rcv reorder queue bugfix
[cor_2_6_31.git] / drivers / net / ixgbe / ixgbe_82599.c
blob1984cab7d48b8ab9009f076094971986a58135a2
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
32 #include "ixgbe.h"
33 #include "ixgbe_phy.h"
35 #define IXGBE_82599_MAX_TX_QUEUES 128
36 #define IXGBE_82599_MAX_RX_QUEUES 128
37 #define IXGBE_82599_RAR_ENTRIES 128
38 #define IXGBE_82599_MC_TBL_SIZE 128
39 #define IXGBE_82599_VFT_TBL_SIZE 128
41 s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw,
42 ixgbe_link_speed *speed,
43 bool *autoneg);
44 enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw);
45 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw);
46 s32 ixgbe_setup_mac_link_speed_multispeed_fiber(struct ixgbe_hw *hw,
47 ixgbe_link_speed speed, bool autoneg,
48 bool autoneg_wait_to_complete);
49 s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw);
50 s32 ixgbe_check_mac_link_82599(struct ixgbe_hw *hw,
51 ixgbe_link_speed *speed,
52 bool *link_up, bool link_up_wait_to_complete);
53 s32 ixgbe_setup_mac_link_speed_82599(struct ixgbe_hw *hw,
54 ixgbe_link_speed speed,
55 bool autoneg,
56 bool autoneg_wait_to_complete);
57 static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
58 ixgbe_link_speed *speed,
59 bool *autoneg);
60 static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw);
61 static s32 ixgbe_setup_copper_link_speed_82599(struct ixgbe_hw *hw,
62 ixgbe_link_speed speed,
63 bool autoneg,
64 bool autoneg_wait_to_complete);
65 s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw);
66 s32 ixgbe_set_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq);
67 s32 ixgbe_clear_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq);
68 s32 ixgbe_set_vfta_82599(struct ixgbe_hw *hw, u32 vlan,
69 u32 vind, bool vlan_on);
70 s32 ixgbe_clear_vfta_82599(struct ixgbe_hw *hw);
71 s32 ixgbe_init_uta_tables_82599(struct ixgbe_hw *hw);
72 s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val);
73 s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val);
74 s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw);
75 s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw);
76 u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw);
77 static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw);
79 void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw)
81 struct ixgbe_mac_info *mac = &hw->mac;
82 if (hw->phy.multispeed_fiber) {
83 /* Set up dual speed SFP+ support */
84 mac->ops.setup_link =
85 &ixgbe_setup_mac_link_multispeed_fiber;
86 mac->ops.setup_link_speed =
87 &ixgbe_setup_mac_link_speed_multispeed_fiber;
88 } else {
89 mac->ops.setup_link =
90 &ixgbe_setup_mac_link_82599;
91 mac->ops.setup_link_speed =
92 &ixgbe_setup_mac_link_speed_82599;
96 s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw)
98 s32 ret_val = 0;
99 u16 list_offset, data_offset, data_value;
101 if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) {
102 ixgbe_init_mac_link_ops_82599(hw);
104 hw->phy.ops.reset = NULL;
106 ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
107 &data_offset);
109 if (ret_val != 0)
110 goto setup_sfp_out;
112 /* PHY config will finish before releasing the semaphore */
113 ret_val = ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
114 if (ret_val != 0) {
115 ret_val = IXGBE_ERR_SWFW_SYNC;
116 goto setup_sfp_out;
119 hw->eeprom.ops.read(hw, ++data_offset, &data_value);
120 while (data_value != 0xffff) {
121 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value);
122 IXGBE_WRITE_FLUSH(hw);
123 hw->eeprom.ops.read(hw, ++data_offset, &data_value);
125 /* Now restart DSP by setting Restart_AN */
126 IXGBE_WRITE_REG(hw, IXGBE_AUTOC,
127 (IXGBE_READ_REG(hw, IXGBE_AUTOC) | IXGBE_AUTOC_AN_RESTART));
129 /* Release the semaphore */
130 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
131 /* Delay obtaining semaphore again to allow FW access */
132 msleep(hw->eeprom.semaphore_delay);
135 setup_sfp_out:
136 return ret_val;
140 * ixgbe_get_pcie_msix_count_82599 - Gets MSI-X vector count
141 * @hw: pointer to hardware structure
143 * Read PCIe configuration space, and get the MSI-X vector count from
144 * the capabilities table.
146 u32 ixgbe_get_pcie_msix_count_82599(struct ixgbe_hw *hw)
148 struct ixgbe_adapter *adapter = hw->back;
149 u16 msix_count;
150 pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
151 &msix_count);
152 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
154 /* MSI-X count is zero-based in HW, so increment to give proper value */
155 msix_count++;
157 return msix_count;
160 static s32 ixgbe_get_invariants_82599(struct ixgbe_hw *hw)
162 struct ixgbe_mac_info *mac = &hw->mac;
164 ixgbe_init_mac_link_ops_82599(hw);
166 mac->mcft_size = IXGBE_82599_MC_TBL_SIZE;
167 mac->vft_size = IXGBE_82599_VFT_TBL_SIZE;
168 mac->num_rar_entries = IXGBE_82599_RAR_ENTRIES;
169 mac->max_rx_queues = IXGBE_82599_MAX_RX_QUEUES;
170 mac->max_tx_queues = IXGBE_82599_MAX_TX_QUEUES;
171 mac->max_msix_vectors = ixgbe_get_pcie_msix_count_82599(hw);
173 return 0;
177 * ixgbe_init_phy_ops_82599 - PHY/SFP specific init
178 * @hw: pointer to hardware structure
180 * Initialize any function pointers that were not able to be
181 * set during get_invariants because the PHY/SFP type was
182 * not known. Perform the SFP init if necessary.
185 s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw)
187 struct ixgbe_mac_info *mac = &hw->mac;
188 struct ixgbe_phy_info *phy = &hw->phy;
189 s32 ret_val = 0;
191 /* Identify the PHY or SFP module */
192 ret_val = phy->ops.identify(hw);
194 /* Setup function pointers based on detected SFP module and speeds */
195 ixgbe_init_mac_link_ops_82599(hw);
197 /* If copper media, overwrite with copper function pointers */
198 if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) {
199 mac->ops.setup_link = &ixgbe_setup_copper_link_82599;
200 mac->ops.setup_link_speed =
201 &ixgbe_setup_copper_link_speed_82599;
202 mac->ops.get_link_capabilities =
203 &ixgbe_get_copper_link_capabilities_82599;
206 /* Set necessary function pointers based on phy type */
207 switch (hw->phy.type) {
208 case ixgbe_phy_tn:
209 phy->ops.check_link = &ixgbe_check_phy_link_tnx;
210 phy->ops.get_firmware_version =
211 &ixgbe_get_phy_firmware_version_tnx;
212 break;
213 default:
214 break;
217 return ret_val;
221 * ixgbe_get_link_capabilities_82599 - Determines link capabilities
222 * @hw: pointer to hardware structure
223 * @speed: pointer to link speed
224 * @negotiation: true when autoneg or autotry is enabled
226 * Determines the link capabilities by reading the AUTOC register.
228 s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw,
229 ixgbe_link_speed *speed,
230 bool *negotiation)
232 s32 status = 0;
233 u32 autoc = 0;
236 * Determine link capabilities based on the stored value of AUTOC,
237 * which represents EEPROM defaults. If AUTOC value has not been
238 * stored, use the current register value.
240 if (hw->mac.orig_link_settings_stored)
241 autoc = hw->mac.orig_autoc;
242 else
243 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
245 switch (autoc & IXGBE_AUTOC_LMS_MASK) {
246 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
247 *speed = IXGBE_LINK_SPEED_1GB_FULL;
248 *negotiation = false;
249 break;
251 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
252 *speed = IXGBE_LINK_SPEED_10GB_FULL;
253 *negotiation = false;
254 break;
256 case IXGBE_AUTOC_LMS_1G_AN:
257 *speed = IXGBE_LINK_SPEED_1GB_FULL;
258 *negotiation = true;
259 break;
261 case IXGBE_AUTOC_LMS_10G_SERIAL:
262 *speed = IXGBE_LINK_SPEED_10GB_FULL;
263 *negotiation = false;
264 break;
266 case IXGBE_AUTOC_LMS_KX4_KX_KR:
267 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
268 *speed = IXGBE_LINK_SPEED_UNKNOWN;
269 if (autoc & IXGBE_AUTOC_KR_SUPP)
270 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
271 if (autoc & IXGBE_AUTOC_KX4_SUPP)
272 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
273 if (autoc & IXGBE_AUTOC_KX_SUPP)
274 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
275 *negotiation = true;
276 break;
278 case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
279 *speed = IXGBE_LINK_SPEED_100_FULL;
280 if (autoc & IXGBE_AUTOC_KR_SUPP)
281 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
282 if (autoc & IXGBE_AUTOC_KX4_SUPP)
283 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
284 if (autoc & IXGBE_AUTOC_KX_SUPP)
285 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
286 *negotiation = true;
287 break;
289 case IXGBE_AUTOC_LMS_SGMII_1G_100M:
290 *speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL;
291 *negotiation = false;
292 break;
294 default:
295 status = IXGBE_ERR_LINK_SETUP;
296 goto out;
297 break;
300 if (hw->phy.multispeed_fiber) {
301 *speed |= IXGBE_LINK_SPEED_10GB_FULL |
302 IXGBE_LINK_SPEED_1GB_FULL;
303 *negotiation = true;
306 out:
307 return status;
311 * ixgbe_get_copper_link_capabilities_82599 - Determines link capabilities
312 * @hw: pointer to hardware structure
313 * @speed: pointer to link speed
314 * @autoneg: boolean auto-negotiation value
316 * Determines the link capabilities by reading the AUTOC register.
