Linux 4.6-rc6
[cris-mirror.git] / fs / mpage.c
blobeedc644b78d78338ebb960339f3d1d224b837b9b
1 /*
2 * fs/mpage.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
9 * 15May2002 Andrew Morton
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/mm_inline.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/cleancache.h>
32 #include "internal.h"
35 * I/O completion handler for multipage BIOs.
37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
38 * If a page does not map to a contiguous run of blocks then it simply falls
39 * back to block_read_full_page().
41 * Why is this? If a page's completion depends on a number of different BIOs
42 * which can complete in any order (or at the same time) then determining the
43 * status of that page is hard. See end_buffer_async_read() for the details.
44 * There is no point in duplicating all that complexity.
46 static void mpage_end_io(struct bio *bio)
48 struct bio_vec *bv;
49 int i;
51 bio_for_each_segment_all(bv, bio, i) {
52 struct page *page = bv->bv_page;
53 page_endio(page, bio_data_dir(bio), bio->bi_error);
56 bio_put(bio);
59 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
61 bio->bi_end_io = mpage_end_io;
62 guard_bio_eod(rw, bio);
63 submit_bio(rw, bio);
64 return NULL;
67 static struct bio *
68 mpage_alloc(struct block_device *bdev,
69 sector_t first_sector, int nr_vecs,
70 gfp_t gfp_flags)
72 struct bio *bio;
74 bio = bio_alloc(gfp_flags, nr_vecs);
76 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
77 while (!bio && (nr_vecs /= 2))
78 bio = bio_alloc(gfp_flags, nr_vecs);
81 if (bio) {
82 bio->bi_bdev = bdev;
83 bio->bi_iter.bi_sector = first_sector;
85 return bio;
89 * support function for mpage_readpages. The fs supplied get_block might
90 * return an up to date buffer. This is used to map that buffer into
91 * the page, which allows readpage to avoid triggering a duplicate call
92 * to get_block.
94 * The idea is to avoid adding buffers to pages that don't already have
95 * them. So when the buffer is up to date and the page size == block size,
96 * this marks the page up to date instead of adding new buffers.
98 static void
99 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
101 struct inode *inode = page->mapping->host;
102 struct buffer_head *page_bh, *head;
103 int block = 0;
105 if (!page_has_buffers(page)) {
107 * don't make any buffers if there is only one buffer on
108 * the page and the page just needs to be set up to date
110 if (inode->i_blkbits == PAGE_SHIFT &&
111 buffer_uptodate(bh)) {
112 SetPageUptodate(page);
113 return;
115 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
117 head = page_buffers(page);
118 page_bh = head;
119 do {
120 if (block == page_block) {
121 page_bh->b_state = bh->b_state;
122 page_bh->b_bdev = bh->b_bdev;
123 page_bh->b_blocknr = bh->b_blocknr;
124 break;
126 page_bh = page_bh->b_this_page;
127 block++;
128 } while (page_bh != head);
132 * This is the worker routine which does all the work of mapping the disk
133 * blocks and constructs largest possible bios, submits them for IO if the
134 * blocks are not contiguous on the disk.
136 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
137 * represent the validity of its disk mapping and to decide when to do the next
138 * get_block() call.
140 static struct bio *
141 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
142 sector_t *last_block_in_bio, struct buffer_head *map_bh,
143 unsigned long *first_logical_block, get_block_t get_block,
144 gfp_t gfp)
146 struct inode *inode = page->mapping->host;
147 const unsigned blkbits = inode->i_blkbits;
148 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
149 const unsigned blocksize = 1 << blkbits;
150 sector_t block_in_file;
151 sector_t last_block;
152 sector_t last_block_in_file;
153 sector_t blocks[MAX_BUF_PER_PAGE];
154 unsigned page_block;
155 unsigned first_hole = blocks_per_page;
156 struct block_device *bdev = NULL;
157 int length;
158 int fully_mapped = 1;
159 unsigned nblocks;
160 unsigned relative_block;
162 if (page_has_buffers(page))
163 goto confused;
165 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
166 last_block = block_in_file + nr_pages * blocks_per_page;
167 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
168 if (last_block > last_block_in_file)
169 last_block = last_block_in_file;
170 page_block = 0;
173 * Map blocks using the result from the previous get_blocks call first.
