1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // MSVC++ requires this to be set before any other includes to get M_SQRT1_2.
6 #define _USE_MATH_DEFINES
8 #include "media/base/channel_mixing_matrix.h"
13 #include "base/logging.h"
17 // Default scale factor for mixing two channels together. We use a different
18 // value for stereo -> mono and mono -> stereo mixes.
19 static const float kEqualPowerScale
= static_cast<float>(M_SQRT1_2
);
21 static void ValidateLayout(ChannelLayout layout
) {
22 CHECK_NE(layout
, CHANNEL_LAYOUT_NONE
);
23 CHECK_LE(layout
, CHANNEL_LAYOUT_MAX
);
24 CHECK_NE(layout
, CHANNEL_LAYOUT_UNSUPPORTED
);
25 CHECK_NE(layout
, CHANNEL_LAYOUT_DISCRETE
);
26 CHECK_NE(layout
, CHANNEL_LAYOUT_STEREO_AND_KEYBOARD_MIC
);
28 // Verify there's at least one channel. Should always be true here by virtue
29 // of not being one of the invalid layouts, but lets double check to be sure.
30 int channel_count
= ChannelLayoutToChannelCount(layout
);
31 DCHECK_GT(channel_count
, 0);
33 // If we have more than one channel, verify a symmetric layout for sanity.
34 // The unit test will verify all possible layouts, so this can be a DCHECK.
35 // Symmetry allows simplifying the matrix building code by allowing us to
36 // assume that if one channel of a pair exists, the other will too.
37 if (channel_count
> 1) {
38 // Assert that LEFT exists if and only if RIGHT exists, and so on.
39 DCHECK_EQ(ChannelOrder(layout
, LEFT
) >= 0,
40 ChannelOrder(layout
, RIGHT
) >= 0);
41 DCHECK_EQ(ChannelOrder(layout
, SIDE_LEFT
) >= 0,
42 ChannelOrder(layout
, SIDE_RIGHT
) >= 0);
43 DCHECK_EQ(ChannelOrder(layout
, BACK_LEFT
) >= 0,
44 ChannelOrder(layout
, BACK_RIGHT
) >= 0);
45 DCHECK_EQ(ChannelOrder(layout
, LEFT_OF_CENTER
) >= 0,
46 ChannelOrder(layout
, RIGHT_OF_CENTER
) >= 0);
48 DCHECK_EQ(layout
, CHANNEL_LAYOUT_MONO
);
52 ChannelMixingMatrix::ChannelMixingMatrix(ChannelLayout input_layout
,
54 ChannelLayout output_layout
,
56 : input_layout_(input_layout
),
57 input_channels_(input_channels
),
58 output_layout_(output_layout
),
59 output_channels_(output_channels
) {
60 // Stereo down mix should never be the output layout.
61 CHECK_NE(output_layout
, CHANNEL_LAYOUT_STEREO_DOWNMIX
);
63 // Verify that the layouts are supported
64 if (input_layout
!= CHANNEL_LAYOUT_DISCRETE
)
65 ValidateLayout(input_layout
);
66 if (output_layout
!= CHANNEL_LAYOUT_DISCRETE
)
67 ValidateLayout(output_layout
);
69 // Special case for 5.0, 5.1 with back channels when upmixed to 7.0, 7.1,
70 // which should map the back LR to side LR.
71 if (input_layout_
== CHANNEL_LAYOUT_5_0_BACK
&&
72 output_layout_
== CHANNEL_LAYOUT_7_0
) {
73 input_layout_
= CHANNEL_LAYOUT_5_0
;
74 } else if (input_layout_
== CHANNEL_LAYOUT_5_1_BACK
&&
75 output_layout_
== CHANNEL_LAYOUT_7_1
) {
76 input_layout_
= CHANNEL_LAYOUT_5_1
;
80 ChannelMixingMatrix::~ChannelMixingMatrix() {
83 bool ChannelMixingMatrix::CreateTransformationMatrix(
84 std::vector
<std::vector
<float>>* matrix
) {
87 // Size out the initial matrix.
88 matrix_
->reserve(output_channels_
);
89 for (int output_ch
= 0; output_ch
< output_channels_
; ++output_ch
)
90 matrix_
->push_back(std::vector
<float>(input_channels_
, 0));
92 // First check for discrete case.
93 if (input_layout_
== CHANNEL_LAYOUT_DISCRETE
||
94 output_layout_
== CHANNEL_LAYOUT_DISCRETE
) {
95 // If the number of input channels is more than output channels, then
96 // copy as many as we can then drop the remaining input channels.
97 // If the number of input channels is less than output channels, then
98 // copy them all, then zero out the remaining output channels.
99 int passthrough_channels
= std::min(input_channels_
, output_channels_
);
100 for (int i
= 0; i
< passthrough_channels
; ++i
)
101 (*matrix_
)[i
][i
] = 1;
106 // Route matching channels and figure out which ones aren't accounted for.