318 static s32 ixgbe_get_copper_link_capabilities_82599(struct ixgbe_hw *hw,
319 ixgbe_link_speed *speed,
320 bool *autoneg)
322 s32 status = IXGBE_ERR_LINK_SETUP;
323 u16 speed_ability;
325 *speed = 0;
326 *autoneg = true;
328 status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
329 &speed_ability);
331 if (status == 0) {
332 if (speed_ability & MDIO_SPEED_10G)
333 *speed |= IXGBE_LINK_SPEED_10GB_FULL;
334 if (speed_ability & MDIO_PMA_SPEED_1000)
335 *speed |= IXGBE_LINK_SPEED_1GB_FULL;
338 return status;
342 * ixgbe_get_media_type_82599 - Get media type
343 * @hw: pointer to hardware structure
345 * Returns the media type (fiber, copper, backplane)
347 enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw)
349 enum ixgbe_media_type media_type;
351 /* Detect if there is a copper PHY attached. */
352 if (hw->phy.type == ixgbe_phy_cu_unknown ||
353 hw->phy.type == ixgbe_phy_tn) {
354 media_type = ixgbe_media_type_copper;
355 goto out;
358 switch (hw->device_id) {
359 case IXGBE_DEV_ID_82599_KX4:
360 case IXGBE_DEV_ID_82599_XAUI_LOM:
361 /* Default device ID is mezzanine card KX/KX4 */
362 media_type = ixgbe_media_type_backplane;
363 break;
364 case IXGBE_DEV_ID_82599_SFP:
365 media_type = ixgbe_media_type_fiber;
366 break;
367 default:
368 media_type = ixgbe_media_type_unknown;
369 break;
371 out:
372 return media_type;
376 * ixgbe_setup_mac_link_82599 - Setup MAC link settings
377 * @hw: pointer to hardware structure
379 * Configures link settings based on values in the ixgbe_hw struct.
380 * Restarts the link. Performs autonegotiation if needed.
382 s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw)
384 u32 autoc_reg;
385 u32 links_reg;
386 u32 i;
387 s32 status = 0;
389 /* Restart link */
390 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
391 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
392 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
394 /* Only poll for autoneg to complete if specified to do so */
395 if (hw->phy.autoneg_wait_to_complete) {
396 if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
397 IXGBE_AUTOC_LMS_KX4_KX_KR ||
398 (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
399 IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
400 (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
401 IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
402 links_reg = 0; /* Just in case Autoneg time = 0 */
403 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
404 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
405 if (links_reg & IXGBE_LINKS_KX_AN_COMP)
406 break;
407 msleep(100);
409 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
410 status = IXGBE_ERR_AUTONEG_NOT_COMPLETE;
411 hw_dbg(hw, "Autoneg did not complete.\n");
416 /* Add delay to filter out noises during initial link setup */
417 msleep(50);
419 return status;
423 * ixgbe_setup_mac_link_multispeed_fiber - Setup MAC link settings
424 * @hw: pointer to hardware structure
426 * Configures link settings based on values in the ixgbe_hw struct.
427 * Restarts the link for multi-speed fiber at 1G speed, if link
428 * fails at 10G.
429 * Performs autonegotiation if needed.
431 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw)
433 s32 status = 0;
434 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_82599_AUTONEG;
435 status = ixgbe_setup_mac_link_speed_multispeed_fiber(hw, link_speed,
436 true, true);
437 return status;
441 * ixgbe_setup_mac_link_speed_multispeed_fiber - Set MAC link speed
442 * @hw: pointer to hardware structure
443 * @speed: new link speed
444 * @autoneg: true if autonegotiation enabled
445 * @autoneg_wait_to_complete: true when waiting for completion is needed
447 * Set the link speed in the AUTOC register and restarts link.
449 s32 ixgbe_setup_mac_link_speed_multispeed_fiber(struct ixgbe_hw *hw,
450 ixgbe_link_speed speed,
451 bool autoneg,
452 bool autoneg_wait_to_complete)
454 s32 status = 0;
455 ixgbe_link_speed phy_link_speed;
456 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
457 u32 speedcnt = 0;
458 u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);
459 bool link_up = false;
460 bool negotiation;
461 int i;
463 /* Mask off requested but non-supported speeds */
464 hw->mac.ops.get_link_capabilities(hw, &phy_link_speed, &negotiation);
465 speed &= phy_link_speed;
467 /* Set autoneg_advertised value based on input link speed */
468 hw->phy.autoneg_advertised = 0;
470 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
471 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
473 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
474 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
477 * When the driver changes the link speeds that it can support,
478 * it sets autotry_restart to true to indicate that we need to
479 * initiate a new autotry session with the link partner. To do
480 * so, we set the speed then disable and re-enable the tx laser, to
481 * alert the link partner that it also needs to restart autotry on its
482 * end. This is consistent with true clause 37 autoneg, which also
483 * involves a loss of signal.
487 * Try each speed one by one, highest priority first. We do this in
488 * software because 10gb fiber doesn't support speed autonegotiation.
490 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
491 speedcnt++;
492 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
494 /* If we already have link at this speed, just jump out */
495 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
497 if ((phy_link_speed == IXGBE_LINK_SPEED_10GB_FULL) && link_up)
498 goto out;
500 /* Set the module link speed */
501 esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5);
502 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
504 /* Allow module to change analog characteristics (1G->10G) */
505 msleep(40);
507 status = ixgbe_setup_mac_link_speed_82599(hw,
508 IXGBE_LINK_SPEED_10GB_FULL,
509 autoneg,
510 autoneg_wait_to_complete);
511 if (status != 0)
512 goto out;
514 /* Flap the tx laser if it has not already been done */
515 if (hw->mac.autotry_restart) {
516 /* Disable tx laser; allow 100us to go dark per spec */
517 esdp_reg |= IXGBE_ESDP_SDP3;
518 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
519 udelay(100);
521 /* Enable tx laser; allow 2ms to light up per spec */
522 esdp_reg &= ~IXGBE_ESDP_SDP3;
523 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
524 msleep(2);
526 hw->mac.autotry_restart = false;
529 /* The controller may take up to 500ms at 10g to acquire link */
530 for (i = 0; i < 5; i++) {
531 /* Wait for the link partner to also set speed */
532 msleep(100);
534 /* If we have link, just jump out */
535 hw->mac.ops.check_link(hw, &phy_link_speed,
536 &link_up, false);
537 if (link_up)
538 goto out;
542 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
543 speedcnt++;
544 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
545 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
547 /* If we already have link at this speed, just jump out */
548 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
550 if ((phy_link_speed == IXGBE_LINK_SPEED_1GB_FULL) && link_up)
551 goto out;
553 /* Set the module link speed */
554 esdp_reg &= ~IXGBE_ESDP_SDP5;
555 esdp_reg |= IXGBE_ESDP_SDP5_DIR;
556 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
558 /* Allow module to change analog characteristics (10G->1G) */
559 msleep(40);
561 status = ixgbe_setup_mac_link_speed_82599(hw,
562 IXGBE_LINK_SPEED_1GB_FULL,
563 autoneg,
564 autoneg_wait_to_complete);
565 if (status != 0)
566 goto out;
568 /* Flap the tx laser if it has not already been done */
569 if (hw->mac.autotry_restart) {
570 /* Disable tx laser; allow 100us to go dark per spec */
571 esdp_reg |= IXGBE_ESDP_SDP3;
572 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
573 udelay(100);
575 /* Enable tx laser; allow 2ms to light up per spec */
576 esdp_reg &= ~IXGBE_ESDP_SDP3;
577 IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
578 msleep(2);
580 hw->mac.autotry_restart = false;
583 /* Wait for the link partner to also set speed */
584 msleep(100);
586 /* If we have link, just jump out */
587 hw->mac.ops.check_link(hw, &phy_link_speed, &link_up, false);
588 if (link_up)
589 goto out;
593 * We didn't get link. Configure back to the highest speed we tried,
594 * (if there was more than one). We call ourselves back with just the
595 * single highest speed that the user requested.
597 if (speedcnt > 1)
598 status = ixgbe_setup_mac_link_speed_multispeed_fiber(hw,
599 highest_link_speed,
600 autoneg,
601 autoneg_wait_to_complete);
603 out:
604 return status;
608 * ixgbe_check_mac_link_82599 - Determine link and speed status
609 * @hw: pointer to hardware structure
610 * @speed: pointer to link speed
611 * @link_up: true when link is up
612 * @link_up_wait_to_complete: bool used to wait for link up or not
614 * Reads the links register to determine if link is up and the current speed
616 s32 ixgbe_check_mac_link_82599(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
617 bool *link_up, bool link_up_wait_to_complete)
619 u32 links_reg;
620 u32 i;
622 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
623 if (link_up_wait_to_complete) {
624 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
625 if (links_reg & IXGBE_LINKS_UP) {
626 *link_up = true;
627 break;
628 } else {
629 *link_up = false;
631 msleep(100);
632 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
634 } else {
635 if (links_reg & IXGBE_LINKS_UP)
636 *link_up = true;
637 else
638 *link_up = false;
641 if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
642 IXGBE_LINKS_SPEED_10G_82599)
643 *speed = IXGBE_LINK_SPEED_10GB_FULL;
644 else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
645 IXGBE_LINKS_SPEED_1G_82599)
646 *speed = IXGBE_LINK_SPEED_1GB_FULL;
647 else
648 *speed = IXGBE_LINK_SPEED_100_FULL;
650 /* if link is down, zero out the current_mode */
651 if (*link_up == false) {
652 hw->fc.current_mode = ixgbe_fc_none;
653 hw->fc.fc_was_autonegged = false;
656 return 0;
660 * ixgbe_setup_mac_link_speed_82599 - Set MAC link speed
661 * @hw: pointer to hardware structure
662 * @speed: new link speed
663 * @autoneg: true if autonegotiation enabled
664 * @autoneg_wait_to_complete: true when waiting for completion is needed
666 * Set the link speed in the AUTOC register and restarts link.
