2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
17 unsigned long blk_max_low_pfn
;
18 EXPORT_SYMBOL(blk_max_low_pfn
);
20 unsigned long blk_max_pfn
;
23 * blk_queue_prep_rq - set a prepare_request function for queue
25 * @pfn: prepare_request function
27 * It's possible for a queue to register a prepare_request callback which
28 * is invoked before the request is handed to the request_fn. The goal of
29 * the function is to prepare a request for I/O, it can be used to build a
30 * cdb from the request data for instance.
33 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
37 EXPORT_SYMBOL(blk_queue_prep_rq
);
40 * blk_queue_unprep_rq - set an unprepare_request function for queue
42 * @ufn: unprepare_request function
44 * It's possible for a queue to register an unprepare_request callback
45 * which is invoked before the request is finally completed. The goal
46 * of the function is to deallocate any data that was allocated in the
47 * prepare_request callback.
50 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
52 q
->unprep_rq_fn
= ufn
;
54 EXPORT_SYMBOL(blk_queue_unprep_rq
);
56 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
58 q
->softirq_done_fn
= fn
;
60 EXPORT_SYMBOL(blk_queue_softirq_done
);
62 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
64 q
->rq_timeout
= timeout
;
66 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
68 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
70 q
->rq_timed_out_fn
= fn
;
72 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
74 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
78 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
81 * blk_set_default_limits - reset limits to default values
82 * @lim: the queue_limits structure to reset
85 * Returns a queue_limit struct to its default state.
87 void blk_set_default_limits(struct queue_limits
*lim
)
89 lim
->max_segments
= BLK_MAX_SEGMENTS
;
90 lim
->max_integrity_segments
= 0;
91 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
92 lim
->virt_boundary_mask
= 0;
93 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
94 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
95 lim
->max_dev_sectors
= 0;
96 lim
->chunk_sectors
= 0;
97 lim
->max_write_same_sectors
= 0;
98 lim
->max_discard_sectors
= 0;
99 lim
->max_hw_discard_sectors
= 0;
100 lim
->discard_granularity
= 0;
101 lim
->discard_alignment
= 0;
102 lim
->discard_misaligned
= 0;
103 lim
->discard_zeroes_data
= 0;
104 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
105 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
106 lim
->alignment_offset
= 0;
111 EXPORT_SYMBOL(blk_set_default_limits
);
114 * blk_set_stacking_limits - set default limits for stacking devices
115 * @lim: the queue_limits structure to reset
118 * Returns a queue_limit struct to its default state. Should be used
119 * by stacking drivers like DM that have no internal limits.
121 void blk_set_stacking_limits(struct queue_limits
*lim
)
123 blk_set_default_limits(lim
);
125 /* Inherit limits from component devices */
126 lim
->discard_zeroes_data
= 1;
127 lim
->max_segments
= USHRT_MAX
;
128 lim
->max_hw_sectors
= UINT_MAX
;
129 lim
->max_segment_size
= UINT_MAX
;
130 lim
->max_sectors
= UINT_MAX
;
131 lim
->max_dev_sectors
= UINT_MAX
;
132 lim
->max_write_same_sectors
= UINT_MAX
;
134 EXPORT_SYMBOL(blk_set_stacking_limits
);
137 * blk_queue_make_request - define an alternate make_request function for a device
138 * @q: the request queue for the device to be affected
139 * @mfn: the alternate make_request function
142 * The normal way for &struct bios to be passed to a device
143 * driver is for them to be collected into requests on a request
144 * queue, and then to allow the device driver to select requests
145 * off that queue when it is ready. This works well for many block
146 * devices. However some block devices (typically virtual devices
147 * such as md or lvm) do not benefit from the processing on the
148 * request queue, and are served best by having the requests passed
149 * directly to them. This can be achieved by providing a function
150 * to blk_queue_make_request().
153 * The driver that does this *must* be able to deal appropriately
154 * with buffers in "highmemory". This can be accomplished by either calling
155 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
156 * blk_queue_bounce() to create a buffer in normal memory.
158 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
163 q
->nr_requests
= BLKDEV_MAX_RQ
;
165 q
->make_request_fn
= mfn
;
166 blk_queue_dma_alignment(q
, 511);
167 blk_queue_congestion_threshold(q
);
168 q
->nr_batching
= BLK_BATCH_REQ
;
170 blk_set_default_limits(&q
->limits
);
173 * by default assume old behaviour and bounce for any highmem page
175 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
177 EXPORT_SYMBOL(blk_queue_make_request
);
180 * blk_queue_bounce_limit - set bounce buffer limit for queue
181 * @q: the request queue for the device
182 * @max_addr: the maximum address the device can handle
185 * Different hardware can have different requirements as to what pages
186 * it can do I/O directly to. A low level driver can call
187 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
188 * buffers for doing I/O to pages residing above @max_addr.
