1 /* obstack.c - subroutines used implicitly by object stack macros
2 Copyright (C) 1988-1994,96,97,98,99,2000 Free Software Foundation, Inc.
4 This file is part of the GNU C Library. Its master source is NOT part of
5 the C library, however. The master source lives in /gd/gnu/lib.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Library General Public License as
9 published by the Free Software Foundation; either version 2 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Library General Public License for more details.
17 You should have received a copy of the GNU Library General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
28 /* NOTE BEFORE MODIFYING THIS FILE: This version number must be
29 incremented whenever callers compiled using an old obstack.h can no
30 longer properly call the functions in this obstack.c. */
31 #define OBSTACK_INTERFACE_VERSION 1
33 /* Comment out all this code if we are using the GNU C Library, and are not
34 actually compiling the library itself, and the installed library
35 supports the same library interface we do. This code is part of the GNU
36 C Library, but also included in many other GNU distributions. Compiling
37 and linking in this code is a waste when using the GNU C library
38 (especially if it is a shared library). Rather than having every GNU
39 program understand `configure --with-gnu-libc' and omit the object
40 files, it is simpler to just do this in the source for each such file. */
42 #include <stdio.h> /* Random thing to get __GNU_LIBRARY__. */
43 #if !defined (_LIBC) && defined (__GNU_LIBRARY__) && __GNU_LIBRARY__ > 1
44 # include <gnu-versions.h>
45 # if _GNU_OBSTACK_INTERFACE_VERSION == OBSTACK_INTERFACE_VERSION
54 # if defined (__STDC__) && __STDC__
55 # define POINTER void *
57 # define POINTER char *
60 /* Determine default alignment. */
61 struct fooalign
{char x
; double d
;};
62 # define DEFAULT_ALIGNMENT \
63 ((PTR_INT_TYPE) ((char *) &((struct fooalign *) 0)->d - (char *) 0))
64 /* If malloc were really smart, it would round addresses to DEFAULT_ALIGNMENT.
65 But in fact it might be less smart and round addresses to as much as
66 DEFAULT_ROUNDING. So we prepare for it to do that. */
67 union fooround
{long x
; double d
;};
68 # define DEFAULT_ROUNDING (sizeof (union fooround))
70 /* When we copy a long block of data, this is the unit to do it with.
71 On some machines, copying successive ints does not work;
72 in such a case, redefine COPYING_UNIT to `long' (if that works)
73 or `char' as a last resort. */
75 # define COPYING_UNIT int
79 /* The functions allocating more room by calling `obstack_chunk_alloc'
80 jump to the handler pointed to by `obstack_alloc_failed_handler'.
81 This can be set to a user defined function which should either
82 abort gracefully or use longjump - but shouldn't return. This
83 variable by default points to the internal function
85 # if defined (__STDC__) && __STDC__
86 static void print_and_abort (void);
87 void (*obstack_alloc_failed_handler
) (void) = print_and_abort
;
89 static void print_and_abort ();
90 void (*obstack_alloc_failed_handler
) () = print_and_abort
;
93 /* Exit value used when `print_and_abort' is used. */
94 # if defined __GNU_LIBRARY__ || defined HAVE_STDLIB_H
98 # define EXIT_FAILURE 1
100 int obstack_exit_failure
= EXIT_FAILURE
;
102 /* The non-GNU-C macros copy the obstack into this global variable
103 to avoid multiple evaluation. */
105 struct obstack
*_obstack
;
107 /* Define a macro that either calls functions with the traditional malloc/free
108 calling interface, or calls functions with the mmalloc/mfree interface
109 (that adds an extra first argument), based on the state of use_extra_arg.
110 For free, do not use ?:, since some compilers, like the MIPS compilers,
111 do not allow (expr) ? void : void. */
113 # if defined (__STDC__) && __STDC__
114 # define CALL_CHUNKFUN(h, size) \
115 (((h) -> use_extra_arg) \
116 ? (*(h)->chunkfun) ((h)->extra_arg, (size)) \
117 : (*(struct _obstack_chunk *(*) (long)) (h)->chunkfun) ((size)))
119 # define CALL_FREEFUN(h, old_chunk) \
121 if ((h) -> use_extra_arg) \
122 (*(h)->freefun) ((h)->extra_arg, (old_chunk)); \
124 (*(void (*) (void *)) (h)->freefun) ((old_chunk)); \
127 # define CALL_CHUNKFUN(h, size) \
128 (((h) -> use_extra_arg) \
129 ? (*(h)->chunkfun) ((h)->extra_arg, (size)) \
130 : (*(struct _obstack_chunk *(*) ()) (h)->chunkfun) ((size)))
132 # define CALL_FREEFUN(h, old_chunk) \
134 if ((h) -> use_extra_arg) \
135 (*(h)->freefun) ((h)->extra_arg, (old_chunk)); \
137 (*(void (*) ()) (h)->freefun) ((old_chunk)); \
142 /* Initialize an obstack H for use. Specify chunk size SIZE (0 means default).
