Stop being quite so clever in handling input_with_prefix
[clav.git] / check-graph-iso.c
blob784f2212025e902fce7ab55b0c60348ef07541dc
1 /*
2 * Copyright (c) 2018, S. Gilles <sgilles@math.umd.edu>
4 * Permission to use, copy, modify, and/or distribute this software
5 * for any purpose with or without fee is hereby granted, provided
6 * that the above copyright notice and this permission notice appear
7 * in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
10 * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
11 * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
12 * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR
13 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
14 * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
15 * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
16 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <errno.h>
19 #include <limits.h>
20 #include <stdint.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <unistd.h>
26 #include "macros.h"
27 #include "quiver.h"
29 #define zmax(x, y) (((x) > (y)) ? (x) : (y))
31 static int
32 cmp(const void *a, const void *b)
34 const size_t *as = (const size_t *) a;
35 const size_t *bs = (const size_t *) b;
37 if (*as < *bs) {
38 return -1;
39 } else if (*as > *bs) {
40 return 1;
43 return 0;
46 int
47 check_iso(struct quiver *a, struct quiver *b, const char **fix, size_t fix_len)
49 int ret = -1;
50 size_t n = a->v_num;
51 size_t *a_i = 0;
52 size_t *b_i = 0;
53 size_t i_idx = 0;
54 size_t ia = 0;
55 size_t ib = 0;
56 size_t a_next = 0;
57 size_t b_next = 0;
58 size_t next_highest = 0;
59 size_t next_highest_idx = 0;
60 size_t t = 0;
63 a_i is { f₁, f₂, …, fₘ, u₁, u₂, …, uₙ₋ₘ }, where f's are
64 fixed indices and u₁ < u₂ < … < uₙ₋ₘ .
66 b_i will be the same, but as the sequence progresses the
67 u's will be permuted, and we require always that a and
68 b, when restricted to indices less than i_idx, are
69 isomorphic.
71 if (!(a_i = calloc(n, sizeof *a_i))) {
72 perror(L("calloc"));
73 goto done;
76 if (!(b_i = calloc(n, sizeof *b_i))) {
77 perror(L("calloc"));
78 goto done;
81 for (size_t j = 0; j < fix_len; ++j) {
82 const char *name = fix[j];
84 for (size_t k = 0; k < n; ++k) {
85 if (!(strcmp(a->v[k].name, name))) {
86 a_i[j] = k;
89 if (!(strcmp(b->v[k].name, name))) {
90 b_i[j] = k;
95 /* Fill out the permutation to make u's increasing */
96 for (i_idx = fix_len; i_idx < n; ++i_idx) {
97 /* This is incredibly inefficient, but it's readable */
98 int seen_a_next = 0;
99 int seen_b_next = 0;
101 /* Find smallest a_next value that's not already used */
102 for (a_next = 0; a_next < n; ++a_next) {
103 seen_a_next = 0;
105 for (size_t k = 0; k < i_idx; ++k) {
106 if (a_i[k] == a_next) {
107 seen_a_next = 1;
111 if (!seen_a_next) {
112 a_i[i_idx] = a_next;
113 break;
117 /* The same; for b */
118 for (b_next = 0; b_next < n; ++b_next) {
119 seen_b_next = 0;
121 for (size_t k = 0; k < i_idx; ++k) {
122 if (b_i[k] == b_next) {
123 seen_b_next = 1;
127 if (!seen_b_next) {
128 b_i[i_idx] = b_next;
129 break;
134 i_idx = fix_len;
137 * Require that, restricted to the fixed parts, we have a
138 * graph isomorphism.