668 s32 ixgbe_setup_mac_link_speed_82599(struct ixgbe_hw *hw,
669 ixgbe_link_speed speed, bool autoneg,
670 bool autoneg_wait_to_complete)
672 s32 status = 0;
673 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
674 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
675 u32 start_autoc = autoc;
676 u32 orig_autoc = 0;
677 u32 link_mode = autoc & IXGBE_AUTOC_LMS_MASK;
678 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
679 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
680 u32 links_reg;
681 u32 i;
682 ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN;
684 /* Check to see if speed passed in is supported. */
685 hw->mac.ops.get_link_capabilities(hw, &link_capabilities, &autoneg);
686 speed &= link_capabilities;
688 if (speed == IXGBE_LINK_SPEED_UNKNOWN) {
689 status = IXGBE_ERR_LINK_SETUP;
690 goto out;
693 /* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
694 if (hw->mac.orig_link_settings_stored)
695 orig_autoc = hw->mac.orig_autoc;
696 else
697 orig_autoc = autoc;
700 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
701 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
702 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
703 /* Set KX4/KX/KR support according to speed requested */
704 autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP);
705 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
706 if (orig_autoc & IXGBE_AUTOC_KX4_SUPP)
707 autoc |= IXGBE_AUTOC_KX4_SUPP;
708 if (orig_autoc & IXGBE_AUTOC_KR_SUPP)
709 autoc |= IXGBE_AUTOC_KR_SUPP;
710 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
711 autoc |= IXGBE_AUTOC_KX_SUPP;
712 } else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) &&
713 (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
714 link_mode == IXGBE_AUTOC_LMS_1G_AN)) {
715 /* Switch from 1G SFI to 10G SFI if requested */
716 if ((speed == IXGBE_LINK_SPEED_10GB_FULL) &&
717 (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) {
718 autoc &= ~IXGBE_AUTOC_LMS_MASK;
719 autoc |= IXGBE_AUTOC_LMS_10G_SERIAL;
721 } else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) &&
722 (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) {
723 /* Switch from 10G SFI to 1G SFI if requested */
724 if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
725 (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) {
726 autoc &= ~IXGBE_AUTOC_LMS_MASK;
727 if (autoneg)
728 autoc |= IXGBE_AUTOC_LMS_1G_AN;
729 else
730 autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN;
734 if (autoc != start_autoc) {
735 /* Restart link */
736 autoc |= IXGBE_AUTOC_AN_RESTART;
737 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc);
739 /* Only poll for autoneg to complete if specified to do so */
740 if (autoneg_wait_to_complete) {
741 if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
742 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
743 link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
744 links_reg = 0; /*Just in case Autoneg time=0*/
745 for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
746 links_reg =
747 IXGBE_READ_REG(hw, IXGBE_LINKS);
748 if (links_reg & IXGBE_LINKS_KX_AN_COMP)
749 break;
750 msleep(100);
752 if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
753 status =
754 IXGBE_ERR_AUTONEG_NOT_COMPLETE;
755 hw_dbg(hw, "Autoneg did not "
756 "complete.\n");
761 /* Add delay to filter out noises during initial link setup */
762 msleep(50);
765 out:
766 return status;
770 * ixgbe_setup_copper_link_82599 - Setup copper link settings
771 * @hw: pointer to hardware structure
773 * Restarts the link on PHY and then MAC. Performs autonegotiation if needed.
775 static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw)
777 s32 status;
779 /* Restart autonegotiation on PHY */
780 status = hw->phy.ops.setup_link(hw);
782 /* Set up MAC */
783 ixgbe_setup_mac_link_82599(hw);
785 return status;
789 * ixgbe_setup_copper_link_speed_82599 - Set the PHY autoneg advertised field
790 * @hw: pointer to hardware structure
791 * @speed: new link speed
792 * @autoneg: true if autonegotiation enabled
793 * @autoneg_wait_to_complete: true if waiting is needed to complete
795 * Restarts link on PHY and MAC based on settings passed in.
797 static s32 ixgbe_setup_copper_link_speed_82599(struct ixgbe_hw *hw,
798 ixgbe_link_speed speed,
799 bool autoneg,
800 bool autoneg_wait_to_complete)
802 s32 status;
804 /* Setup the PHY according to input speed */
805 status = hw->phy.ops.setup_link_speed(hw, speed, autoneg,
806 autoneg_wait_to_complete);
807 /* Set up MAC */
808 ixgbe_setup_mac_link_82599(hw);
810 return status;
814 * ixgbe_reset_hw_82599 - Perform hardware reset
815 * @hw: pointer to hardware structure
817 * Resets the hardware by resetting the transmit and receive units, masks
818 * and clears all interrupts, perform a PHY reset, and perform a link (MAC)
819 * reset.
821 s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw)
823 s32 status = 0;
824 u32 ctrl, ctrl_ext;
825 u32 i;
826 u32 autoc;
827 u32 autoc2;
829 /* Call adapter stop to disable tx/rx and clear interrupts */
830 hw->mac.ops.stop_adapter(hw);
832 /* PHY ops must be identified and initialized prior to reset */
834 /* Init PHY and function pointers, perform SFP setup */
835 status = hw->phy.ops.init(hw);
837 if (status == IXGBE_ERR_SFP_NOT_SUPPORTED)
838 goto reset_hw_out;
840 /* Setup SFP module if there is one present. */
841 if (hw->phy.sfp_setup_needed) {
842 status = hw->mac.ops.setup_sfp(hw);
843 hw->phy.sfp_setup_needed = false;
846 /* Reset PHY */
847 if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL)
848 hw->phy.ops.reset(hw);
851 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
852 * access and verify no pending requests before reset
854 status = ixgbe_disable_pcie_master(hw);
855 if (status != 0) {
856 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
857 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
861 * Issue global reset to the MAC. This needs to be a SW reset.
862 * If link reset is used, it might reset the MAC when mng is using it
864 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
865 IXGBE_WRITE_REG(hw, IXGBE_CTRL, (ctrl | IXGBE_CTRL_RST));
866 IXGBE_WRITE_FLUSH(hw);
868 /* Poll for reset bit to self-clear indicating reset is complete */
869 for (i = 0; i < 10; i++) {
870 udelay(1);
871 ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
872 if (!(ctrl & IXGBE_CTRL_RST))
873 break;
875 if (ctrl & IXGBE_CTRL_RST) {
876 status = IXGBE_ERR_RESET_FAILED;
877 hw_dbg(hw, "Reset polling failed to complete.\n");
879 /* Clear PF Reset Done bit so PF/VF Mail Ops can work */
880 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
881 ctrl_ext |= IXGBE_CTRL_EXT_PFRSTD;
882 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
884 msleep(50);
889 * Store the original AUTOC/AUTOC2 values if they have not been
890 * stored off yet. Otherwise restore the stored original
891 * values since the reset operation sets back to defaults.
893 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
894 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
895 if (hw->mac.orig_link_settings_stored == false) {
896 hw->mac.orig_autoc = autoc;
897 hw->mac.orig_autoc2 = autoc2;
898 hw->mac.orig_link_settings_stored = true;
899 } else {
900 if (autoc != hw->mac.orig_autoc)
901 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, (hw->mac.orig_autoc |
902 IXGBE_AUTOC_AN_RESTART));
904 if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) !=
905 (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) {
906 autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK;
907 autoc2 |= (hw->mac.orig_autoc2 &
908 IXGBE_AUTOC2_UPPER_MASK);
909 IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2);
914 * Store MAC address from RAR0, clear receive address registers, and
915 * clear the multicast table. Also reset num_rar_entries to 128,
916 * since we modify this value when programming the SAN MAC address.
918 hw->mac.num_rar_entries = 128;
919 hw->mac.ops.init_rx_addrs(hw);
921 /* Store the permanent mac address */
922 hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);
924 /* Store the permanent SAN mac address */
925 hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr);
927 /* Add the SAN MAC address to the RAR only if it's a valid address */
928 if (ixgbe_validate_mac_addr(hw->mac.san_addr) == 0) {
929 hw->mac.ops.set_rar(hw, hw->mac.num_rar_entries - 1,
930 hw->mac.san_addr, 0, IXGBE_RAH_AV);
932 /* Reserve the last RAR for the SAN MAC address */
933 hw->mac.num_rar_entries--;
936 reset_hw_out:
937 return status;
941 * ixgbe_clear_vmdq_82599 - Disassociate a VMDq pool index from a rx address
942 * @hw: pointer to hardware struct
943 * @rar: receive address register index to disassociate
944 * @vmdq: VMDq pool index to remove from the rar
946 s32 ixgbe_clear_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
948 u32 mpsar_lo, mpsar_hi;
949 u32 rar_entries = hw->mac.num_rar_entries;
951 if (rar < rar_entries) {
952 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
953 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
955 if (!mpsar_lo && !mpsar_hi)
956 goto done;
958 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
959 if (mpsar_lo) {
960 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
961 mpsar_lo = 0;
963 if (mpsar_hi) {
964 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
965 mpsar_hi = 0;
967 } else if (vmdq < 32) {
968 mpsar_lo &= ~(1 << vmdq);
969 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
970 } else {
971 mpsar_hi &= ~(1 << (vmdq - 32));
972 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
975 /* was that the last pool using this rar? */
976 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
977 hw->mac.ops.clear_rar(hw, rar);
978 } else {
979 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
982 done:
983 return 0;
987 * ixgbe_set_vmdq_82599 - Associate a VMDq pool index with a rx address
988 * @hw: pointer to hardware struct
989 * @rar: receive address register index to associate with a VMDq index
990 * @vmdq: VMDq pool index
992 s32 ixgbe_set_vmdq_82599(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
994 u32 mpsar;
995 u32 rar_entries = hw->mac.num_rar_entries;
997 if (rar < rar_entries) {
998 if (vmdq < 32) {
999 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
1000 mpsar |= 1 << vmdq;
1001 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
1002 } else {
1003 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
1004 mpsar |= 1 << (vmdq - 32);
1005 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
1007 } else {
1008 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
1010 return 0;
1014 * ixgbe_set_vfta_82599 - Set VLAN filter table
1015 * @hw: pointer to hardware structure
1016 * @vlan: VLAN id to write to VLAN filter
1017 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
1018 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
1020 * Turn on/off specified VLAN in the VLAN filter table.