143 Objects start on multiples of ALIGNMENT (0 means use default).
144 CHUNKFUN is the function to use to allocate chunks,
145 and FREEFUN the function to free them.
147 Return nonzero if successful, calls obstack_alloc_failed_handler if
151 _obstack_begin (h
, size
, alignment
, chunkfun
, freefun
)
155 # if defined (__STDC__) && __STDC__
156 POINTER (*chunkfun
) (long);
157 void (*freefun
) (void *);
159 POINTER (*chunkfun
) ();
163 register struct _obstack_chunk
*chunk
; /* points to new chunk */
166 alignment
= (int) DEFAULT_ALIGNMENT
;
168 /* Default size is what GNU malloc can fit in a 4096-byte block. */
170 /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc.
171 Use the values for range checking, because if range checking is off,
172 the extra bytes won't be missed terribly, but if range checking is on
173 and we used a larger request, a whole extra 4096 bytes would be
176 These number are irrelevant to the new GNU malloc. I suspect it is
177 less sensitive to the size of the request. */
178 int extra
= ((((12 + DEFAULT_ROUNDING
- 1) & ~(DEFAULT_ROUNDING
- 1))
179 + 4 + DEFAULT_ROUNDING
- 1)
180 & ~(DEFAULT_ROUNDING
- 1));
184 # if defined (__STDC__) && __STDC__
185 h
->chunkfun
= (struct _obstack_chunk
* (*)(void *, long)) chunkfun
;
186 h
->freefun
= (void (*) (void *, struct _obstack_chunk
*)) freefun
;
188 h
->chunkfun
= (struct _obstack_chunk
* (*)()) chunkfun
;
189 h
->freefun
= freefun
;
191 h
->chunk_size
= size
;
192 h
->alignment_mask
= alignment
- 1;
193 h
->use_extra_arg
= 0;
195 chunk
= h
->chunk
= CALL_CHUNKFUN (h
, h
-> chunk_size
);
197 (*obstack_alloc_failed_handler
) ();
198 h
->next_free
= h
->object_base
= chunk
->contents
;
199 h
->chunk_limit
= chunk
->limit
200 = (char *) chunk
+ h
->chunk_size
;
202 /* The initial chunk now contains no empty object. */
203 h
->maybe_empty_object
= 0;
209 _obstack_begin_1 (h
, size
, alignment
, chunkfun
, freefun
, arg
)
213 # if defined (__STDC__) && __STDC__
214 POINTER (*chunkfun
) (POINTER
, long);
215 void (*freefun
) (POINTER
, POINTER
);
217 POINTER (*chunkfun
) ();
222 register struct _obstack_chunk
*chunk
; /* points to new chunk */
225 alignment
= (int) DEFAULT_ALIGNMENT
;
227 /* Default size is what GNU malloc can fit in a 4096-byte block. */
229 /* 12 is sizeof (mhead) and 4 is EXTRA from GNU malloc.
230 Use the values for range checking, because if range checking is off,
231 the extra bytes won't be missed terribly, but if range checking is on
232 and we used a larger request, a whole extra 4096 bytes would be
235 These number are irrelevant to the new GNU malloc. I suspect it is
236 less sensitive to the size of the request. */
237 int extra
= ((((12 + DEFAULT_ROUNDING
- 1) & ~(DEFAULT_ROUNDING
- 1))
238 + 4 + DEFAULT_ROUNDING
- 1)
239 & ~(DEFAULT_ROUNDING
- 1));
243 # if defined(__STDC__) && __STDC__
244 h
->chunkfun
= (struct _obstack_chunk
* (*)(void *,long)) chunkfun
;
245 h
->freefun
= (void (*) (void *, struct _obstack_chunk
*)) freefun
;
247 h
->chunkfun
= (struct _obstack_chunk
* (*)()) chunkfun
;
248 h
->freefun
= freefun
;
250 h
->chunk_size
= size
;
251 h
->alignment_mask
= alignment
- 1;
253 h
->use_extra_arg
= 1;
255 chunk
= h
->chunk
= CALL_CHUNKFUN (h
, h
-> chunk_size
);
257 (*obstack_alloc_failed_handler
) ();
258 h
->next_free
= h
->object_base
= chunk
->contents
;
259 h
->chunk_limit
= chunk
->limit
260 = (char *) chunk
+ h
->chunk_size
;
262 /* The initial chunk now contains no empty object. */
263 h
->maybe_empty_object
= 0;
268 /* Allocate a new current chunk for the obstack *H
269 on the assumption that LENGTH bytes need to be added
270 to the current object, or a new object of length LENGTH allocated.
