1 /* Generate random permutations.
3 Copyright (C) 2006-2022 Free Software Foundation, Inc.
5 This program is free software: you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation, either version 3 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <https://www.gnu.org/licenses/>. */
18 /* Written by Paul Eggert. */
28 #include "attribute.h"
29 #include "count-leading-zeros.h"
34 /* Return the floor of the log base 2 of N. If N is zero, return -1. */
36 ATTRIBUTE_CONST
static int
39 verify (SIZE_WIDTH
<= ULLONG_WIDTH
);
41 : SIZE_WIDTH
<= UINT_WIDTH
42 ? UINT_WIDTH
- 1 - count_leading_zeros (n
)
43 : SIZE_WIDTH
<= ULONG_WIDTH
44 ? ULONG_WIDTH
- 1 - count_leading_zeros_l (n
)
45 : ULLONG_WIDTH
- 1 - count_leading_zeros_ll (n
));
48 /* Return an upper bound on the number of random bytes needed to
49 generate the first H elements of a random permutation of N
50 elements. H must not exceed N. */
53 randperm_bound (size_t h
, size_t n
)
55 /* Upper bound on number of bits needed to generate the first number
56 of the permutation. */
57 uintmax_t lg_n
= floor_lg (n
) + 1;
59 /* Upper bound on number of bits needed to generated the first H elements. */
60 uintmax_t ar
= lg_n
* h
;
62 /* Convert the bit count to a byte count. */
63 size_t bound
= (ar
+ CHAR_BIT
- 1) / CHAR_BIT
;
68 /* Swap elements I and J in array V. */
71 swap (size_t *v
, size_t i
, size_t j
)
78 /* Structures and functions for a sparse_map abstract data type that's
79 used to effectively swap elements I and J in array V like swap(),
80 but in a more memory efficient manner (when the number of permutations
81 performed is significantly less than the size of the input). */
90 sparse_hash_ (void const *x
, size_t table_size
)
92 struct sparse_ent_
const *ent
= x
;
93 return ent
->index
% table_size
;
97 sparse_cmp_ (void const *x
, void const *y
)
99 struct sparse_ent_
const *ent1
= x
;
100 struct sparse_ent_
const *ent2
= y
;
101 return ent1
->index
== ent2
->index
;
104 typedef Hash_table sparse_map
;
106 /* Initialize the structure for the sparse map,
107 when a best guess as to the number of entries
108 specified with SIZE_HINT. */
111 sparse_new (size_t size_hint
)
113 return hash_initialize (size_hint
, NULL
, sparse_hash_
, sparse_cmp_
, free
);
116 /* Swap the values for I and J. If a value is not already present
117 then assume it's equal to the index. Update the value for
118 index I in array V. */
121 sparse_swap (sparse_map
*sv
, size_t *v
, size_t i
, size_t j
)
123 struct sparse_ent_
*v1
= hash_remove (sv
, &(struct sparse_ent_
) {i
,0});
124 struct sparse_ent_
*v2
= hash_remove (sv
, &(struct sparse_ent_
) {j
,0});
126 /* FIXME: reduce the frequency of these mallocs. */
129 v1
= xmalloc (sizeof *v1
);
130 v1
->index
= v1
->val
= i
;
134 v2
= xmalloc (sizeof *v2
);
135 v2
->index
= v2
->val
= j
;
141 if (!hash_insert (sv
, v1
))
143 if (!hash_insert (sv
, v2
))
150 sparse_free (sparse_map
*sv
)
156 /* From R, allocate and return a malloc'd array of the first H elements
157 of a random permutation of N elements. H must not exceed N.
158 Return NULL if H is zero. */
161 randperm_new (struct randint_source
*r
, size_t h
, size_t n
)
172 v
= xmalloc (sizeof *v
);
173 v
[0] = randint_choose (r
, n
);
178 /* The algorithm is essentially the same in both
179 the sparse and non sparse case. In the sparse case we use
180 a hash to implement sparse storage for the set of n numbers
181 we're shuffling. When to use the sparse method was
182 determined with the help of this script:
185 for n in $(seq 2 32); do
186 for h in $(seq 2 32); do
187 test $h -gt $n && continue
189 test $s = o && shuf=shuf || shuf=./shuf
190 num=$(env time -f "$s:${h},${n} = %e,%M" \
191 $shuf -i0-$((2**$n-2)) -n$((2**$h-2)) | wc -l)
192 test $num = $((2**$h-2)) || echo "$s:${h},${n} = failed" >&2
197 This showed that if sparseness = n/h, then:
199 sparseness = 128 => .125 mem used, and about same speed
200 sparseness = 64 => .25 mem used, but 1.5 times slower
201 sparseness = 32 => .5 mem used, but 2 times slower
203 Also the memory usage was only significant when n > 128Ki
205 bool sparse
= (n
>= (128 * 1024)) && (n
/ h
>= 32);
212 sv
= sparse_new (h
* 2);
215 v
= xnmalloc (h
, sizeof *v
);
219 sv
= NULL
; /* To placate GCC's -Wuninitialized. */
220 v
= xnmalloc (n
, sizeof *v
);
221 for (i
= 0; i
< n
; i
++)
225 for (i
= 0; i
< h
; i
++)
227 size_t j
= i
+ randint_choose (r
, n
- i
);
229 sparse_swap (sv
, v
, i
, j
);
237 v
= xnrealloc (v
, h
, sizeof *v
);