1022 s32 ixgbe_set_vfta_82599(struct ixgbe_hw *hw, u32 vlan, u32 vind,
1023 bool vlan_on)
1025 u32 regindex;
1026 u32 bitindex;
1027 u32 bits;
1028 u32 first_empty_slot;
1030 if (vlan > 4095)
1031 return IXGBE_ERR_PARAM;
1034 * this is a 2 part operation - first the VFTA, then the
1035 * VLVF and VLVFB if vind is set
1038 /* Part 1
1039 * The VFTA is a bitstring made up of 128 32-bit registers
1040 * that enable the particular VLAN id, much like the MTA:
1041 * bits[11-5]: which register
1042 * bits[4-0]: which bit in the register
1044 regindex = (vlan >> 5) & 0x7F;
1045 bitindex = vlan & 0x1F;
1046 bits = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
1047 if (vlan_on)
1048 bits |= (1 << bitindex);
1049 else
1050 bits &= ~(1 << bitindex);
1051 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), bits);
1054 /* Part 2
1055 * If the vind is set
1056 * Either vlan_on
1057 * make sure the vlan is in VLVF
1058 * set the vind bit in the matching VLVFB
1059 * Or !vlan_on
1060 * clear the pool bit and possibly the vind
1062 if (vind) {
1063 /* find the vlanid or the first empty slot */
1064 first_empty_slot = 0;
1066 for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
1067 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
1068 if (!bits && !first_empty_slot)
1069 first_empty_slot = regindex;
1070 else if ((bits & 0x0FFF) == vlan)
1071 break;
1074 if (regindex >= IXGBE_VLVF_ENTRIES) {
1075 if (first_empty_slot)
1076 regindex = first_empty_slot;
1077 else {
1078 hw_dbg(hw, "No space in VLVF.\n");
1079 goto out;
1083 if (vlan_on) {
1084 /* set the pool bit */
1085 if (vind < 32) {
1086 bits = IXGBE_READ_REG(hw,
1087 IXGBE_VLVFB(regindex * 2));
1088 bits |= (1 << vind);
1089 IXGBE_WRITE_REG(hw,
1090 IXGBE_VLVFB(regindex * 2), bits);
1091 } else {
1092 bits = IXGBE_READ_REG(hw,
1093 IXGBE_VLVFB((regindex * 2) + 1));
1094 bits |= (1 << vind);
1095 IXGBE_WRITE_REG(hw,
1096 IXGBE_VLVFB((regindex * 2) + 1), bits);
1098 } else {
1099 /* clear the pool bit */
1100 if (vind < 32) {
1101 bits = IXGBE_READ_REG(hw,
1102 IXGBE_VLVFB(regindex * 2));
1103 bits &= ~(1 << vind);
1104 IXGBE_WRITE_REG(hw,
1105 IXGBE_VLVFB(regindex * 2), bits);
1106 bits |= IXGBE_READ_REG(hw,
1107 IXGBE_VLVFB((regindex * 2) + 1));
1108 } else {
1109 bits = IXGBE_READ_REG(hw,
1110 IXGBE_VLVFB((regindex * 2) + 1));
1111 bits &= ~(1 << vind);
1112 IXGBE_WRITE_REG(hw,
1113 IXGBE_VLVFB((regindex * 2) + 1), bits);
1114 bits |= IXGBE_READ_REG(hw,
1115 IXGBE_VLVFB(regindex * 2));
1119 if (bits)
1120 IXGBE_WRITE_REG(hw, IXGBE_VLVF(regindex),
1121 (IXGBE_VLVF_VIEN | vlan));
1122 else
1123 IXGBE_WRITE_REG(hw, IXGBE_VLVF(regindex), 0);
1126 out:
1127 return 0;
1131 * ixgbe_clear_vfta_82599 - Clear VLAN filter table
1132 * @hw: pointer to hardware structure
1134 * Clears the VLAN filer table, and the VMDq index associated with the filter
1136 s32 ixgbe_clear_vfta_82599(struct ixgbe_hw *hw)
1138 u32 offset;
1140 for (offset = 0; offset < hw->mac.vft_size; offset++)
1141 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
1143 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
1144 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
1145 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
1146 IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset * 2) + 1), 0);
1149 return 0;
1153 * ixgbe_init_uta_tables_82599 - Initialize the Unicast Table Array
1154 * @hw: pointer to hardware structure
1156 s32 ixgbe_init_uta_tables_82599(struct ixgbe_hw *hw)
1158 int i;
1159 hw_dbg(hw, " Clearing UTA\n");
1161 for (i = 0; i < 128; i++)
1162 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
1164 return 0;
1168 * ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables.
1169 * @hw: pointer to hardware structure
1171 s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw)
1173 int i;
1174 u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL);
1175 fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE;
1178 * Before starting reinitialization process,
1179 * FDIRCMD.CMD must be zero.
1181 for (i = 0; i < IXGBE_FDIRCMD_CMD_POLL; i++) {
1182 if (!(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1183 IXGBE_FDIRCMD_CMD_MASK))
1184 break;
1185 udelay(10);
1187 if (i >= IXGBE_FDIRCMD_CMD_POLL) {
1188 hw_dbg(hw ,"Flow Director previous command isn't complete, "
1189 "aborting table re-initialization. \n");
1190 return IXGBE_ERR_FDIR_REINIT_FAILED;
1193 IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0);
1194 IXGBE_WRITE_FLUSH(hw);
1196 * 82599 adapters flow director init flow cannot be restarted,
1197 * Workaround 82599 silicon errata by performing the following steps
1198 * before re-writing the FDIRCTRL control register with the same value.
1199 * - write 1 to bit 8 of FDIRCMD register &
1200 * - write 0 to bit 8 of FDIRCMD register
1202 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1203 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) |
1204 IXGBE_FDIRCMD_CLEARHT));
1205 IXGBE_WRITE_FLUSH(hw);
1206 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
1207 (IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
1208 ~IXGBE_FDIRCMD_CLEARHT));
1209 IXGBE_WRITE_FLUSH(hw);
1211 * Clear FDIR Hash register to clear any leftover hashes
1212 * waiting to be programmed.
1214 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, 0x00);
1215 IXGBE_WRITE_FLUSH(hw);
1217 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1218 IXGBE_WRITE_FLUSH(hw);
1220 /* Poll init-done after we write FDIRCTRL register */
1221 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1222 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1223 IXGBE_FDIRCTRL_INIT_DONE)
1224 break;
1225 udelay(10);
1227 if (i >= IXGBE_FDIR_INIT_DONE_POLL) {
1228 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1229 return IXGBE_ERR_FDIR_REINIT_FAILED;
1232 /* Clear FDIR statistics registers (read to clear) */
1233 IXGBE_READ_REG(hw, IXGBE_FDIRUSTAT);
1234 IXGBE_READ_REG(hw, IXGBE_FDIRFSTAT);
1235 IXGBE_READ_REG(hw, IXGBE_FDIRMATCH);
1236 IXGBE_READ_REG(hw, IXGBE_FDIRMISS);
1237 IXGBE_READ_REG(hw, IXGBE_FDIRLEN);
1239 return 0;
1243 * ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters
1244 * @hw: pointer to hardware structure
1245 * @pballoc: which mode to allocate filters with
1247 s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 pballoc)
1249 u32 fdirctrl = 0;
1250 u32 pbsize;
1251 int i;
1254 * Before enabling Flow Director, the Rx Packet Buffer size
1255 * must be reduced. The new value is the current size minus
1256 * flow director memory usage size.
1258 pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1259 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1260 (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1263 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1264 * intialized to zero for non DCB mode otherwise actual total RX PB
1265 * would be bigger than programmed and filter space would run into
1266 * the PB 0 region.
1268 for (i = 1; i < 8; i++)
1269 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1271 /* Send interrupt when 64 filters are left */
1272 fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1274 /* Set the maximum length per hash bucket to 0xA filters */
1275 fdirctrl |= 0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT;
1277 switch (pballoc) {
1278 case IXGBE_FDIR_PBALLOC_64K:
1279 /* 8k - 1 signature filters */
1280 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1281 break;
1282 case IXGBE_FDIR_PBALLOC_128K:
1283 /* 16k - 1 signature filters */
1284 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1285 break;
1286 case IXGBE_FDIR_PBALLOC_256K:
1287 /* 32k - 1 signature filters */
1288 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1289 break;
1290 default:
1291 /* bad value */
1292 return IXGBE_ERR_CONFIG;
1295 /* Move the flexible bytes to use the ethertype - shift 6 words */
1296 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1298 fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1300 /* Prime the keys for hashing */
1301 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1302 htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1303 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1304 htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1307 * Poll init-done after we write the register. Estimated times:
1308 * 10G: PBALLOC = 11b, timing is 60us
1309 * 1G: PBALLOC = 11b, timing is 600us
1310 * 100M: PBALLOC = 11b, timing is 6ms
1312 * Multiple these timings by 4 if under full Rx load
1314 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1315 * 1 msec per poll time. If we're at line rate and drop to 100M, then
1316 * this might not finish in our poll time, but we can live with that
1317 * for now.
1319 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1320 IXGBE_WRITE_FLUSH(hw);
1321 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1322 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1323 IXGBE_FDIRCTRL_INIT_DONE)
1324 break;
1325 msleep(1);
1327 if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1328 hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
1330 return 0;
1334 * ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters
1335 * @hw: pointer to hardware structure
1336 * @pballoc: which mode to allocate filters with
1338 s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 pballoc)
1340 u32 fdirctrl = 0;
1341 u32 pbsize;
1342 int i;
1345 * Before enabling Flow Director, the Rx Packet Buffer size
1346 * must be reduced. The new value is the current size minus
1347 * flow director memory usage size.
1349 pbsize = (1 << (IXGBE_FDIR_PBALLOC_SIZE_SHIFT + pballoc));
1350 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(0),
1351 (IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(0)) - pbsize));
1354 * The defaults in the HW for RX PB 1-7 are not zero and so should be
1355 * intialized to zero for non DCB mode otherwise actual total RX PB
1356 * would be bigger than programmed and filter space would run into
1357 * the PB 0 region.
1359 for (i = 1; i < 8; i++)
1360 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
1362 /* Send interrupt when 64 filters are left */
1363 fdirctrl |= 4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT;
1365 switch (pballoc) {
1366 case IXGBE_FDIR_PBALLOC_64K:
1367 /* 2k - 1 perfect filters */
1368 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_64K;
1369 break;
1370 case IXGBE_FDIR_PBALLOC_128K:
1371 /* 4k - 1 perfect filters */
1372 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_128K;
1373 break;
1374 case IXGBE_FDIR_PBALLOC_256K:
1375 /* 8k - 1 perfect filters */
1376 fdirctrl |= IXGBE_FDIRCTRL_PBALLOC_256K;
1377 break;
1378 default:
1379 /* bad value */
1380 return IXGBE_ERR_CONFIG;
1383 /* Turn perfect match filtering on */
1384 fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH;
1385 fdirctrl |= IXGBE_FDIRCTRL_REPORT_STATUS;
1387 /* Move the flexible bytes to use the ethertype - shift 6 words */
1388 fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT);
1390 /* Prime the keys for hashing */
1391 IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY,
1392 htonl(IXGBE_ATR_BUCKET_HASH_KEY));
1393 IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY,
1394 htonl(IXGBE_ATR_SIGNATURE_HASH_KEY));
1397 * Poll init-done after we write the register. Estimated times:
1398 * 10G: PBALLOC = 11b, timing is 60us
1399 * 1G: PBALLOC = 11b, timing is 600us
1400 * 100M: PBALLOC = 11b, timing is 6ms
1402 * Multiple these timings by 4 if under full Rx load
1404 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
1405 * 1 msec per poll time. If we're at line rate and drop to 100M, then
1406 * this might not finish in our poll time, but we can live with that
1407 * for now.
