= sizeof(boottime
);
33 int kr
= sysctl(mib
, arraysize(mib
), &boottime
, &size
, NULL
, 0);
34 DCHECK_EQ(KERN_SUCCESS
, kr
);
35 base::TimeDelta time_difference
= base::Time::Now() -
36 (base::Time::FromTimeT(boottime
.tv_sec
) +
37 base::TimeDelta::FromMicroseconds(boottime
.tv_usec
));
38 return time_difference
.InMicroseconds();
40 uint64_t absolute_micro
;
42 static mach_timebase_info_data_t timebase_info
;
43 if (timebase_info
.denom
== 0) {
44 // Zero-initialization of statics guarantees that denom will be 0 before
45 // calling mach_timebase_info. mach_timebase_info will never set denom to
46 // 0 as that would be invalid, so the zero-check can be used to determine
47 // whether mach_timebase_info has already been called. This is
48 // recommended by Apple's QA1398.
49 kern_return_t kr
= mach_timebase_info(&timebase_info
);
50 MACH_DCHECK(kr
== KERN_SUCCESS
, kr
) << "mach_timebase_info";
53 // mach_absolute_time is it when it comes to ticks on the Mac. Other calls
54 // with less precision (such as TickCount) just call through to
55 // mach_absolute_time.
57 // timebase_info converts absolute time tick units into nanoseconds. Convert
58 // to microseconds up front to stave off overflows.
60 mach_absolute_time() / base::Time::kNanosecondsPerMicrosecond
*
61 timebase_info
.numer
/ timebase_info
.denom
;
63 // Don't bother with the rollover handling that the Windows version does.
64 // With numer and denom = 1 (the expected case), the 64-bit absolute time
65 // reported in nanoseconds is enough to last nearly 585 years.
66 return absolute_micro
;
67 #endif // defined(OS_IOS)
70 uint64_t ComputeThreadTicks() {
75 base::mac::ScopedMachSendRight
thread(mach_thread_self());
76 mach_msg_type_number_t thread_info_count
= THREAD_BASIC_INFO_COUNT
;
77 thread_basic_info_data_t thread_info_data
;
79 if (thread
.get() == MACH_PORT_NULL
) {
80 DLOG(ERROR
) << "Failed to get mach_thread_self()";
84 kern_return_t kr
= thread_info(
87 reinterpret_cast<thread_info_t
>(&thread_info_data
),
89 MACH_DCHECK(kr
== KERN_SUCCESS
, kr
) << "thread_info";
91 return (thread_info_data
.user_time
.seconds
*
92 base::Time::kMicrosecondsPerSecond
) +
93 thread_info_data
.user_time
.microseconds
;
94 #endif // defined(OS_IOS)
101 // The Time routines in this file use Mach and CoreFoundation APIs, since the
102 // POSIX definition of time_t in Mac OS X wraps around after 2038--and
103 // there are already cookie expiration dates, etc., past that time out in
104 // the field. Using CFDate prevents that problem, and using mach_absolute_time
105 // for TimeTicks gives us nice high-resolution interval timing.
107 // Time -----------------------------------------------------------------------
109 // Core Foundation uses a double second count since 2001-01-01 00:00:00 UTC.
110 // The UNIX epoch is 1970-01-01 00:00:00 UTC.
111 // Windows uses a Gregorian epoch of 1601. We need to match this internally
112 // so that our time representations match across all platforms. See bug 14734.
113 // irb(main):010:0> Time.at(0).getutc()
114 // => Thu Jan 01 00:00:00 UTC 1970
115 // irb(main):011:0> Time.at(-11644473600).getutc()
116 // => Mon Jan 01 00:00:00 UTC 1601
117 static const int64 kWindowsEpochDeltaSeconds
= GG_INT64_C(11644473600);
120 const int64
Time::kWindowsEpochDeltaMicroseconds
=
121 kWindowsEpochDeltaSeconds
* Time::kMicrosecondsPerSecond
;
123 // Some functions in time.cc use time_t directly, so we provide an offset
124 // to convert from time_t (Unix epoch) and internal (Windows epoch).
126 const int64
Time::kTimeTToMicrosecondsOffset
= kWindowsEpochDeltaMicroseconds
;
130 return FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent());
134 Time
Time::FromCFAbsoluteTime(CFAbsoluteTime t
) {
135 COMPILE_ASSERT(std::numeric_limits
<CFAbsoluteTime
>::has_infinity
,
136 numeric_limits_infinity_is_undefined_when_not_has_infinity
);
138 return Time(); // Consider 0 as a null Time.