107 for (Channels ch
= LEFT
; ch
< CHANNELS_MAX
+ 1;
108 ch
= static_cast<Channels
>(ch
+ 1)) {
109 int input_ch_index
= ChannelOrder(input_layout_
, ch
);
110 if (input_ch_index
< 0)
113 int output_ch_index
= ChannelOrder(output_layout_
, ch
);
114 if (output_ch_index
< 0) {
115 unaccounted_inputs_
.push_back(ch
);
119 DCHECK_LT(static_cast<size_t>(output_ch_index
), matrix_
->size());
120 DCHECK_LT(static_cast<size_t>(input_ch_index
),
121 (*matrix_
)[output_ch_index
].size());
122 (*matrix_
)[output_ch_index
][input_ch_index
] = 1;
125 // If all input channels are accounted for, there's nothing left to do.
126 if (unaccounted_inputs_
.empty()) {
127 // Since all output channels map directly to inputs we can optimize.
131 // Mix front LR into center.
132 if (IsUnaccounted(LEFT
)) {
133 // When down mixing to mono from stereo, we need to be careful of full scale
134 // stereo mixes. Scaling by 1 / sqrt(2) here will likely lead to clipping
135 // so we use 1 / 2 instead.
137 (output_layout_
== CHANNEL_LAYOUT_MONO
&& input_channels_
== 2) ?
138 0.5 : kEqualPowerScale
;
139 Mix(LEFT
, CENTER
, scale
);
140 Mix(RIGHT
, CENTER
, scale
);
143 // Mix center into front LR.
144 if (IsUnaccounted(CENTER
)) {
145 // When up mixing from mono, just do a copy to front LR.
147 (input_layout_
== CHANNEL_LAYOUT_MONO
) ? 1 : kEqualPowerScale
;
148 MixWithoutAccounting(CENTER
, LEFT
, scale
);
149 Mix(CENTER
, RIGHT
, scale
);
152 // Mix back LR into: side LR || back center || front LR || front center.
153 if (IsUnaccounted(BACK_LEFT
)) {
154 if (HasOutputChannel(SIDE_LEFT
)) {
155 // If the input has side LR, mix back LR into side LR, but instead if the
156 // input doesn't have side LR (but output does) copy back LR to side LR.
157 float scale
= HasInputChannel(SIDE_LEFT
) ? kEqualPowerScale
: 1;
158 Mix(BACK_LEFT
, SIDE_LEFT
, scale
);
159 Mix(BACK_RIGHT
, SIDE_RIGHT
, scale
);
160 } else if (HasOutputChannel(BACK_CENTER
)) {
161 // Mix back LR into back center.
162 Mix(BACK_LEFT
, BACK_CENTER
, kEqualPowerScale
);
163 Mix(BACK_RIGHT
, BACK_CENTER
, kEqualPowerScale
);
164 } else if (output_layout_
> CHANNEL_LAYOUT_MONO
) {
165 // Mix back LR into front LR.
166 Mix(BACK_LEFT
, LEFT
, kEqualPowerScale
);
167 Mix(BACK_RIGHT
, RIGHT
, kEqualPowerScale
);
169 // Mix back LR into front center.
170 Mix(BACK_LEFT
, CENTER
, kEqualPowerScale
);
171 Mix(BACK_RIGHT
, CENTER
, kEqualPowerScale
);
175 // Mix side LR into: back LR || back center || front LR || front center.
176 if (IsUnaccounted(SIDE_LEFT
)) {
177 if (HasOutputChannel(BACK_LEFT
)) {
178 // If the input has back LR, mix side LR into back LR, but instead if the
179 // input doesn't have back LR (but output does) copy side LR to back LR.
180 float scale
= HasInputChannel(BACK_LEFT
) ? kEqualPowerScale
: 1;
181 Mix(SIDE_LEFT
, BACK_LEFT
, scale
);
182 Mix(SIDE_RIGHT
, BACK_RIGHT
, scale
);
183 } else if (HasOutputChannel(BACK_CENTER
)) {
184 // Mix side LR into back center.
185 Mix(SIDE_LEFT
, BACK_CENTER
, kEqualPowerScale
);
186 Mix(SIDE_RIGHT
, BACK_CENTER
, kEqualPowerScale
);
187 } else if (output_layout_
> CHANNEL_LAYOUT_MONO
) {
188 // Mix side LR into front LR.
189 Mix(SIDE_LEFT
, LEFT
, kEqualPowerScale
);
190 Mix(SIDE_RIGHT
, RIGHT
, kEqualPowerScale
);
192 // Mix side LR into front center.
193 Mix(SIDE_LEFT
, CENTER
, kEqualPowerScale
);
194 Mix(SIDE_RIGHT
, CENTER
, kEqualPowerScale
);
198 // Mix back center into: back LR || side LR || front LR || front center.