1410 /* Set the maximum length per hash bucket to 0xA filters */
1411 fdirctrl |= (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT);
1413 IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
1414 IXGBE_WRITE_FLUSH(hw);
1415 for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
1416 if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
1417 IXGBE_FDIRCTRL_INIT_DONE)
1418 break;
1419 msleep(1);
1421 if (i >= IXGBE_FDIR_INIT_DONE_POLL)
1422 hw_dbg(hw, "Flow Director Perfect poll time exceeded!\n");
1424 return 0;
1429 * ixgbe_atr_compute_hash_82599 - Compute the hashes for SW ATR
1430 * @stream: input bitstream to compute the hash on
1431 * @key: 32-bit hash key
1433 u16 ixgbe_atr_compute_hash_82599(struct ixgbe_atr_input *atr_input, u32 key)
1436 * The algorithm is as follows:
1437 * Hash[15:0] = Sum { S[n] x K[n+16] }, n = 0...350
1438 * where Sum {A[n]}, n = 0...n is bitwise XOR of A[0], A[1]...A[n]
1439 * and A[n] x B[n] is bitwise AND between same length strings
1441 * K[n] is 16 bits, defined as:
1442 * for n modulo 32 >= 15, K[n] = K[n % 32 : (n % 32) - 15]
1443 * for n modulo 32 < 15, K[n] =
1444 * K[(n % 32:0) | (31:31 - (14 - (n % 32)))]
1446 * S[n] is 16 bits, defined as:
1447 * for n >= 15, S[n] = S[n:n - 15]
1448 * for n < 15, S[n] = S[(n:0) | (350:350 - (14 - n))]
1450 * To simplify for programming, the algorithm is implemented
1451 * in software this way:
1453 * Key[31:0], Stream[335:0]
1455 * tmp_key[11 * 32 - 1:0] = 11{Key[31:0] = key concatenated 11 times
1456 * int_key[350:0] = tmp_key[351:1]
1457 * int_stream[365:0] = Stream[14:0] | Stream[335:0] | Stream[335:321]
1459 * hash[15:0] = 0;
1460 * for (i = 0; i < 351; i++) {
1461 * if (int_key[i])
1462 * hash ^= int_stream[(i + 15):i];
1466 union {
1467 u64 fill[6];
1468 u32 key[11];
1469 u8 key_stream[44];
1470 } tmp_key;
1472 u8 *stream = (u8 *)atr_input;
1473 u8 int_key[44]; /* upper-most bit unused */
1474 u8 hash_str[46]; /* upper-most 2 bits unused */
1475 u16 hash_result = 0;
1476 int i, j, k, h;
1479 * Initialize the fill member to prevent warnings
1480 * on some compilers
1482 tmp_key.fill[0] = 0;
1484 /* First load the temporary key stream */
1485 for (i = 0; i < 6; i++) {
1486 u64 fillkey = ((u64)key << 32) | key;
1487 tmp_key.fill[i] = fillkey;
1491 * Set the interim key for the hashing. Bit 352 is unused, so we must
1492 * shift and compensate when building the key.
1495 int_key[0] = tmp_key.key_stream[0] >> 1;
1496 for (i = 1, j = 0; i < 44; i++) {
1497 unsigned int this_key = tmp_key.key_stream[j] << 7;
1498 j++;
1499 int_key[i] = (u8)(this_key | (tmp_key.key_stream[j] >> 1));
1503 * Set the interim bit string for the hashing. Bits 368 and 367 are
1504 * unused, so shift and compensate when building the string.
1506 hash_str[0] = (stream[40] & 0x7f) >> 1;
1507 for (i = 1, j = 40; i < 46; i++) {
1508 unsigned int this_str = stream[j] << 7;
1509 j++;
1510 if (j > 41)
1511 j = 0;
1512 hash_str[i] = (u8)(this_str | (stream[j] >> 1));
1516 * Now compute the hash. i is the index into hash_str, j is into our
1517 * key stream, k is counting the number of bits, and h interates within
1518 * each byte.
1520 for (i = 45, j = 43, k = 0; k < 351 && i >= 2 && j >= 0; i--, j--) {
1521 for (h = 0; h < 8 && k < 351; h++, k++) {
1522 if (int_key[j] & (1 << h)) {
1524 * Key bit is set, XOR in the current 16-bit
1525 * string. Example of processing:
1526 * h = 0,
1527 * tmp = (hash_str[i - 2] & 0 << 16) |
1528 * (hash_str[i - 1] & 0xff << 8) |
1529 * (hash_str[i] & 0xff >> 0)
1530 * So tmp = hash_str[15 + k:k], since the
1531 * i + 2 clause rolls off the 16-bit value
1532 * h = 7,
1533 * tmp = (hash_str[i - 2] & 0x7f << 9) |
1534 * (hash_str[i - 1] & 0xff << 1) |
1535 * (hash_str[i] & 0x80 >> 7)
1537 int tmp = (hash_str[i] >> h);
1538 tmp |= (hash_str[i - 1] << (8 - h));
1539 tmp |= (int)(hash_str[i - 2] & ((1 << h) - 1))
1540 << (16 - h);
1541 hash_result ^= (u16)tmp;
1546 return hash_result;
1550 * ixgbe_atr_set_vlan_id_82599 - Sets the VLAN id in the ATR input stream
1551 * @input: input stream to modify
1552 * @vlan: the VLAN id to load
1554 s32 ixgbe_atr_set_vlan_id_82599(struct ixgbe_atr_input *input, u16 vlan)
1556 input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] = vlan >> 8;
1557 input->byte_stream[IXGBE_ATR_VLAN_OFFSET] = vlan & 0xff;
1559 return 0;
1563 * ixgbe_atr_set_src_ipv4_82599 - Sets the source IPv4 address
1564 * @input: input stream to modify
1565 * @src_addr: the IP address to load
1567 s32 ixgbe_atr_set_src_ipv4_82599(struct ixgbe_atr_input *input, u32 src_addr)
1569 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] = src_addr >> 24;
1570 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] =
1571 (src_addr >> 16) & 0xff;
1572 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] =
1573 (src_addr >> 8) & 0xff;
1574 input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET] = src_addr & 0xff;
1576 return 0;
1580 * ixgbe_atr_set_dst_ipv4_82599 - Sets the destination IPv4 address
1581 * @input: input stream to modify
1582 * @dst_addr: the IP address to load
1584 s32 ixgbe_atr_set_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 dst_addr)
1586 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] = dst_addr >> 24;
1587 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] =
1588 (dst_addr >> 16) & 0xff;
1589 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] =
1590 (dst_addr >> 8) & 0xff;
1591 input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET] = dst_addr & 0xff;
1593 return 0;
1597 * ixgbe_atr_set_src_ipv6_82599 - Sets the source IPv6 address
1598 * @input: input stream to modify
1599 * @src_addr_1: the first 4 bytes of the IP address to load
1600 * @src_addr_2: the second 4 bytes of the IP address to load
1601 * @src_addr_3: the third 4 bytes of the IP address to load
1602 * @src_addr_4: the fourth 4 bytes of the IP address to load
1604 s32 ixgbe_atr_set_src_ipv6_82599(struct ixgbe_atr_input *input,
1605 u32 src_addr_1, u32 src_addr_2,
1606 u32 src_addr_3, u32 src_addr_4)
1608 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET] = src_addr_4 & 0xff;
1609 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] =
1610 (src_addr_4 >> 8) & 0xff;
1611 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] =
1612 (src_addr_4 >> 16) & 0xff;
1613 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] = src_addr_4 >> 24;
1615 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4] = src_addr_3 & 0xff;
1616 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] =
1617 (src_addr_3 >> 8) & 0xff;
1618 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] =
1619 (src_addr_3 >> 16) & 0xff;
1620 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] = src_addr_3 >> 24;
1622 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8] = src_addr_2 & 0xff;
1623 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] =
1624 (src_addr_2 >> 8) & 0xff;
1625 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] =
1626 (src_addr_2 >> 16) & 0xff;
1627 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] = src_addr_2 >> 24;
1629 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12] = src_addr_1 & 0xff;
1630 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] =
1631 (src_addr_1 >> 8) & 0xff;
1632 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] =
1633 (src_addr_1 >> 16) & 0xff;
1634 input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] = src_addr_1 >> 24;
1636 return 0;
1640 * ixgbe_atr_set_dst_ipv6_82599 - Sets the destination IPv6 address
1641 * @input: input stream to modify
1642 * @dst_addr_1: the first 4 bytes of the IP address to load
1643 * @dst_addr_2: the second 4 bytes of the IP address to load
1644 * @dst_addr_3: the third 4 bytes of the IP address to load
1645 * @dst_addr_4: the fourth 4 bytes of the IP address to load
1647 s32 ixgbe_atr_set_dst_ipv6_82599(struct ixgbe_atr_input *input,
1648 u32 dst_addr_1, u32 dst_addr_2,
1649 u32 dst_addr_3, u32 dst_addr_4)
1651 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET] = dst_addr_4 & 0xff;
1652 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] =
1653 (dst_addr_4 >> 8) & 0xff;
1654 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] =
1655 (dst_addr_4 >> 16) & 0xff;
1656 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] = dst_addr_4 >> 24;
1658 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4] = dst_addr_3 & 0xff;
1659 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] =
1660 (dst_addr_3 >> 8) & 0xff;
1661 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] =
1662 (dst_addr_3 >> 16) & 0xff;
1663 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] = dst_addr_3 >> 24;
1665 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8] = dst_addr_2 & 0xff;
1666 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] =
1667 (dst_addr_2 >> 8) & 0xff;
1668 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] =
1669 (dst_addr_2 >> 16) & 0xff;
1670 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] = dst_addr_2 >> 24;
1672 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12] = dst_addr_1 & 0xff;
1673 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] =
1674 (dst_addr_1 >> 8) & 0xff;
1675 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] =
1676 (dst_addr_1 >> 16) & 0xff;
1677 input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] = dst_addr_1 >> 24;
1679 return 0;
1683 * ixgbe_atr_set_src_port_82599 - Sets the source port
1684 * @input: input stream to modify
1685 * @src_port: the source port to load
1687 s32 ixgbe_atr_set_src_port_82599(struct ixgbe_atr_input *input, u16 src_port)
1689 input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1] = src_port >> 8;