140 for (size_t j = 0; j < fix_len; ++j) {
141 size_t ja = a_i[j];
142 size_t jb = b_i[j];
144 if (a->v[ja].fatness != b->v[jb].fatness) {
145 fprintf(stderr,
146 "Fixed vertex \u00ab%s\u00bb has inconsistent fatness %d, %d\n",
147 a->v[ja].name, a->v[ja].fatness,
148 b->v[ja].fatness);
149 goto done;
152 for (size_t k = 0; k < fix_len; ++k) {
153 size_t ka = a_i[k];
154 size_t kb = b_i[k];
155 struct rational *ea = &a->e[ja * a->v_len + ka];
156 struct rational *eb = &b->e[jb * b->v_len + kb];
158 if (ea->p != eb->p ||
159 ea->q != eb->q) {
160 fprintf(stderr,
161 "S: \u00ab%s\u00bb \u2192 \u00ab%s\u00bb, %d/%d\n",
162 a->v[ja].name, a->v[ka].name, ea->p,
163 ea->q);
164 fprintf(stderr,
165 "T: \u00ab%s\u00bb \u2192 \u00ab%s\u00bb, %d/%d\n",
166 b->v[jb].name, b->v[kb].name, eb->p,
167 eb->q);
168 fprintf(stderr,
169 "These are fixed vertices; so ");
170 fprintf(stderr, "no isomorphism is possible\n");
171 goto done;
176 /* The long haul */
177 while (1) {
178 check_partial_isomorphism:
181 * At this point, a_i and b_i are valid permutations
182 * (completely, up to the last position). Furthermore, the
183 * map Gₐ[a_i[k] <-> Gᵦ[b_i[k]], restricted to k < i_idx,
184 * gives a graph isomorphism. We seek to check if incrementing
185 * i_idx by one works.
187 ia = a_i[i_idx];
188 ib = b_i[i_idx];
190 if (a->v[ia].fatness != b->v[ib].fatness) {
191 goto increment_i_idxth_place;
194 for (size_t j = 0; j < i_idx; ++j) {
195 size_t ja = a_i[j];
196 size_t jb = b_i[j];
197 struct rational *ea = &a->e[ia * a->v_len + ja];
198 struct rational *eb = &b->e[ib * b->v_len + jb];
199 struct rational *fa = &a->e[ja * a->v_len + ia];
200 struct rational *fb = &b->e[jb * b->v_len + ib];
202 if (ea->p != eb->p ||
203 ea->q != eb->q ||
204 fa->p != fb->p ||
205 fa->q != fb->q) {
206 goto increment_i_idxth_place;
211 * Expanding the isomorphism works. Good, let's try
212 * to expand a bit more
214 i_idx++;
216 if (i_idx < n) {
217 goto check_partial_isomorphism;
220 /* The whole thing is an isomorphism. Good, we're done. */
221 printf("Isomorphism found\n");
222 printf(" S | T \n");
223 printf("------------|------------\n");
225 for (size_t j = 0; j < n; ++j) {
226 size_t ja = a_i[j];
227 size_t jb = b_i[j];
229 printf("%11s | %s\n", a->v[ja].name, b->v[jb].name);
232 ret = 0;
233 goto done;
234 increment_i_idxth_place:
237 * Try to get the next in the orderings of b_i.
238 * It's a permutation, so we're in the easy case
239 * of the incrementation algorithm.
241 next_highest = (size_t) -1;
242 next_highest_idx = i_idx;
244 for (size_t j = i_idx + 1; j < n; ++j) {
245 if (b_i[j] < next_highest &&
246 b_i[j] > b_i[i_idx]) {
247 next_highest = b_i[j];
248 next_highest_idx = j;
252 if (next_highest == (size_t) -1) {
253 if (i_idx <= fix_len) {
254 /* We've checked all we can */
255 printf("No isomorphism possible\n");
256 goto done;
259 i_idx--;
260 goto increment_i_idxth_place;
263 t = b_i[i_idx];
264 b_i[i_idx] = b_i[next_highest_idx];
265 b_i[next_highest_idx] = t;
266 qsort(b_i + i_idx + 1, n - i_idx - 1, sizeof *b_i, cmp);
269 done:
270 free(a_i);
271 free(b_i);
273 return ret;
276 static void
277 usage(char *argv0)
279 printf("Usage: %s -s <file> -t <file> [ -f <v> [ -f <v> [ ... ] ] ]\n",
280 argv0);
281 printf(" <file>: a quiver file output by clav\n");