271 Copies any partial object from the end of the old chunk
272 to the beginning of the new one. */
275 _obstack_newchunk (h
, length
)
279 register struct _obstack_chunk
*old_chunk
= h
->chunk
;
280 register struct _obstack_chunk
*new_chunk
;
281 register long new_size
;
282 register long obj_size
= h
->next_free
- h
->object_base
;
287 /* Compute size for new chunk. */
288 new_size
= (obj_size
+ length
) + (obj_size
>> 3) + h
->alignment_mask
+ 100;
289 if (new_size
< h
->chunk_size
)
290 new_size
= h
->chunk_size
;
292 /* Allocate and initialize the new chunk. */
293 new_chunk
= CALL_CHUNKFUN (h
, new_size
);
295 (*obstack_alloc_failed_handler
) ();
296 h
->chunk
= new_chunk
;
297 new_chunk
->prev
= old_chunk
;
298 new_chunk
->limit
= h
->chunk_limit
= (char *) new_chunk
+ new_size
;
300 /* Compute an aligned object_base in the new chunk */
302 __INT_TO_PTR ((__PTR_TO_INT (new_chunk
->contents
) + h
->alignment_mask
)
303 & ~ (h
->alignment_mask
));
305 /* Move the existing object to the new chunk.
306 Word at a time is fast and is safe if the object
307 is sufficiently aligned. */
308 if (h
->alignment_mask
+ 1 >= DEFAULT_ALIGNMENT
)
310 for (i
= obj_size
/ sizeof (COPYING_UNIT
) - 1;
312 ((COPYING_UNIT
*)object_base
)[i
]
313 = ((COPYING_UNIT
*)h
->object_base
)[i
];
314 /* We used to copy the odd few remaining bytes as one extra COPYING_UNIT,
315 but that can cross a page boundary on a machine
316 which does not do strict alignment for COPYING_UNITS. */
317 already
= obj_size
/ sizeof (COPYING_UNIT
) * sizeof (COPYING_UNIT
);
321 /* Copy remaining bytes one by one. */
322 for (i
= already
; i
< obj_size
; i
++)
323 object_base
[i
] = h
->object_base
[i
];
325 /* If the object just copied was the only data in OLD_CHUNK,
326 free that chunk and remove it from the chain.
327 But not if that chunk might contain an empty object. */
328 if (h
->object_base
== old_chunk
->contents
&& ! h
->maybe_empty_object
)
330 new_chunk
->prev
= old_chunk
->prev
;
331 CALL_FREEFUN (h
, old_chunk
);
334 h
->object_base
= object_base
;
335 h
->next_free
= h
->object_base
+ obj_size
;
336 /* The new chunk certainly contains no empty object yet. */
337 h
->maybe_empty_object
= 0;
340 /* Return nonzero if object OBJ has been allocated from obstack H.
341 This is here for debugging.
342 If you use it in a program, you are probably losing. */
344 # if defined (__STDC__) && __STDC__
345 /* Suppress -Wmissing-prototypes warning. We don't want to declare this in
346 obstack.h because it is just for debugging. */
347 int _obstack_allocated_p (struct obstack
*h
, POINTER obj
);
351 _obstack_allocated_p (h
, obj
)
355 register struct _obstack_chunk
*lp
; /* below addr of any objects in this chunk */
356 register struct _obstack_chunk
*plp
; /* point to previous chunk if any */
359 /* We use >= rather than > since the object cannot be exactly at
360 the beginning of the chunk but might be an empty object exactly
361 at the end of an adjacent chunk. */
362 while (lp
!= 0 && ((POINTER
) lp
>= obj
|| (POINTER
) (lp
)->limit
< obj
))
370 /* Free objects in obstack H, including OBJ and everything allocate
371 more recently than OBJ. If OBJ is zero, free everything in H. */
375 /* This function has two names with identical definitions.
376 This is the first one, called from non-ANSI code. */
379 _obstack_free (h
, obj
)
383 register struct _obstack_chunk
*lp
; /* below addr of any objects in this chunk */
384 register struct _obstack_chunk
*plp
; /* point to previous chunk if any */
387 /* We use >= because there cannot be an object at the beginning of a chunk.