1690 input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] = src_port & 0xff;
1692 return 0;
1696 * ixgbe_atr_set_dst_port_82599 - Sets the destination port
1697 * @input: input stream to modify
1698 * @dst_port: the destination port to load
1700 s32 ixgbe_atr_set_dst_port_82599(struct ixgbe_atr_input *input, u16 dst_port)
1702 input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1] = dst_port >> 8;
1703 input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] = dst_port & 0xff;
1705 return 0;
1709 * ixgbe_atr_set_flex_byte_82599 - Sets the flexible bytes
1710 * @input: input stream to modify
1711 * @flex_bytes: the flexible bytes to load
1713 s32 ixgbe_atr_set_flex_byte_82599(struct ixgbe_atr_input *input, u16 flex_byte)
1715 input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] = flex_byte >> 8;
1716 input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET] = flex_byte & 0xff;
1718 return 0;
1722 * ixgbe_atr_set_vm_pool_82599 - Sets the Virtual Machine pool
1723 * @input: input stream to modify
1724 * @vm_pool: the Virtual Machine pool to load
1726 s32 ixgbe_atr_set_vm_pool_82599(struct ixgbe_atr_input *input, u8 vm_pool)
1728 input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET] = vm_pool;
1730 return 0;
1734 * ixgbe_atr_set_l4type_82599 - Sets the layer 4 packet type
1735 * @input: input stream to modify
1736 * @l4type: the layer 4 type value to load
1738 s32 ixgbe_atr_set_l4type_82599(struct ixgbe_atr_input *input, u8 l4type)
1740 input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET] = l4type;
1742 return 0;
1746 * ixgbe_atr_get_vlan_id_82599 - Gets the VLAN id from the ATR input stream
1747 * @input: input stream to search
1748 * @vlan: the VLAN id to load
1750 s32 ixgbe_atr_get_vlan_id_82599(struct ixgbe_atr_input *input, u16 *vlan)
1752 *vlan = input->byte_stream[IXGBE_ATR_VLAN_OFFSET];
1753 *vlan |= input->byte_stream[IXGBE_ATR_VLAN_OFFSET + 1] << 8;
1755 return 0;
1759 * ixgbe_atr_get_src_ipv4_82599 - Gets the source IPv4 address
1760 * @input: input stream to search
1761 * @src_addr: the IP address to load
1763 s32 ixgbe_atr_get_src_ipv4_82599(struct ixgbe_atr_input *input, u32 *src_addr)
1765 *src_addr = input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET];
1766 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 1] << 8;
1767 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 2] << 16;
1768 *src_addr |= input->byte_stream[IXGBE_ATR_SRC_IPV4_OFFSET + 3] << 24;
1770 return 0;
1774 * ixgbe_atr_get_dst_ipv4_82599 - Gets the destination IPv4 address
1775 * @input: input stream to search
1776 * @dst_addr: the IP address to load
1778 s32 ixgbe_atr_get_dst_ipv4_82599(struct ixgbe_atr_input *input, u32 *dst_addr)
1780 *dst_addr = input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET];
1781 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 1] << 8;
1782 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 2] << 16;
1783 *dst_addr |= input->byte_stream[IXGBE_ATR_DST_IPV4_OFFSET + 3] << 24;
1785 return 0;
1789 * ixgbe_atr_get_src_ipv6_82599 - Gets the source IPv6 address
1790 * @input: input stream to search
1791 * @src_addr_1: the first 4 bytes of the IP address to load
1792 * @src_addr_2: the second 4 bytes of the IP address to load
1793 * @src_addr_3: the third 4 bytes of the IP address to load
1794 * @src_addr_4: the fourth 4 bytes of the IP address to load
1796 s32 ixgbe_atr_get_src_ipv6_82599(struct ixgbe_atr_input *input,
1797 u32 *src_addr_1, u32 *src_addr_2,
1798 u32 *src_addr_3, u32 *src_addr_4)
1800 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 12];
1801 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 13] << 8;
1802 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 14] << 16;
1803 *src_addr_1 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 15] << 24;
1805 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 8];
1806 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 9] << 8;
1807 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 10] << 16;
1808 *src_addr_2 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 11] << 24;
1810 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 4];
1811 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 5] << 8;
1812 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 6] << 16;
1813 *src_addr_3 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 7] << 24;
1815 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET];
1816 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 1] << 8;
1817 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 2] << 16;
1818 *src_addr_4 = input->byte_stream[IXGBE_ATR_SRC_IPV6_OFFSET + 3] << 24;
1820 return 0;
1824 * ixgbe_atr_get_dst_ipv6_82599 - Gets the destination IPv6 address
1825 * @input: input stream to search
1826 * @dst_addr_1: the first 4 bytes of the IP address to load
1827 * @dst_addr_2: the second 4 bytes of the IP address to load
1828 * @dst_addr_3: the third 4 bytes of the IP address to load
1829 * @dst_addr_4: the fourth 4 bytes of the IP address to load
1831 s32 ixgbe_atr_get_dst_ipv6_82599(struct ixgbe_atr_input *input,
1832 u32 *dst_addr_1, u32 *dst_addr_2,
1833 u32 *dst_addr_3, u32 *dst_addr_4)
1835 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 12];
1836 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 13] << 8;
1837 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 14] << 16;
1838 *dst_addr_1 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 15] << 24;
1840 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 8];
1841 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 9] << 8;
1842 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 10] << 16;
1843 *dst_addr_2 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 11] << 24;
1845 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 4];
1846 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 5] << 8;
1847 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 6] << 16;
1848 *dst_addr_3 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 7] << 24;
1850 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET];
1851 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 1] << 8;
1852 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 2] << 16;
1853 *dst_addr_4 = input->byte_stream[IXGBE_ATR_DST_IPV6_OFFSET + 3] << 24;
1855 return 0;
1859 * ixgbe_atr_get_src_port_82599 - Gets the source port
1860 * @input: input stream to modify
1861 * @src_port: the source port to load
1863 * Even though the input is given in big-endian, the FDIRPORT registers
1864 * expect the ports to be programmed in little-endian. Hence the need to swap
1865 * endianness when retrieving the data. This can be confusing since the
1866 * internal hash engine expects it to be big-endian.
1868 s32 ixgbe_atr_get_src_port_82599(struct ixgbe_atr_input *input, u16 *src_port)
1870 *src_port = input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET] << 8;
1871 *src_port |= input->byte_stream[IXGBE_ATR_SRC_PORT_OFFSET + 1];
1873 return 0;
1877 * ixgbe_atr_get_dst_port_82599 - Gets the destination port
1878 * @input: input stream to modify
1879 * @dst_port: the destination port to load
1881 * Even though the input is given in big-endian, the FDIRPORT registers
1882 * expect the ports to be programmed in little-endian. Hence the need to swap
1883 * endianness when retrieving the data. This can be confusing since the
1884 * internal hash engine expects it to be big-endian.
1886 s32 ixgbe_atr_get_dst_port_82599(struct ixgbe_atr_input *input, u16 *dst_port)
1888 *dst_port = input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET] << 8;
1889 *dst_port |= input->byte_stream[IXGBE_ATR_DST_PORT_OFFSET + 1];
1891 return 0;
1895 * ixgbe_atr_get_flex_byte_82599 - Gets the flexible bytes
1896 * @input: input stream to modify
1897 * @flex_bytes: the flexible bytes to load
1899 s32 ixgbe_atr_get_flex_byte_82599(struct ixgbe_atr_input *input, u16 *flex_byte)
1901 *flex_byte = input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET];
1902 *flex_byte |= input->byte_stream[IXGBE_ATR_FLEX_BYTE_OFFSET + 1] << 8;
1904 return 0;
1908 * ixgbe_atr_get_vm_pool_82599 - Gets the Virtual Machine pool
1909 * @input: input stream to modify
1910 * @vm_pool: the Virtual Machine pool to load
1912 s32 ixgbe_atr_get_vm_pool_82599(struct ixgbe_atr_input *input, u8 *vm_pool)
1914 *vm_pool = input->byte_stream[IXGBE_ATR_VM_POOL_OFFSET];
1916 return 0;
1920 * ixgbe_atr_get_l4type_82599 - Gets the layer 4 packet type
1921 * @input: input stream to modify
1922 * @l4type: the layer 4 type value to load
1924 s32 ixgbe_atr_get_l4type_82599(struct ixgbe_atr_input *input, u8 *l4type)
1926 *l4type = input->byte_stream[IXGBE_ATR_L4TYPE_OFFSET];
1928 return 0;
1932 * ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter
1933 * @hw: pointer to hardware structure
1934 * @stream: input bitstream
1935 * @queue: queue index to direct traffic to
1937 s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw,
1938 struct ixgbe_atr_input *input,
1939 u8 queue)
1941 u64 fdirhashcmd;
1942 u64 fdircmd;
1943 u32 fdirhash;
1944 u16 bucket_hash, sig_hash;
1945 u8 l4type;
1947 bucket_hash = ixgbe_atr_compute_hash_82599(input,
1948 IXGBE_ATR_BUCKET_HASH_KEY);
1950 /* bucket_hash is only 15 bits */
1951 bucket_hash &= IXGBE_ATR_HASH_MASK;
1953 sig_hash = ixgbe_atr_compute_hash_82599(input,
1954 IXGBE_ATR_SIGNATURE_HASH_KEY);
1956 /* Get the l4type in order to program FDIRCMD properly */
1957 /* lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6 */
1958 ixgbe_atr_get_l4type_82599(input, &l4type);
1961 * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits
1962 * is for FDIRCMD. Then do a 64-bit register write from FDIRHASH.