190 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
192 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
195 q
->bounce_gfp
= GFP_NOIO
;
196 #if BITS_PER_LONG == 64
198 * Assume anything <= 4GB can be handled by IOMMU. Actually
199 * some IOMMUs can handle everything, but I don't know of a
200 * way to test this here.
202 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
204 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
206 if (b_pfn
< blk_max_low_pfn
)
208 q
->limits
.bounce_pfn
= b_pfn
;
211 init_emergency_isa_pool();
212 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
213 q
->limits
.bounce_pfn
= b_pfn
;
216 EXPORT_SYMBOL(blk_queue_bounce_limit
);
219 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
220 * @q: the request queue for the device
221 * @max_hw_sectors: max hardware sectors in the usual 512b unit
224 * Enables a low level driver to set a hard upper limit,
225 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
226 * the device driver based upon the capabilities of the I/O
229 * max_dev_sectors is a hard limit imposed by the storage device for
230 * READ/WRITE requests. It is set by the disk driver.
232 * max_sectors is a soft limit imposed by the block layer for
233 * filesystem type requests. This value can be overridden on a
234 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
235 * The soft limit can not exceed max_hw_sectors.
237 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
239 struct queue_limits
*limits
= &q
->limits
;
240 unsigned int max_sectors
;
242 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
243 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
244 printk(KERN_INFO
"%s: set to minimum %d\n",
245 __func__
, max_hw_sectors
);
248 limits
->max_hw_sectors
= max_hw_sectors
;
249 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
250 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
251 limits
->max_sectors
= max_sectors
;
253 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
256 * blk_queue_chunk_sectors - set size of the chunk for this queue
257 * @q: the request queue for the device
258 * @chunk_sectors: chunk sectors in the usual 512b unit
261 * If a driver doesn't want IOs to cross a given chunk size, it can set
262 * this limit and prevent merging across chunks. Note that the chunk size
263 * must currently be a power-of-2 in sectors. Also note that the block
264 * layer must accept a page worth of data at any offset. So if the
265 * crossing of chunks is a hard limitation in the driver, it must still be
266 * prepared to split single page bios.
268 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
270 BUG_ON(!is_power_of_2(chunk_sectors
));
271 q
->limits
.chunk_sectors
= chunk_sectors
;
273 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
276 * blk_queue_max_discard_sectors - set max sectors for a single discard
277 * @q: the request queue for the device
278 * @max_discard_sectors: maximum number of sectors to discard
280 void blk_queue_max_discard_sectors(struct request_queue
*q
,
281 unsigned int max_discard_sectors
)
283 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
284 q
->limits
.max_discard_sectors
= max_discard_sectors
;
286 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
289 * blk_queue_max_write_same_sectors - set max sectors for a single write same
290 * @q: the request queue for the device
291 * @max_write_same_sectors: maximum number of sectors to write per command
293 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
294 unsigned int max_write_same_sectors
)
296 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
298 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
301 * blk_queue_max_segments - set max hw segments for a request for this queue
302 * @q: the request queue for the device
303 * @max_segments: max number of segments
306 * Enables a low level driver to set an upper limit on the number of
307 * hw data segments in a request.