199 if (IsUnaccounted(BACK_CENTER
)) {
200 if (HasOutputChannel(BACK_LEFT
)) {
201 // Mix back center into back LR.
202 MixWithoutAccounting(BACK_CENTER
, BACK_LEFT
, kEqualPowerScale
);
203 Mix(BACK_CENTER
, BACK_RIGHT
, kEqualPowerScale
);
204 } else if (HasOutputChannel(SIDE_LEFT
)) {
205 // Mix back center into side LR.
206 MixWithoutAccounting(BACK_CENTER
, SIDE_LEFT
, kEqualPowerScale
);
207 Mix(BACK_CENTER
, SIDE_RIGHT
, kEqualPowerScale
);
208 } else if (output_layout_
> CHANNEL_LAYOUT_MONO
) {
209 // Mix back center into front LR.
210 // TODO(dalecurtis): Not sure about these values?
211 MixWithoutAccounting(BACK_CENTER
, LEFT
, kEqualPowerScale
);
212 Mix(BACK_CENTER
, RIGHT
, kEqualPowerScale
);
214 // Mix back center into front center.
215 // TODO(dalecurtis): Not sure about these values?
216 Mix(BACK_CENTER
, CENTER
, kEqualPowerScale
);
220 // Mix LR of center into: front LR || front center.
221 if (IsUnaccounted(LEFT_OF_CENTER
)) {
222 if (HasOutputChannel(LEFT
)) {
223 // Mix LR of center into front LR.
224 Mix(LEFT_OF_CENTER
, LEFT
, kEqualPowerScale
);
225 Mix(RIGHT_OF_CENTER
, RIGHT
, kEqualPowerScale
);
227 // Mix LR of center into front center.
228 Mix(LEFT_OF_CENTER
, CENTER
, kEqualPowerScale
);
229 Mix(RIGHT_OF_CENTER
, CENTER
, kEqualPowerScale
);
233 // Mix LFE into: front center || front LR.
234 if (IsUnaccounted(LFE
)) {
235 if (!HasOutputChannel(CENTER
)) {
236 // Mix LFE into front LR.
237 MixWithoutAccounting(LFE
, LEFT
, kEqualPowerScale
);
238 Mix(LFE
, RIGHT
, kEqualPowerScale
);
240 // Mix LFE into front center.
241 Mix(LFE
, CENTER
, kEqualPowerScale
);
245 // All channels should now be accounted for.
246 DCHECK(unaccounted_inputs_
.empty());
248 // See if the output |matrix_| is simply a remapping matrix. If each input
249 // channel maps to a single output channel we can simply remap. Doing this
250 // programmatically is less fragile than logic checks on channel mappings.
251 for (int output_ch
= 0; output_ch
< output_channels_
; ++output_ch
) {
252 int input_mappings
= 0;
253 for (int input_ch
= 0; input_ch
< input_channels_
; ++input_ch
) {
254 // We can only remap if each row contains a single scale of 1. I.e., each
255 // output channel is mapped from a single unscaled input channel.
256 if ((*matrix_
)[output_ch
][input_ch
] != 1 || ++input_mappings
> 1)
261 // If we've gotten here, |matrix_| is simply a remapping.
265 void ChannelMixingMatrix::AccountFor(Channels ch
) {
266 unaccounted_inputs_
.erase(std::find(
267 unaccounted_inputs_
.begin(), unaccounted_inputs_
.end(), ch
));
270 bool ChannelMixingMatrix::IsUnaccounted(Channels ch
) const {
271 return std::find(unaccounted_inputs_
.begin(), unaccounted_inputs_
.end(),
272 ch
) != unaccounted_inputs_
.end();
275 bool ChannelMixingMatrix::HasInputChannel(Channels ch
) const {
276 return ChannelOrder(input_layout_
, ch
) >= 0;
279 bool ChannelMixingMatrix::HasOutputChannel(Channels ch
) const {
280 return ChannelOrder(output_layout_
, ch
) >= 0;
283 void ChannelMixingMatrix::Mix(Channels input_ch
,
286 MixWithoutAccounting(input_ch
, output_ch
, scale
);
287 AccountFor(input_ch
);
290 void ChannelMixingMatrix::MixWithoutAccounting(Channels input_ch
,
293 int input_ch_index
= ChannelOrder(input_layout_
, input_ch
);
294 int output_ch_index
= ChannelOrder(output_layout_
, output_ch
);
296 DCHECK(IsUnaccounted(input_ch
));
297 DCHECK_GE(input_ch_index
, 0);
298 DCHECK_GE(output_ch_index
, 0);
300 DCHECK_EQ((*matrix_
)[output_ch_index
][input_ch_index
], 0);
301 (*matrix_
)[output_ch_index
][input_ch_index
] = scale
;