1964 fdirhash = sig_hash << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
1966 fdircmd = (IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE |
1967 IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN);
1969 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
1970 case IXGBE_ATR_L4TYPE_TCP:
1971 fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
1972 break;
1973 case IXGBE_ATR_L4TYPE_UDP:
1974 fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
1975 break;
1976 case IXGBE_ATR_L4TYPE_SCTP:
1977 fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
1978 break;
1979 default:
1980 hw_dbg(hw, "Error on l4type input\n");
1981 return IXGBE_ERR_CONFIG;
1984 if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK)
1985 fdircmd |= IXGBE_FDIRCMD_IPV6;
1987 fdircmd |= ((u64)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT);
1988 fdirhashcmd = ((fdircmd << 32) | fdirhash);
1990 IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd);
1992 return 0;
1996 * ixgbe_fdir_add_perfect_filter_82599 - Adds a perfect filter
1997 * @hw: pointer to hardware structure
1998 * @input: input bitstream
1999 * @queue: queue index to direct traffic to
2001 * Note that the caller to this function must lock before calling, since the
2002 * hardware writes must be protected from one another.
2004 s32 ixgbe_fdir_add_perfect_filter_82599(struct ixgbe_hw *hw,
2005 struct ixgbe_atr_input *input,
2006 u16 soft_id,
2007 u8 queue)
2009 u32 fdircmd = 0;
2010 u32 fdirhash;
2011 u32 src_ipv4, dst_ipv4;
2012 u32 src_ipv6_1, src_ipv6_2, src_ipv6_3, src_ipv6_4;
2013 u16 src_port, dst_port, vlan_id, flex_bytes;
2014 u16 bucket_hash;
2015 u8 l4type;
2017 /* Get our input values */
2018 ixgbe_atr_get_l4type_82599(input, &l4type);
2021 * Check l4type formatting, and bail out before we touch the hardware
2022 * if there's a configuration issue
2024 switch (l4type & IXGBE_ATR_L4TYPE_MASK) {
2025 case IXGBE_ATR_L4TYPE_TCP:
2026 fdircmd |= IXGBE_FDIRCMD_L4TYPE_TCP;
2027 break;
2028 case IXGBE_ATR_L4TYPE_UDP:
2029 fdircmd |= IXGBE_FDIRCMD_L4TYPE_UDP;
2030 break;
2031 case IXGBE_ATR_L4TYPE_SCTP:
2032 fdircmd |= IXGBE_FDIRCMD_L4TYPE_SCTP;
2033 break;
2034 default:
2035 hw_dbg(hw, "Error on l4type input\n");
2036 return IXGBE_ERR_CONFIG;
2039 bucket_hash = ixgbe_atr_compute_hash_82599(input,
2040 IXGBE_ATR_BUCKET_HASH_KEY);
2042 /* bucket_hash is only 15 bits */
2043 bucket_hash &= IXGBE_ATR_HASH_MASK;
2045 ixgbe_atr_get_vlan_id_82599(input, &vlan_id);
2046 ixgbe_atr_get_src_port_82599(input, &src_port);
2047 ixgbe_atr_get_dst_port_82599(input, &dst_port);
2048 ixgbe_atr_get_flex_byte_82599(input, &flex_bytes);
2050 fdirhash = soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT | bucket_hash;
2052 /* Now figure out if we're IPv4 or IPv6 */
2053 if (l4type & IXGBE_ATR_L4TYPE_IPV6_MASK) {
2054 /* IPv6 */
2055 ixgbe_atr_get_src_ipv6_82599(input, &src_ipv6_1, &src_ipv6_2,
2056 &src_ipv6_3, &src_ipv6_4);
2058 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(0), src_ipv6_1);
2059 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(1), src_ipv6_2);
2060 IXGBE_WRITE_REG(hw, IXGBE_FDIRSIPv6(2), src_ipv6_3);
2061 /* The last 4 bytes is the same register as IPv4 */
2062 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv6_4);
2064 fdircmd |= IXGBE_FDIRCMD_IPV6;
2065 fdircmd |= IXGBE_FDIRCMD_IPv6DMATCH;
2066 } else {
2067 /* IPv4 */
2068 ixgbe_atr_get_src_ipv4_82599(input, &src_ipv4);
2069 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPSA, src_ipv4);
2073 ixgbe_atr_get_dst_ipv4_82599(input, &dst_ipv4);
2074 IXGBE_WRITE_REG(hw, IXGBE_FDIRIPDA, dst_ipv4);
2076 IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, (vlan_id |
2077 (flex_bytes << IXGBE_FDIRVLAN_FLEX_SHIFT)));
2078 IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, (src_port |
2079 (dst_port << IXGBE_FDIRPORT_DESTINATION_SHIFT)));
2081 fdircmd |= IXGBE_FDIRCMD_CMD_ADD_FLOW;
2082 fdircmd |= IXGBE_FDIRCMD_FILTER_UPDATE;
2083 fdircmd |= IXGBE_FDIRCMD_LAST;
2084 fdircmd |= IXGBE_FDIRCMD_QUEUE_EN;
2085 fdircmd |= queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT;
2087 IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);
2088 IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd);
2090 return 0;
2093 * ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register
2094 * @hw: pointer to hardware structure
2095 * @reg: analog register to read
2096 * @val: read value
2098 * Performs read operation to Omer analog register specified.
2100 s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val)
2102 u32 core_ctl;
2104 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD |
2105 (reg << 8));
2106 IXGBE_WRITE_FLUSH(hw);
2107 udelay(10);
2108 core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL);
2109 *val = (u8)core_ctl;
2111 return 0;
2115 * ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register
2116 * @hw: pointer to hardware structure
2117 * @reg: atlas register to write
2118 * @val: value to write
2120 * Performs write operation to Omer analog register specified.
2122 s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val)
2124 u32 core_ctl;
2126 core_ctl = (reg << 8) | val;
2127 IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl);
2128 IXGBE_WRITE_FLUSH(hw);
2129 udelay(10);
2131 return 0;
2135 * ixgbe_start_hw_82599 - Prepare hardware for Tx/Rx
2136 * @hw: pointer to hardware structure
2138 * Starts the hardware using the generic start_hw function.
2139 * Then performs device-specific:
2140 * Clears the rate limiter registers.
2142 s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw)
2144 u32 q_num;
2145 s32 ret_val;
2147 ret_val = ixgbe_start_hw_generic(hw);
2149 /* Clear the rate limiters */
2150 for (q_num = 0; q_num < hw->mac.max_tx_queues; q_num++) {
2151 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, q_num);
2152 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
2154 IXGBE_WRITE_FLUSH(hw);
2156 /* We need to run link autotry after the driver loads */
2157 hw->mac.autotry_restart = true;
2159 if (ret_val == 0)
2160 ret_val = ixgbe_verify_fw_version_82599(hw);
2162 return ret_val;
2166 * ixgbe_identify_phy_82599 - Get physical layer module
2167 * @hw: pointer to hardware structure
2169 * Determines the physical layer module found on the current adapter.
2171 s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw)
2173 s32 status = IXGBE_ERR_PHY_ADDR_INVALID;
2174 status = ixgbe_identify_phy_generic(hw);
2175 if (status != 0)
2176 status = ixgbe_identify_sfp_module_generic(hw);
2177 return status;
2181 * ixgbe_get_supported_physical_layer_82599 - Returns physical layer type
2182 * @hw: pointer to hardware structure
2184 * Determines physical layer capabilities of the current configuration.
2186 u32 ixgbe_get_supported_physical_layer_82599(struct ixgbe_hw *hw)
2188 u32 physical_layer = IXGBE_PHYSICAL_LAYER_UNKNOWN;
2189 u32 autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2190 u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
2191 u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
2192 u32 pma_pmd_10g_parallel = autoc & IXGBE_AUTOC_10G_PMA_PMD_MASK;
2193 u32 pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;
2194 u16 ext_ability = 0;
2195 u8 comp_codes_10g = 0;
2197 hw->phy.ops.identify(hw);
2199 if (hw->phy.type == ixgbe_phy_tn ||
2200 hw->phy.type == ixgbe_phy_cu_unknown) {
2201 hw->phy.ops.read_reg(hw, MDIO_PMA_EXTABLE, MDIO_MMD_PMAPMD,
2202 &ext_ability);
2203 if (ext_ability & MDIO_PMA_EXTABLE_10GBT)
2204 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_T;
2205 if (ext_ability & MDIO_PMA_EXTABLE_1000BT)
2206 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_T;
2207 if (ext_ability & MDIO_PMA_EXTABLE_100BTX)
2208 physical_layer |= IXGBE_PHYSICAL_LAYER_100BASE_TX;
2209 goto out;
2212 switch (autoc & IXGBE_AUTOC_LMS_MASK) {
2213 case IXGBE_AUTOC_LMS_1G_AN:
2214 case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
2215 if (pma_pmd_1g == IXGBE_AUTOC_1G_KX_BX) {
2216 physical_layer = IXGBE_PHYSICAL_LAYER_1000BASE_KX |
2217 IXGBE_PHYSICAL_LAYER_1000BASE_BX;
2218 goto out;
2219 } else
2220 /* SFI mode so read SFP module */
2221 goto sfp_check;
2222 break;
2223 case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
2224 if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_CX4)
2225 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_CX4;
2226 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_KX4)
2227 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2228 else if (pma_pmd_10g_parallel == IXGBE_AUTOC_10G_XAUI)
2229 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_XAUI;
2230 goto out;
2231 break;
2232 case IXGBE_AUTOC_LMS_10G_SERIAL:
2233 if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_KR) {
2234 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_KR;
2235 goto out;
2236 } else if (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)
2237 goto sfp_check;
2238 break;
2239 case IXGBE_AUTOC_LMS_KX4_KX_KR:
2240 case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
2241 if (autoc & IXGBE_AUTOC_KX_SUPP)
2242 physical_layer |= IXGBE_PHYSICAL_LAYER_1000BASE_KX;
2243 if (autoc & IXGBE_AUTOC_KX4_SUPP)
2244 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KX4;
2245 if (autoc & IXGBE_AUTOC_KR_SUPP)
2246 physical_layer |= IXGBE_PHYSICAL_LAYER_10GBASE_KR;
2247 goto out;
2248 break;
2249 default:
2250 goto out;
2251 break;
2254 sfp_check:
2255 /* SFP check must be done last since DA modules are sometimes used to
2256 * test KR mode - we need to id KR mode correctly before SFP module.