309 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
313 printk(KERN_INFO
"%s: set to minimum %d\n",
314 __func__
, max_segments
);
317 q
->limits
.max_segments
= max_segments
;
319 EXPORT_SYMBOL(blk_queue_max_segments
);
322 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
323 * @q: the request queue for the device
324 * @max_size: max size of segment in bytes
327 * Enables a low level driver to set an upper limit on the size of a
330 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
332 if (max_size
< PAGE_SIZE
) {
333 max_size
= PAGE_SIZE
;
334 printk(KERN_INFO
"%s: set to minimum %d\n",
338 q
->limits
.max_segment_size
= max_size
;
340 EXPORT_SYMBOL(blk_queue_max_segment_size
);
343 * blk_queue_logical_block_size - set logical block size for the queue
344 * @q: the request queue for the device
345 * @size: the logical block size, in bytes
348 * This should be set to the lowest possible block size that the
349 * storage device can address. The default of 512 covers most
352 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
354 q
->limits
.logical_block_size
= size
;
356 if (q
->limits
.physical_block_size
< size
)
357 q
->limits
.physical_block_size
= size
;
359 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
360 q
->limits
.io_min
= q
->limits
.physical_block_size
;
362 EXPORT_SYMBOL(blk_queue_logical_block_size
);
365 * blk_queue_physical_block_size - set physical block size for the queue
366 * @q: the request queue for the device
367 * @size: the physical block size, in bytes
370 * This should be set to the lowest possible sector size that the
371 * hardware can operate on without reverting to read-modify-write
374 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
376 q
->limits
.physical_block_size
= size
;
378 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
379 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
381 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
382 q
->limits
.io_min
= q
->limits
.physical_block_size
;
384 EXPORT_SYMBOL(blk_queue_physical_block_size
);
387 * blk_queue_alignment_offset - set physical block alignment offset
388 * @q: the request queue for the device
389 * @offset: alignment offset in bytes
392 * Some devices are naturally misaligned to compensate for things like
393 * the legacy DOS partition table 63-sector offset. Low-level drivers
394 * should call this function for devices whose first sector is not
397 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
399 q
->limits
.alignment_offset
=
400 offset
& (q
->limits
.physical_block_size
- 1);
401 q
->limits
.misaligned
= 0;
403 EXPORT_SYMBOL(blk_queue_alignment_offset
);
406 * blk_limits_io_min - set minimum request size for a device
407 * @limits: the queue limits
408 * @min: smallest I/O size in bytes
411 * Some devices have an internal block size bigger than the reported
412 * hardware sector size. This function can be used to signal the
413 * smallest I/O the device can perform without incurring a performance
416 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
418 limits
->io_min
= min
;
420 if (limits
->io_min
< limits
->logical_block_size
)
421 limits
->io_min
= limits
->logical_block_size
;
423 if (limits
->io_min
< limits
->physical_block_size
)
424 limits
->io_min
= limits
->physical_block_size
;
426 EXPORT_SYMBOL(blk_limits_io_min
);
429 * blk_queue_io_min - set minimum request size for the queue
430 * @q: the request queue for the device
431 * @min: smallest I/O size in bytes
434 * Storage devices may report a granularity or preferred minimum I/O
435 * size which is the smallest request the device can perform without
436 * incurring a performance penalty. For disk drives this is often the
437 * physical block size. For RAID arrays it is often the stripe chunk
438 * size. A properly aligned multiple of minimum_io_size is the
439 * preferred request size for workloads where a high number of I/O
440 * operations is desired.
442 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
444 blk_limits_io_min(&q
->limits
, min
);
446 EXPORT_SYMBOL(blk_queue_io_min
);
449 * blk_limits_io_opt - set optimal request size for a device
450 * @limits: the queue limits
451 * @opt: smallest I/O size in bytes
454 * Storage devices may report an optimal I/O size, which is the
455 * device's preferred unit for sustained I/O. This is rarely reported
456 * for disk drives. For RAID arrays it is usually the stripe width or
457 * the internal track size. A properly aligned multiple of
458 * optimal_io_size is the preferred request size for workloads where
459 * sustained throughput is desired.
461 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
463 limits
->io_opt
= opt
;
465 EXPORT_SYMBOL(blk_limits_io_opt
);
468 * blk_queue_io_opt - set optimal request size for the queue
469 * @q: the request queue for the device
470 * @opt: optimal request size in bytes
473 * Storage devices may report an optimal I/O size, which is the
474 * device's preferred unit for sustained I/O. This is rarely reported
475 * for disk drives. For RAID arrays it is usually the stripe width or
476 * the internal track size. A properly aligned multiple of
477 * optimal_io_size is the preferred request size for workloads where
478 * sustained throughput is desired.
480 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
482 blk_limits_io_opt(&q
->limits
, opt
);
484 EXPORT_SYMBOL(blk_queue_io_opt
);
487 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
488 * @t: the stacking driver (top)
489 * @b: the underlying device (bottom)
491 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
493 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
495 EXPORT_SYMBOL(blk_queue_stack_limits
);
498 * blk_stack_limits - adjust queue_limits for stacked devices
499 * @t: the stacking driver limits (top device)
500 * @b: the underlying queue limits (bottom, component device)
501 * @start: first data sector within component device
504 * This function is used by stacking drivers like MD and DM to ensure
505 * that all component devices have compatible block sizes and
506 * alignments. The stacking driver must provide a queue_limits
507 * struct (top) and then iteratively call the stacking function for
508 * all component (bottom) devices. The stacking function will
509 * attempt to combine the values and ensure proper alignment.