282 printf(" <v>: a name of a vertex in both files\n");
283 printf("\n");
284 printf("Find (and possibly output) some graph isomorphism between s\n");
285 printf("and t, fixing every vertex named by ‘-f’.\n");
286 printf("\n");
287 printf("Returns 0 if such an isomorphism was found, < 0 if not.\n");
290 /* Run the thing */
292 main(int argc, char **argv)
294 int ret = -1;
295 int opt = 0;
296 const char *sarg = 0;
297 const char *targ = 0;
298 struct quiver qs = { 0 };
299 struct quiver qt = { 0 };
300 FILE *fs = 0;
301 FILE *ft = 0;
302 const char **fixnames = 0;
303 const char *errstr = 0;
304 size_t fidx = 0;
306 if (!(fixnames = calloc(1 + (argc / 2), sizeof *fixnames))) {
307 perror(L("calloc"));
308 goto done;
311 while ((opt = getopt(argc, argv, "hs:t:f:")) != -1) {
312 switch (opt) {
313 case 's':
314 sarg = optarg;
315 break;
316 case 't':
317 targ = optarg;
318 break;
319 case 'f':
320 fixnames[fidx] = optarg;
321 fidx++;
322 break;
323 case 'h':
324 ret = 0;
326 /* fall through */
327 default:
328 usage(argv[0]);
329 goto done;
333 if (!sarg) {
334 fprintf(stderr, "\u2018-s\u2019 is required\n");
335 usage(argv[0]);
336 goto done;
339 if (!targ) {
340 fprintf(stderr, "\u2018-t\u2019 is required\n");
341 usage(argv[0]);
342 goto done;
345 if (!(fs = fopen(sarg, "r"))) {
346 perror(L("fopen"));
347 goto done;
350 if ((ret = quiver_load_from_file(&qs, fs, &errstr))) {
351 fprintf(stderr, "cannot load \u00ab%s\u00bb: %s\n", sarg,
352 errstr);
353 goto done;
356 fclose(fs);
357 fs = 0;
359 if (!(ft = fopen(targ, "r"))) {
360 perror(L("fopen"));
361 goto done;
364 if ((ret = quiver_load_from_file(&qt, ft, &errstr))) {
365 fprintf(stderr, "cannot load \u00ab%s\u00bb: %s\n", sarg,
366 errstr);
367 goto done;
370 fclose(ft);
371 ft = 0;
373 if (qs.v_num != qt.v_num) {
374 fprintf(stderr,
375 "\u00ab%s\u00bb and \u00ab%s\u00bb have different |V|\n",
376 sarg,
377 targ);
378 goto done;
381 /* Make sure all the fixed vertices are present exactly once */
382 for (size_t j = 0; j < fidx; ++j) {
383 const char *f = fixnames[j];
384 int seen_in_s = 0;
385 int seen_in_t = 0;
387 for (size_t k = 0; k < qs.v_num; ++k) {
388 seen_in_s += !strcmp(qs.v[k].name, f);
389 seen_in_t += !strcmp(qt.v[k].name, f);
392 if (seen_in_s != 1 ||
393 seen_in_t != 1) {
394 fprintf(stderr, "\u00ab%s\u00bb appears\n", f);
395 fprintf(stderr, " %d time%s in \u00ab%s\u00bb\n",
396 seen_in_s, (seen_in_s == 1) ? " " : "s", sarg);
397 fprintf(stderr, " %d time%s in \u00ab%s\u00bb\n",
398 seen_in_t, (seen_in_t == 1) ? " " : "s", targ);
399 goto done;
403 /* Make sure all vertices in all files are distinct */
404 for (size_t j = 0; j < qs.v_num; ++j) {
405 for (size_t k = 0; k < j; ++k) {
406 if (!(strcmp(qs.v[j].name, qs.v[k].name))) {
407 fprintf(stderr,
408 "\u00ab%s\u00bb is not distinct in \u00ab%s\u00bb\n",
409 qs.v[j].name, sarg);
412 if (!(strcmp(qt.v[j].name, qt.v[k].name))) {
413 fprintf(stderr,
414 "\u00ab%s\u00bb is not distinct in \u00ab%s\u00bb\n",
415 qs.v[j].name, sarg);
421 * No immediate reason why there shouldn't be an isomorphism.
422 * Let's try it.
424 ret = check_iso(&qs, &qt, fixnames, fidx);
425 done:
426 quiver_clean(&qs);
427 quiver_clean(&qt);
429 if (fs) {
430 fclose(fs);
433 if (ft) {
434 fclose(ft);
437 free(fixnames);
439 return ret;