2257 * Call identify_sfp because the pluggable module may have changed */
2258 hw->phy.ops.identify_sfp(hw);
2259 if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2260 goto out;
2262 switch (hw->phy.type) {
2263 case ixgbe_phy_tw_tyco:
2264 case ixgbe_phy_tw_unknown:
2265 physical_layer = IXGBE_PHYSICAL_LAYER_SFP_PLUS_CU;
2266 break;
2267 case ixgbe_phy_sfp_avago:
2268 case ixgbe_phy_sfp_ftl:
2269 case ixgbe_phy_sfp_intel:
2270 case ixgbe_phy_sfp_unknown:
2271 hw->phy.ops.read_i2c_eeprom(hw,
2272 IXGBE_SFF_10GBE_COMP_CODES, &comp_codes_10g);
2273 if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
2274 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_SR;
2275 else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
2276 physical_layer = IXGBE_PHYSICAL_LAYER_10GBASE_LR;
2277 break;
2278 default:
2279 break;
2282 out:
2283 return physical_layer;
2287 * ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599
2288 * @hw: pointer to hardware structure
2289 * @regval: register value to write to RXCTRL
2291 * Enables the Rx DMA unit for 82599
2293 s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval)
2295 #define IXGBE_MAX_SECRX_POLL 30
2296 int i;
2297 int secrxreg;
2300 * Workaround for 82599 silicon errata when enabling the Rx datapath.
2301 * If traffic is incoming before we enable the Rx unit, it could hang
2302 * the Rx DMA unit. Therefore, make sure the security engine is
2303 * completely disabled prior to enabling the Rx unit.
2305 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2306 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2307 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2308 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2309 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2310 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2311 break;
2312 else
2313 udelay(10);
2316 /* For informational purposes only */
2317 if (i >= IXGBE_MAX_SECRX_POLL)
2318 hw_dbg(hw, "Rx unit being enabled before security "
2319 "path fully disabled. Continuing with init.\n");
2321 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2322 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2323 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2324 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2325 IXGBE_WRITE_FLUSH(hw);
2327 return 0;
2331 * ixgbe_get_device_caps_82599 - Get additional device capabilities
2332 * @hw: pointer to hardware structure
2333 * @device_caps: the EEPROM word with the extra device capabilities
2335 * This function will read the EEPROM location for the device capabilities,
2336 * and return the word through device_caps.
2338 s32 ixgbe_get_device_caps_82599(struct ixgbe_hw *hw, u16 *device_caps)
2340 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
2342 return 0;
2346 * ixgbe_get_san_mac_addr_offset_82599 - SAN MAC address offset for 82599
2347 * @hw: pointer to hardware structure
2348 * @san_mac_offset: SAN MAC address offset
2350 * This function will read the EEPROM location for the SAN MAC address
2351 * pointer, and returns the value at that location. This is used in both
2352 * get and set mac_addr routines.
2354 s32 ixgbe_get_san_mac_addr_offset_82599(struct ixgbe_hw *hw,
2355 u16 *san_mac_offset)
2358 * First read the EEPROM pointer to see if the MAC addresses are
2359 * available.
2361 hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2363 return 0;
2367 * ixgbe_get_san_mac_addr_82599 - SAN MAC address retrieval for 82599
2368 * @hw: pointer to hardware structure
2369 * @san_mac_addr: SAN MAC address
2371 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2372 * per-port, so set_lan_id() must be called before reading the addresses.
2373 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2374 * upon for non-SFP connections, so we must call it here.
2376 s32 ixgbe_get_san_mac_addr_82599(struct ixgbe_hw *hw, u8 *san_mac_addr)
2378 u16 san_mac_data, san_mac_offset;
2379 u8 i;
2382 * First read the EEPROM pointer to see if the MAC addresses are
2383 * available. If they're not, no point in calling set_lan_id() here.
2385 ixgbe_get_san_mac_addr_offset_82599(hw, &san_mac_offset);
2387 if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2389 * No addresses available in this EEPROM. It's not an
2390 * error though, so just wipe the local address and return.
2392 for (i = 0; i < 6; i++)
2393 san_mac_addr[i] = 0xFF;
2395 goto san_mac_addr_out;
2398 /* make sure we know which port we need to program */
2399 hw->mac.ops.set_lan_id(hw);
2400 /* apply the port offset to the address offset */
2401 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2402 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2403 for (i = 0; i < 3; i++) {
2404 hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2405 san_mac_addr[i * 2] = (u8)(san_mac_data);
2406 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2407 san_mac_offset++;
2410 san_mac_addr_out:
2411 return 0;
2415 * ixgbe_verify_fw_version_82599 - verify fw version for 82599
2416 * @hw: pointer to hardware structure
2418 * Verifies that installed the firmware version is 0.6 or higher
2419 * for SFI devices. All 82599 SFI devices should have version 0.6 or higher.
2421 * Returns IXGBE_ERR_EEPROM_VERSION if the FW is not present or
2422 * if the FW version is not supported.
2424 static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw)
2426 s32 status = IXGBE_ERR_EEPROM_VERSION;
2427 u16 fw_offset, fw_ptp_cfg_offset;
2428 u16 fw_version = 0;
2430 /* firmware check is only necessary for SFI devices */
2431 if (hw->phy.media_type != ixgbe_media_type_fiber) {
2432 status = 0;
2433 goto fw_version_out;
2436 /* get the offset to the Firmware Module block */
2437 hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset);
2439 if ((fw_offset == 0) || (fw_offset == 0xFFFF))
2440 goto fw_version_out;
2442 /* get the offset to the Pass Through Patch Configuration block */
2443 hw->eeprom.ops.read(hw, (fw_offset +
2444 IXGBE_FW_PASSTHROUGH_PATCH_CONFIG_PTR),
2445 &fw_ptp_cfg_offset);
2447 if ((fw_ptp_cfg_offset == 0) || (fw_ptp_cfg_offset == 0xFFFF))
2448 goto fw_version_out;
2450 /* get the firmware version */
2451 hw->eeprom.ops.read(hw, (fw_ptp_cfg_offset +
2452 IXGBE_FW_PATCH_VERSION_4),
2453 &fw_version);
2455 if (fw_version > 0x5)
2456 status = 0;
2458 fw_version_out:
2459 return status;
2462 static struct ixgbe_mac_operations mac_ops_82599 = {
2463 .init_hw = &ixgbe_init_hw_generic,
2464 .reset_hw = &ixgbe_reset_hw_82599,
2465 .start_hw = &ixgbe_start_hw_82599,
2466 .clear_hw_cntrs = &ixgbe_clear_hw_cntrs_generic,
2467 .get_media_type = &ixgbe_get_media_type_82599,
2468 .get_supported_physical_layer = &ixgbe_get_supported_physical_layer_82599,
2469 .enable_rx_dma = &ixgbe_enable_rx_dma_82599,
2470 .get_mac_addr = &ixgbe_get_mac_addr_generic,
2471 .get_san_mac_addr = &ixgbe_get_san_mac_addr_82599,
2472 .get_device_caps = &ixgbe_get_device_caps_82599,
2473 .stop_adapter = &ixgbe_stop_adapter_generic,
2474 .get_bus_info = &ixgbe_get_bus_info_generic,
2475 .set_lan_id = &ixgbe_set_lan_id_multi_port_pcie,
2476 .read_analog_reg8 = &ixgbe_read_analog_reg8_82599,
2477 .write_analog_reg8 = &ixgbe_write_analog_reg8_82599,
2478 .setup_link = &ixgbe_setup_mac_link_82599,
2479 .setup_link_speed = &ixgbe_setup_mac_link_speed_82599,
2480 .check_link = &ixgbe_check_mac_link_82599,
2481 .get_link_capabilities = &ixgbe_get_link_capabilities_82599,
2482 .led_on = &ixgbe_led_on_generic,
2483 .led_off = &ixgbe_led_off_generic,
2484 .blink_led_start = &ixgbe_blink_led_start_generic,
2485 .blink_led_stop = &ixgbe_blink_led_stop_generic,
2486 .set_rar = &ixgbe_set_rar_generic,
2487 .clear_rar = &ixgbe_clear_rar_generic,
2488 .set_vmdq = &ixgbe_set_vmdq_82599,
2489 .clear_vmdq = &ixgbe_clear_vmdq_82599,
2490 .init_rx_addrs = &ixgbe_init_rx_addrs_generic,
2491 .update_uc_addr_list = &ixgbe_update_uc_addr_list_generic,
2492 .update_mc_addr_list = &ixgbe_update_mc_addr_list_generic,
2493 .enable_mc = &ixgbe_enable_mc_generic,
2494 .disable_mc = &ixgbe_disable_mc_generic,
2495 .clear_vfta = &ixgbe_clear_vfta_82599,
2496 .set_vfta = &ixgbe_set_vfta_82599,
2497 .fc_enable = &ixgbe_fc_enable_generic,
2498 .init_uta_tables = &ixgbe_init_uta_tables_82599,
2499 .setup_sfp = &ixgbe_setup_sfp_modules_82599,
2502 static struct ixgbe_eeprom_operations eeprom_ops_82599 = {
2503 .init_params = &ixgbe_init_eeprom_params_generic,
2504 .read = &ixgbe_read_eeprom_generic,
2505 .write = &ixgbe_write_eeprom_generic,
2506 .validate_checksum = &ixgbe_validate_eeprom_checksum_generic,
2507 .update_checksum = &ixgbe_update_eeprom_checksum_generic,
2510 static struct ixgbe_phy_operations phy_ops_82599 = {
2511 .identify = &ixgbe_identify_phy_82599,
2512 .identify_sfp = &ixgbe_identify_sfp_module_generic,
2513 .init = &ixgbe_init_phy_ops_82599,
2514 .reset = &ixgbe_reset_phy_generic,
2515 .read_reg = &ixgbe_read_phy_reg_generic,
2516 .write_reg = &ixgbe_write_phy_reg_generic,
2517 .setup_link = &ixgbe_setup_phy_link_generic,
2518 .setup_link_speed = &ixgbe_setup_phy_link_speed_generic,
2519 .read_i2c_byte = &ixgbe_read_i2c_byte_generic,
2520 .write_i2c_byte = &ixgbe_write_i2c_byte_generic,
2521 .read_i2c_eeprom = &ixgbe_read_i2c_eeprom_generic,
2522 .write_i2c_eeprom = &ixgbe_write_i2c_eeprom_generic,
2525 struct ixgbe_info ixgbe_82599_info = {
2526 .mac = ixgbe_mac_82599EB,
2527 .get_invariants = &ixgbe_get_invariants_82599,
2528 .mac_ops = &mac_ops_82599,
2529 .eeprom_ops = &eeprom_ops_82599,
2530 .phy_ops = &phy_ops_82599,