175 nblocks = map_bh->b_size >> blkbits;
176 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
177 block_in_file < (*first_logical_block + nblocks)) {
178 unsigned map_offset = block_in_file - *first_logical_block;
179 unsigned last = nblocks - map_offset;
181 for (relative_block = 0; ; relative_block++) {
182 if (relative_block == last) {
183 clear_buffer_mapped(map_bh);
184 break;
186 if (page_block == blocks_per_page)
187 break;
188 blocks[page_block] = map_bh->b_blocknr + map_offset +
189 relative_block;
190 page_block++;
191 block_in_file++;
193 bdev = map_bh->b_bdev;
197 * Then do more get_blocks calls until we are done with this page.
199 map_bh->b_page = page;
200 while (page_block < blocks_per_page) {
201 map_bh->b_state = 0;
202 map_bh->b_size = 0;
204 if (block_in_file < last_block) {
205 map_bh->b_size = (last_block-block_in_file) << blkbits;
206 if (get_block(inode, block_in_file, map_bh, 0))
207 goto confused;
208 *first_logical_block = block_in_file;
211 if (!buffer_mapped(map_bh)) {
212 fully_mapped = 0;
213 if (first_hole == blocks_per_page)
214 first_hole = page_block;
215 page_block++;
216 block_in_file++;
217 continue;
220 /* some filesystems will copy data into the page during
221 * the get_block call, in which case we don't want to
222 * read it again. map_buffer_to_page copies the data
223 * we just collected from get_block into the page's buffers
224 * so readpage doesn't have to repeat the get_block call
226 if (buffer_uptodate(map_bh)) {
227 map_buffer_to_page(page, map_bh, page_block);
228 goto confused;
231 if (first_hole != blocks_per_page)
232 goto confused; /* hole -> non-hole */
234 /* Contiguous blocks? */
235 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
236 goto confused;
237 nblocks = map_bh->b_size >> blkbits;
238 for (relative_block = 0; ; relative_block++) {
239 if (relative_block == nblocks) {
240 clear_buffer_mapped(map_bh);
241 break;
242 } else if (page_block == blocks_per_page)
243 break;
244 blocks[page_block] = map_bh->b_blocknr+relative_block;
245 page_block++;
246 block_in_file++;
248 bdev = map_bh->b_bdev;
251 if (first_hole != blocks_per_page) {
252 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
253 if (first_hole == 0) {
254 SetPageUptodate(page);
255 unlock_page(page);
256 goto out;
258 } else if (fully_mapped) {
259 SetPageMappedToDisk(page);
262 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
263 cleancache_get_page(page) == 0) {
264 SetPageUptodate(page);
265 goto confused;
269 * This page will go to BIO. Do we need to send this BIO off first?
271 if (bio && (*last_block_in_bio != blocks[0] - 1))
272 bio = mpage_bio_submit(READ, bio);
274 alloc_new:
275 if (bio == NULL) {
276 if (first_hole == blocks_per_page) {
277 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
278 page))
279 goto out;
281 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
282 min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
283 if (bio == NULL)
284 goto confused;
287 length = first_hole << blkbits;
288 if (bio_add_page(bio, page, length, 0) < length) {
289 bio = mpage_bio_submit(READ, bio);
290 goto alloc_new;
293 relative_block = block_in_file - *first_logical_block;
294 nblocks = map_bh->b_size >> blkbits;
295 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
296 (first_hole != blocks_per_page))
297 bio = mpage_bio_submit(READ, bio);
298 else
299 *last_block_in_bio = blocks[blocks_per_page - 1];
300 out:
301 return bio;
303 confused:
304 if (bio)
305 bio = mpage_bio_submit(READ, bio);
306 if (!PageUptodate(page))
307 block_read_full_page(page, get_block);
308 else
309 unlock_page(page);
310 goto out;
314 * mpage_readpages - populate an address space with some pages & start reads against them
315 * @mapping: the address_space
316 * @pages: The address of a list_head which contains the target pages. These
317 * pages have their ->index populated and are otherwise uninitialised.