388 But there can be an empty object at that address
389 at the end of another chunk. */
390 while (lp
!= 0 && ((POINTER
) lp
>= obj
|| (POINTER
) (lp
)->limit
< obj
))
393 CALL_FREEFUN (h
, lp
);
395 /* If we switch chunks, we can't tell whether the new current
396 chunk contains an empty object, so assume that it may. */
397 h
->maybe_empty_object
= 1;
401 h
->object_base
= h
->next_free
= (char *) (obj
);
402 h
->chunk_limit
= lp
->limit
;
406 /* obj is not in any of the chunks! */
410 /* This function is used from ANSI code. */
413 obstack_free (h
, obj
)
417 register struct _obstack_chunk
*lp
; /* below addr of any objects in this chunk */
418 register struct _obstack_chunk
*plp
; /* point to previous chunk if any */
421 /* We use >= because there cannot be an object at the beginning of a chunk.
422 But there can be an empty object at that address
423 at the end of another chunk. */
424 while (lp
!= 0 && ((POINTER
) lp
>= obj
|| (POINTER
) (lp
)->limit
< obj
))
427 CALL_FREEFUN (h
, lp
);
429 /* If we switch chunks, we can't tell whether the new current
430 chunk contains an empty object, so assume that it may. */
431 h
->maybe_empty_object
= 1;
435 h
->object_base
= h
->next_free
= (char *) (obj
);
436 h
->chunk_limit
= lp
->limit
;
440 /* obj is not in any of the chunks! */
445 _obstack_memory_used (h
)
448 register struct _obstack_chunk
* lp
;
449 register int nbytes
= 0;
451 for (lp
= h
->chunk
; lp
!= 0; lp
= lp
->prev
)
453 nbytes
+= lp
->limit
- (char *) lp
;
458 /* Define the error handler. */
460 # if defined HAVE_LIBINTL_H || defined _LIBC
461 # include <libintl.h>
463 # define _(Str) gettext (Str)
466 # define _(Str) (Str)
469 # if defined _LIBC && defined USE_IN_LIBIO
470 # include <libio/iolibio.h>
471 # define fputs(s, f) _IO_fputs (s, f)
477 fputs (_("memory exhausted"), stderr
);
478 fputc ('\n', stderr
);
479 exit (obstack_exit_failure
);
483 /* These are now turned off because the applications do not use it
484 and it uses bcopy via obstack_grow, which causes trouble on sysV. */
486 /* Now define the functional versions of the obstack macros.
487 Define them to simply use the corresponding macros to do the job. */
489 # if defined (__STDC__) && __STDC__
490 /* These function definitions do not work with non-ANSI preprocessors;
491 they won't pass through the macro names in parentheses. */
493 /* The function names appear in parentheses in order to prevent
494 the macro-definitions of the names from being expanded there. */
496 POINTER (obstack_base
) (obstack
)
497 struct obstack
*obstack
;
499 return obstack_base (obstack
);
502 POINTER (obstack_next_free
) (obstack
)
503 struct obstack
*obstack
;
505 return obstack_next_free (obstack
);
508 int (obstack_object_size
) (obstack
)
509 struct obstack
*obstack
;
511 return obstack_object_size (obstack
);
514 int (obstack_room
) (obstack
)
515 struct obstack
*obstack
;
517 return obstack_room (obstack
);
520 int (obstack_make_room
) (obstack
, length
)
521 struct obstack
*obstack
;
524 return obstack_make_room (obstack
, length
);
527 void (obstack_grow
) (obstack
, data
, length
)
528 struct obstack
*obstack
;
532 obstack_grow (obstack
, data
, length
);
535 void (obstack_grow0
) (obstack
, data
, length
)
536 struct obstack
*obstack
;
540 obstack_grow0 (obstack
, data
, length
);
543 void (obstack_1grow
) (obstack
, character
)
544 struct obstack
*obstack
;
547 obstack_1grow (obstack
, character
);
550 void (obstack_blank
) (obstack
, length
)
551 struct obstack
*obstack
;
554 obstack_blank (obstack
, length
);
557 void (obstack_1grow_fast
) (obstack
, character
)
558 struct obstack
*obstack
;
561 obstack_1grow_fast (obstack
, character
);
564 void (obstack_blank_fast
) (obstack
, length
)
565 struct obstack
*obstack
;
568 obstack_blank_fast (obstack
, length
);
571 POINTER (obstack_finish
) (obstack
)
572 struct obstack
*obstack
;
574 return obstack_finish (obstack
);
577 POINTER (obstack_alloc
) (obstack
, length
)
578 struct obstack
*obstack
;
581 return obstack_alloc (obstack
, length
);
584 POINTER (obstack_copy
) (obstack
, address
, length
)
585 struct obstack
*obstack
;
586 const POINTER address
;
589 return obstack_copy (obstack
, address
, length
);
592 POINTER (obstack_copy0
) (obstack
, address
, length
)
593 struct obstack
*obstack
;
594 const POINTER address
;
597 return obstack_copy0 (obstack
, address
, length
);
600 # endif /* __STDC__ */
604 #endif /* !ELIDE_CODE */