139 if (t
== std::numeric_limits
<CFAbsoluteTime
>::infinity())
141 return Time(static_cast<int64
>(
142 (t
+ kCFAbsoluteTimeIntervalSince1970
) * kMicrosecondsPerSecond
) +
143 kWindowsEpochDeltaMicroseconds
);
146 CFAbsoluteTime
Time::ToCFAbsoluteTime() const {
147 COMPILE_ASSERT(std::numeric_limits
<CFAbsoluteTime
>::has_infinity
,
148 numeric_limits_infinity_is_undefined_when_not_has_infinity
);
150 return 0; // Consider 0 as a null Time.
152 return std::numeric_limits
<CFAbsoluteTime
>::infinity();
153 return (static_cast<CFAbsoluteTime
>(us_
- kWindowsEpochDeltaMicroseconds
) /
154 kMicrosecondsPerSecond
) - kCFAbsoluteTimeIntervalSince1970
;
158 Time
Time::NowFromSystemTime() {
159 // Just use Now() because Now() returns the system time.
164 Time
Time::FromExploded(bool is_local
, const Exploded
& exploded
) {
165 CFGregorianDate date
;
166 date
.second
= exploded
.second
+
167 exploded
.millisecond
/ static_cast<double>(kMillisecondsPerSecond
);
168 date
.minute
= exploded
.minute
;
169 date
.hour
= exploded
.hour
;
170 date
.day
= exploded
.day_of_month
;
171 date
.month
= exploded
.month
;
172 date
.year
= exploded
.year
;
174 base::ScopedCFTypeRef
<CFTimeZoneRef
> time_zone(
175 is_local
? CFTimeZoneCopySystem() : NULL
);
176 CFAbsoluteTime seconds
= CFGregorianDateGetAbsoluteTime(date
, time_zone
) +
177 kCFAbsoluteTimeIntervalSince1970
;
178 return Time(static_cast<int64
>(seconds
* kMicrosecondsPerSecond
) +
179 kWindowsEpochDeltaMicroseconds
);
182 void Time::Explode(bool is_local
, Exploded
* exploded
) const {
183 // Avoid rounding issues, by only putting the integral number of seconds
184 // (rounded towards -infinity) into a |CFAbsoluteTime| (which is a |double|).
185 int64 microsecond
= us_
% kMicrosecondsPerSecond
;
187 microsecond
+= kMicrosecondsPerSecond
;
188 CFAbsoluteTime seconds
= ((us_
- microsecond
) / kMicrosecondsPerSecond
) -
189 kWindowsEpochDeltaSeconds
-
190 kCFAbsoluteTimeIntervalSince1970
;
192 base::ScopedCFTypeRef
<CFTimeZoneRef
> time_zone(
193 is_local
? CFTimeZoneCopySystem() : NULL
);
194 CFGregorianDate date
= CFAbsoluteTimeGetGregorianDate(seconds
, time_zone
);
195 // 1 = Monday, ..., 7 = Sunday.
196 int cf_day_of_week
= CFAbsoluteTimeGetDayOfWeek(seconds
, time_zone
);
198 exploded
->year
= date
.year
;
199 exploded
->month
= date
.month
;
200 exploded
->day_of_week
= cf_day_of_week
% 7;
201 exploded
->day_of_month
= date
.day
;
202 exploded
->hour
= date
.hour
;
203 exploded
->minute
= date
.minute
;
204 // Make sure seconds are rounded down towards -infinity.
205 exploded
->second
= floor(date
.second
);
206 // Calculate milliseconds ourselves, since we rounded the |seconds|, making
207 // sure to round towards -infinity.
208 exploded
->millisecond
=
209 (microsecond
>= 0) ? microsecond
/ kMicrosecondsPerMillisecond
:
210 (microsecond
- kMicrosecondsPerMillisecond
+ 1) /
211 kMicrosecondsPerMillisecond
;
214 // TimeTicks ------------------------------------------------------------------
217 TimeTicks
TimeTicks::Now() {
218 return TimeTicks(ComputeCurrentTicks());
222 bool TimeTicks::IsHighResolution() {
227 TimeTicks
TimeTicks::ThreadNow() {
228 return TimeTicks(ComputeThreadTicks());
232 TimeTicks
TimeTicks::NowFromSystemTraceTime() {