318 * The page at @pages->prev has the lowest file offset, and reads should be
319 * issued in @pages->prev to @pages->next order.
320 * @nr_pages: The number of pages at *@pages
321 * @get_block: The filesystem's block mapper function.
323 * This function walks the pages and the blocks within each page, building and
324 * emitting large BIOs.
326 * If anything unusual happens, such as:
328 * - encountering a page which has buffers
329 * - encountering a page which has a non-hole after a hole
330 * - encountering a page with non-contiguous blocks
332 * then this code just gives up and calls the buffer_head-based read function.
333 * It does handle a page which has holes at the end - that is a common case:
334 * the end-of-file on blocksize < PAGE_SIZE setups.
336 * BH_Boundary explanation:
338 * There is a problem. The mpage read code assembles several pages, gets all
339 * their disk mappings, and then submits them all. That's fine, but obtaining
340 * the disk mappings may require I/O. Reads of indirect blocks, for example.
342 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
343 * submitted in the following order:
344 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
346 * because the indirect block has to be read to get the mappings of blocks
347 * 13,14,15,16. Obviously, this impacts performance.
349 * So what we do it to allow the filesystem's get_block() function to set
350 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
351 * after this one will require I/O against a block which is probably close to
352 * this one. So you should push what I/O you have currently accumulated.
354 * This all causes the disk requests to be issued in the correct order.
357 mpage_readpages(struct address_space *mapping, struct list_head *pages,
358 unsigned nr_pages, get_block_t get_block)
360 struct bio *bio = NULL;
361 unsigned page_idx;
362 sector_t last_block_in_bio = 0;
363 struct buffer_head map_bh;
364 unsigned long first_logical_block = 0;
365 gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
367 map_bh.b_state = 0;
368 map_bh.b_size = 0;
369 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
370 struct page *page = lru_to_page(pages);
372 prefetchw(&page->flags);
373 list_del(&page->lru);
374 if (!add_to_page_cache_lru(page, mapping,
375 page->index,
376 gfp)) {
377 bio = do_mpage_readpage(bio, page,
378 nr_pages - page_idx,
379 &last_block_in_bio, &map_bh,
380 &first_logical_block,
381 get_block, gfp);
383 put_page(page);
385 BUG_ON(!list_empty(pages));
386 if (bio)
387 mpage_bio_submit(READ, bio);
388 return 0;
390 EXPORT_SYMBOL(mpage_readpages);
393 * This isn't called much at all
395 int mpage_readpage(struct page *page, get_block_t get_block)
397 struct bio *bio = NULL;
398 sector_t last_block_in_bio = 0;
399 struct buffer_head map_bh;
400 unsigned long first_logical_block = 0;
401 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
403 map_bh.b_state = 0;
404 map_bh.b_size = 0;
405 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
406 &map_bh, &first_logical_block, get_block, gfp);
407 if (bio)
408 mpage_bio_submit(READ, bio);
409 return 0;
411 EXPORT_SYMBOL(mpage_readpage);
414 * Writing is not so simple.
416 * If the page has buffers then they will be used for obtaining the disk
417 * mapping. We only support pages which are fully mapped-and-dirty, with a
418 * special case for pages which are unmapped at the end: end-of-file.
420 * If the page has no buffers (preferred) then the page is mapped here.
422 * If all blocks are found to be contiguous then the page can go into the
423 * BIO. Otherwise fall back to the mapping's writepage().
425 * FIXME: This code wants an estimate of how many pages are still to be
426 * written, so it can intelligently allocate a suitably-sized BIO. For now,
427 * just allocate full-size (16-page) BIOs.
430 struct mpage_data {
431 struct bio *bio;
432 sector_t last_block_in_bio;
433 get_block_t *get_block;
434 unsigned use_writepage;
438 * We have our BIO, so we can now mark the buffers clean. Make
439 * sure to only clean buffers which we know we'll be writing.