511 * Returns 0 if the top and bottom queue_limits are compatible. The
512 * top device's block sizes and alignment offsets may be adjusted to
513 * ensure alignment with the bottom device. If no compatible sizes
514 * and alignments exist, -1 is returned and the resulting top
515 * queue_limits will have the misaligned flag set to indicate that
516 * the alignment_offset is undefined.
518 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
521 unsigned int top
, bottom
, alignment
, ret
= 0;
523 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
524 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
525 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
526 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
527 b
->max_write_same_sectors
);
528 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
530 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
531 b
->seg_boundary_mask
);
532 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
533 b
->virt_boundary_mask
);
535 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
536 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
537 b
->max_integrity_segments
);
539 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
540 b
->max_segment_size
);
542 t
->misaligned
|= b
->misaligned
;
544 alignment
= queue_limit_alignment_offset(b
, start
);
546 /* Bottom device has different alignment. Check that it is
547 * compatible with the current top alignment.
549 if (t
->alignment_offset
!= alignment
) {
551 top
= max(t
->physical_block_size
, t
->io_min
)
552 + t
->alignment_offset
;
553 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
555 /* Verify that top and bottom intervals line up */
556 if (max(top
, bottom
) % min(top
, bottom
)) {
562 t
->logical_block_size
= max(t
->logical_block_size
,
563 b
->logical_block_size
);
565 t
->physical_block_size
= max(t
->physical_block_size
,
566 b
->physical_block_size
);
568 t
->io_min
= max(t
->io_min
, b
->io_min
);
569 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
571 t
->cluster
&= b
->cluster
;
572 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
574 /* Physical block size a multiple of the logical block size? */
575 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
576 t
->physical_block_size
= t
->logical_block_size
;
581 /* Minimum I/O a multiple of the physical block size? */
582 if (t
->io_min
& (t
->physical_block_size
- 1)) {
583 t
->io_min
= t
->physical_block_size
;
588 /* Optimal I/O a multiple of the physical block size? */
589 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
595 t
->raid_partial_stripes_expensive
=
596 max(t
->raid_partial_stripes_expensive
,
597 b
->raid_partial_stripes_expensive
);
599 /* Find lowest common alignment_offset */
600 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
601 % max(t
->physical_block_size
, t
->io_min
);
603 /* Verify that new alignment_offset is on a logical block boundary */
604 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
609 /* Discard alignment and granularity */
610 if (b
->discard_granularity
) {
611 alignment
= queue_limit_discard_alignment(b
, start
);
613 if (t
->discard_granularity
!= 0 &&
614 t
->discard_alignment
!= alignment
) {
615 top
= t
->discard_granularity
+ t
->discard_alignment
;
616 bottom
= b
->discard_granularity
+ alignment
;
618 /* Verify that top and bottom intervals line up */
619 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
620 t
->discard_misaligned
= 1;
623 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
624 b
->max_discard_sectors
);
625 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
626 b
->max_hw_discard_sectors
);
627 t
->discard_granularity
= max(t
->discard_granularity
,
628 b
->discard_granularity
);
629 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
630 t
->discard_granularity
;
635 EXPORT_SYMBOL(blk_stack_limits
);
638 * bdev_stack_limits - adjust queue limits for stacked drivers
639 * @t: the stacking driver limits (top device)
640 * @bdev: the component block_device (bottom)
641 * @start: first data sector within component device
644 * Merges queue limits for a top device and a block_device. Returns
645 * 0 if alignment didn't change. Returns -1 if adding the bottom
646 * device caused misalignment.
648 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
651 struct request_queue
*bq
= bdev_get_queue(bdev
);
653 start
+= get_start_sect(bdev
);
655 return blk_stack_limits(t
, &bq
->limits
, start
);
657 EXPORT_SYMBOL(bdev_stack_limits
);
660 * disk_stack_limits - adjust queue limits for stacked drivers
661 * @disk: MD/DM gendisk (top)
662 * @bdev: the underlying block device (bottom)
663 * @offset: offset to beginning of data within component device
666 * Merges the limits for a top level gendisk and a bottom level
669 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
672 struct request_queue
*t
= disk
->queue
;
674 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
675 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
677 disk_name(disk
, 0, top
);
678 bdevname(bdev
, bottom
);
680 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
684 EXPORT_SYMBOL(disk_stack_limits
);
687 * blk_queue_dma_pad - set pad mask
688 * @q: the request queue for the device
693 * Appending pad buffer to a request modifies the last entry of a
694 * scatter list such that it includes the pad buffer.
696 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
698 q
->dma_pad_mask
= mask
;
700 EXPORT_SYMBOL(blk_queue_dma_pad
);
703 * blk_queue_update_dma_pad - update pad mask
704 * @q: the request queue for the device
707 * Update dma pad mask.