441 static void clean_buffers(struct page *page, unsigned first_unmapped)
443 unsigned buffer_counter = 0;
444 struct buffer_head *bh, *head;
445 if (!page_has_buffers(page))
446 return;
447 head = page_buffers(page);
448 bh = head;
450 do {
451 if (buffer_counter++ == first_unmapped)
452 break;
453 clear_buffer_dirty(bh);
454 bh = bh->b_this_page;
455 } while (bh != head);
458 * we cannot drop the bh if the page is not uptodate or a concurrent
459 * readpage would fail to serialize with the bh and it would read from
460 * disk before we reach the platter.
462 if (buffer_heads_over_limit && PageUptodate(page))
463 try_to_free_buffers(page);
466 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
467 void *data)
469 struct mpage_data *mpd = data;
470 struct bio *bio = mpd->bio;
471 struct address_space *mapping = page->mapping;
472 struct inode *inode = page->mapping->host;
473 const unsigned blkbits = inode->i_blkbits;
474 unsigned long end_index;
475 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
476 sector_t last_block;
477 sector_t block_in_file;
478 sector_t blocks[MAX_BUF_PER_PAGE];
479 unsigned page_block;
480 unsigned first_unmapped = blocks_per_page;
481 struct block_device *bdev = NULL;
482 int boundary = 0;
483 sector_t boundary_block = 0;
484 struct block_device *boundary_bdev = NULL;
485 int length;
486 struct buffer_head map_bh;
487 loff_t i_size = i_size_read(inode);
488 int ret = 0;
489 int wr = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
491 if (page_has_buffers(page)) {
492 struct buffer_head *head = page_buffers(page);
493 struct buffer_head *bh = head;
495 /* If they're all mapped and dirty, do it */
496 page_block = 0;
497 do {
498 BUG_ON(buffer_locked(bh));
499 if (!buffer_mapped(bh)) {
501 * unmapped dirty buffers are created by
502 * __set_page_dirty_buffers -> mmapped data
504 if (buffer_dirty(bh))
505 goto confused;
506 if (first_unmapped == blocks_per_page)
507 first_unmapped = page_block;
508 continue;
511 if (first_unmapped != blocks_per_page)
512 goto confused; /* hole -> non-hole */
514 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
515 goto confused;
516 if (page_block) {
517 if (bh->b_blocknr != blocks[page_block-1] + 1)
518 goto confused;
520 blocks[page_block++] = bh->b_blocknr;
521 boundary = buffer_boundary(bh);
522 if (boundary) {
523 boundary_block = bh->b_blocknr;
524 boundary_bdev = bh->b_bdev;
526 bdev = bh->b_bdev;
527 } while ((bh = bh->b_this_page) != head);
529 if (first_unmapped)
530 goto page_is_mapped;
533 * Page has buffers, but they are all unmapped. The page was
534 * created by pagein or read over a hole which was handled by
535 * block_read_full_page(). If this address_space is also
536 * using mpage_readpages then this can rarely happen.
538 goto confused;
542 * The page has no buffers: map it to disk
544 BUG_ON(!PageUptodate(page));
545 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
546 last_block = (i_size - 1) >> blkbits;
547 map_bh.b_page = page;
548 for (page_block = 0; page_block < blocks_per_page; ) {
550 map_bh.b_state = 0;
551 map_bh.b_size = 1 << blkbits;
552 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
553 goto confused;
554 if (buffer_new(&map_bh))
555 unmap_underlying_metadata(map_bh.b_bdev,
556 map_bh.b_blocknr);
557 if (buffer_boundary(&map_bh)) {
558 boundary_block = map_bh.b_blocknr;
559 boundary_bdev = map_bh.b_bdev;
561 if (page_block) {
562 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
563 goto confused;
565 blocks[page_block++] = map_bh.b_blocknr;
566 boundary = buffer_boundary(&map_bh);
567 bdev = map_bh.b_bdev;
568 if (block_in_file == last_block)
569 break;
570 block_in_file++;
572 BUG_ON(page_block == 0);
574 first_unmapped = page_block;
576 page_is_mapped:
577 end_index = i_size >> PAGE_SHIFT;
578 if (page->index >= end_index) {
580 * The page straddles i_size. It must be zeroed out on each
581 * and every writepage invocation because it may be mmapped.
582 * "A file is mapped in multiples of the page size. For a file
583 * that is not a multiple of the page size, the remaining memory
584 * is zeroed when mapped, and writes to that region are not
585 * written out to the file."
587 unsigned offset = i_size & (PAGE_SIZE - 1);
589 if (page->index > end_index || !offset)
590 goto confused;
591 zero_user_segment(page, offset, PAGE_SIZE);
595 * This page will go to BIO. Do we need to send this BIO off first?
597 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
598 bio = mpage_bio_submit(wr, bio);
600 alloc_new:
601 if (bio == NULL) {
602 if (first_unmapped == blocks_per_page) {
603 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
604 page, wbc)) {
605 clean_buffers(page, first_unmapped);
606 goto out;
609 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
610 BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
611 if (bio == NULL)
612 goto confused;
614 wbc_init_bio(wbc, bio);
618 * Must try to add the page before marking the buffer clean or
619 * the confused fail path above (OOM) will be very confused when
620 * it finds all bh marked clean (i.e. it will not write anything)
622 wbc_account_io(wbc, page, PAGE_SIZE);
623 length = first_unmapped << blkbits;
624 if (bio_add_page(bio, page, length, 0) < length) {
625 bio = mpage_bio_submit(wr, bio);
626 goto alloc_new;
629 clean_buffers(page, first_unmapped);
631 BUG_ON(PageWriteback(page));
632 set_page_writeback(page);
633 unlock_page(page);
634 if (boundary || (first_unmapped != blocks_per_page)) {
635 bio = mpage_bio_submit(wr, bio);
636 if (boundary_block) {
637 write_boundary_block(boundary_bdev,
638 boundary_block, 1 << blkbits);
640 } else {
641 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
643 goto out;
645 confused:
646 if (bio)
647 bio = mpage_bio_submit(wr, bio);
649 if (mpd->use_writepage) {
650 ret = mapping->a_ops->writepage(page, wbc);
651 } else {
652 ret = -EAGAIN;
653 goto out;
656 * The caller has a ref on the inode, so *mapping is stable
658 mapping_set_error(mapping, ret);
659 out:
660 mpd->bio = bio;
661 return ret;
665 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
666 * @mapping: address space structure to write
667 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
668 * @get_block: the filesystem's block mapper function.
669 * If this is NULL then use a_ops->writepage. Otherwise, go
670 * direct-to-BIO.
672 * This is a library function, which implements the writepages()
673 * address_space_operation.
675 * If a page is already under I/O, generic_writepages() skips it, even
676 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
677 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
678 * and msync() need to guarantee that all the data which was dirty at the time
679 * the call was made get new I/O started against them. If wbc->sync_mode is
680 * WB_SYNC_ALL then we were called for data integrity and we must wait for
681 * existing IO to complete.
684 mpage_writepages(struct address_space *mapping,
685 struct writeback_control *wbc, get_block_t get_block)
687 struct blk_plug plug;
688 int ret;
690 blk_start_plug(&plug);
692 if (!get_block)
693 ret = generic_writepages(mapping, wbc);
694 else {
695 struct mpage_data mpd = {
696 .bio = NULL,
697 .last_block_in_bio = 0,
698 .get_block = get_block,
699 .use_writepage = 1,
702 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
703 if (mpd.bio) {
704 int wr = (wbc->sync_mode == WB_SYNC_ALL ?
705 WRITE_SYNC : WRITE);
706 mpage_bio_submit(wr, mpd.bio);
709 blk_finish_plug(&plug);
710 return ret;
712 EXPORT_SYMBOL(mpage_writepages);
714 int mpage_writepage(struct page *page, get_block_t get_block,
715 struct writeback_control *wbc)
717 struct mpage_data mpd = {
718 .bio = NULL,
719 .last_block_in_bio = 0,
720 .get_block = get_block,
721 .use_writepage = 0,
723 int ret = __mpage_writepage(page, wbc, &mpd);
724 if (mpd.bio) {
725 int wr = (wbc->sync_mode == WB_SYNC_ALL ?
726 WRITE_SYNC : WRITE);
727 mpage_bio_submit(wr, mpd.bio);
729 return ret;
731 EXPORT_SYMBOL(mpage_writepage);