709 * Appending pad buffer to a request modifies the last entry of a
710 * scatter list such that it includes the pad buffer.
712 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
714 if (mask
> q
->dma_pad_mask
)
715 q
->dma_pad_mask
= mask
;
717 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
720 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
721 * @q: the request queue for the device
722 * @dma_drain_needed: fn which returns non-zero if drain is necessary
723 * @buf: physically contiguous buffer
724 * @size: size of the buffer in bytes
726 * Some devices have excess DMA problems and can't simply discard (or
727 * zero fill) the unwanted piece of the transfer. They have to have a
728 * real area of memory to transfer it into. The use case for this is
729 * ATAPI devices in DMA mode. If the packet command causes a transfer
730 * bigger than the transfer size some HBAs will lock up if there
731 * aren't DMA elements to contain the excess transfer. What this API
732 * does is adjust the queue so that the buf is always appended
733 * silently to the scatterlist.
735 * Note: This routine adjusts max_hw_segments to make room for appending
736 * the drain buffer. If you call blk_queue_max_segments() after calling
737 * this routine, you must set the limit to one fewer than your device
738 * can support otherwise there won't be room for the drain buffer.
740 int blk_queue_dma_drain(struct request_queue
*q
,
741 dma_drain_needed_fn
*dma_drain_needed
,
742 void *buf
, unsigned int size
)
744 if (queue_max_segments(q
) < 2)
746 /* make room for appending the drain */
747 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
748 q
->dma_drain_needed
= dma_drain_needed
;
749 q
->dma_drain_buffer
= buf
;
750 q
->dma_drain_size
= size
;
754 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
757 * blk_queue_segment_boundary - set boundary rules for segment merging
758 * @q: the request queue for the device
759 * @mask: the memory boundary mask
761 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
763 if (mask
< PAGE_SIZE
- 1) {
764 mask
= PAGE_SIZE
- 1;
765 printk(KERN_INFO
"%s: set to minimum %lx\n",
769 q
->limits
.seg_boundary_mask
= mask
;
771 EXPORT_SYMBOL(blk_queue_segment_boundary
);
774 * blk_queue_virt_boundary - set boundary rules for bio merging
775 * @q: the request queue for the device
776 * @mask: the memory boundary mask
778 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
780 q
->limits
.virt_boundary_mask
= mask
;
782 EXPORT_SYMBOL(blk_queue_virt_boundary
);
785 * blk_queue_dma_alignment - set dma length and memory alignment
786 * @q: the request queue for the device
787 * @mask: alignment mask
790 * set required memory and length alignment for direct dma transactions.
791 * this is used when building direct io requests for the queue.
794 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
796 q
->dma_alignment
= mask
;
798 EXPORT_SYMBOL(blk_queue_dma_alignment
);
801 * blk_queue_update_dma_alignment - update dma length and memory alignment
802 * @q: the request queue for the device
803 * @mask: alignment mask
806 * update required memory and length alignment for direct dma transactions.
807 * If the requested alignment is larger than the current alignment, then
808 * the current queue alignment is updated to the new value, otherwise it
809 * is left alone. The design of this is to allow multiple objects
810 * (driver, device, transport etc) to set their respective
811 * alignments without having them interfere.
814 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
816 BUG_ON(mask
> PAGE_SIZE
);
818 if (mask
> q
->dma_alignment
)
819 q
->dma_alignment
= mask
;
821 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
824 * blk_queue_flush - configure queue's cache flush capability
825 * @q: the request queue for the device
826 * @flush: 0, REQ_FLUSH or REQ_FLUSH | REQ_FUA
828 * Tell block layer cache flush capability of @q. If it supports
829 * flushing, REQ_FLUSH should be set. If it supports bypassing
830 * write cache for individual writes, REQ_FUA should be set.
832 void blk_queue_flush(struct request_queue
*q
, unsigned int flush
)
834 WARN_ON_ONCE(flush
& ~(REQ_FLUSH
| REQ_FUA
));
836 if (WARN_ON_ONCE(!(flush
& REQ_FLUSH
) && (flush
& REQ_FUA
)))
839 q
->flush_flags
= flush
& (REQ_FLUSH
| REQ_FUA
);
841 EXPORT_SYMBOL_GPL(blk_queue_flush
);
843 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
845 q
->flush_not_queueable
= !queueable
;
847 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
849 static int __init
blk_settings_init(void)
851 blk_max_low_pfn
= max_low_pfn
- 1;
852 blk_max_pfn
= max_pfn
- 1;
855 subsys_initcall(blk_settings_init
);