2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
5 #include <linux/uaccess.h>
6 #include <linux/string.h>
7 #include <linux/time.h>
9 #include <linux/buffer_head.h>
11 /* this is one and only function that is used outside (do_balance.c) */
12 int balance_internal(struct tree_balance
*,
13 int, int, struct item_head
*, struct buffer_head
**);
16 * modes of internal_shift_left, internal_shift_right and
17 * internal_insert_childs
19 #define INTERNAL_SHIFT_FROM_S_TO_L 0
20 #define INTERNAL_SHIFT_FROM_R_TO_S 1
21 #define INTERNAL_SHIFT_FROM_L_TO_S 2
22 #define INTERNAL_SHIFT_FROM_S_TO_R 3
23 #define INTERNAL_INSERT_TO_S 4
24 #define INTERNAL_INSERT_TO_L 5
25 #define INTERNAL_INSERT_TO_R 6
27 static void internal_define_dest_src_infos(int shift_mode
,
28 struct tree_balance
*tb
,
30 struct buffer_info
*dest_bi
,
31 struct buffer_info
*src_bi
,
32 int *d_key
, struct buffer_head
**cf
)
34 memset(dest_bi
, 0, sizeof(struct buffer_info
));
35 memset(src_bi
, 0, sizeof(struct buffer_info
));
36 /* define dest, src, dest parent, dest position */
39 /* used in internal_shift_left */
40 case INTERNAL_SHIFT_FROM_S_TO_L
:
42 src_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
43 src_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
44 src_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
46 dest_bi
->bi_bh
= tb
->L
[h
];
47 dest_bi
->bi_parent
= tb
->FL
[h
];
48 dest_bi
->bi_position
= get_left_neighbor_position(tb
, h
);
52 case INTERNAL_SHIFT_FROM_L_TO_S
:
54 src_bi
->bi_bh
= tb
->L
[h
];
55 src_bi
->bi_parent
= tb
->FL
[h
];
56 src_bi
->bi_position
= get_left_neighbor_position(tb
, h
);
58 dest_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
59 dest_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
60 /* dest position is analog of dest->b_item_order */
61 dest_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
66 /* used in internal_shift_left */
67 case INTERNAL_SHIFT_FROM_R_TO_S
:
69 src_bi
->bi_bh
= tb
->R
[h
];
70 src_bi
->bi_parent
= tb
->FR
[h
];
71 src_bi
->bi_position
= get_right_neighbor_position(tb
, h
);
73 dest_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
74 dest_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
75 dest_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
80 case INTERNAL_SHIFT_FROM_S_TO_R
:
82 src_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
83 src_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
84 src_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
86 dest_bi
->bi_bh
= tb
->R
[h
];
87 dest_bi
->bi_parent
= tb
->FR
[h
];
88 dest_bi
->bi_position
= get_right_neighbor_position(tb
, h
);
93 case INTERNAL_INSERT_TO_L
:
95 dest_bi
->bi_bh
= tb
->L
[h
];
96 dest_bi
->bi_parent
= tb
->FL
[h
];
97 dest_bi
->bi_position
= get_left_neighbor_position(tb
, h
);
100 case INTERNAL_INSERT_TO_S
:
102 dest_bi
->bi_bh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
103 dest_bi
->bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
104 dest_bi
->bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
107 case INTERNAL_INSERT_TO_R
:
109 dest_bi
->bi_bh
= tb
->R
[h
];
110 dest_bi
->bi_parent
= tb
->FR
[h
];
111 dest_bi
->bi_position
= get_right_neighbor_position(tb
, h
);
115 reiserfs_panic(tb
->tb_sb
, "ibalance-1",
116 "shift type is unknown (%d)",
122 * Insert count node pointers into buffer cur before position to + 1.
123 * Insert count items into buffer cur before position to.
124 * Items and node pointers are specified by inserted and bh respectively.
126 static void internal_insert_childs(struct buffer_info
*cur_bi
,
128 struct item_head
*inserted
,
129 struct buffer_head
**bh
)
131 struct buffer_head
*cur
= cur_bi
->bi_bh
;
132 struct block_head
*blkh
;
134 struct reiserfs_key
*ih
;
135 struct disk_child new_dc
[2];
136 struct disk_child
*dc
;
142 blkh
= B_BLK_HEAD(cur
);
143 nr
= blkh_nr_item(blkh
);
145 RFALSE(count
> 2, "too many children (%d) are to be inserted", count
);
146 RFALSE(B_FREE_SPACE(cur
) < count
* (KEY_SIZE
+ DC_SIZE
),
147 "no enough free space (%d), needed %d bytes",
148 B_FREE_SPACE(cur
), count
* (KEY_SIZE
+ DC_SIZE
));
150 /* prepare space for count disk_child */
151 dc
= B_N_CHILD(cur
, to
+ 1);
153 memmove(dc
+ count
, dc
, (nr
+ 1 - (to
+ 1)) * DC_SIZE
);
155 /* copy to_be_insert disk children */
156 for (i
= 0; i
< count
; i
++) {
157 put_dc_size(&new_dc
[i
],
158 MAX_CHILD_SIZE(bh
[i
]) - B_FREE_SPACE(bh
[i
]));
159 put_dc_block_number(&new_dc
[i
], bh
[i
]->b_blocknr
);
161 memcpy(dc
, new_dc
, DC_SIZE
* count
);
163 /* prepare space for count items */
164 ih
= internal_key(cur
, ((to
== -1) ? 0 : to
));
166 memmove(ih
+ count
, ih
,
167 (nr
- to
) * KEY_SIZE
+ (nr
+ 1 + count
) * DC_SIZE
);
169 /* copy item headers (keys) */
170 memcpy(ih
, inserted
, KEY_SIZE
);
172 memcpy(ih
+ 1, inserted
+ 1, KEY_SIZE
);
174 /* sizes, item number */
175 set_blkh_nr_item(blkh
, blkh_nr_item(blkh
) + count
);
176 set_blkh_free_space(blkh
,
177 blkh_free_space(blkh
) - count
* (DC_SIZE
+
180 do_balance_mark_internal_dirty(cur_bi
->tb
, cur
, 0);
182 /*&&&&&&&&&&&&&&&&&&&&&&&& */
184 /*&&&&&&&&&&&&&&&&&&&&&&&& */
186 if (cur_bi
->bi_parent
) {
187 struct disk_child
*t_dc
=
188 B_N_CHILD(cur_bi
->bi_parent
, cur_bi
->bi_position
);
190 dc_size(t_dc
) + (count
* (DC_SIZE
+ KEY_SIZE
)));
191 do_balance_mark_internal_dirty(cur_bi
->tb
, cur_bi
->bi_parent
,
194 /*&&&&&&&&&&&&&&&&&&&&&&&& */
195 check_internal(cur_bi
->bi_parent
);
196 /*&&&&&&&&&&&&&&&&&&&&&&&& */
202 * Delete del_num items and node pointers from buffer cur starting from
203 * the first_i'th item and first_p'th pointers respectively.
205 static void internal_delete_pointers_items(struct buffer_info
*cur_bi
,
207 int first_i
, int del_num
)
209 struct buffer_head
*cur
= cur_bi
->bi_bh
;
211 struct block_head
*blkh
;
212 struct reiserfs_key
*key
;
213 struct disk_child
*dc
;
215 RFALSE(cur
== NULL
, "buffer is 0");
217 "negative number of items (%d) can not be deleted", del_num
);
218 RFALSE(first_p
< 0 || first_p
+ del_num
> B_NR_ITEMS(cur
) + 1
220 "first pointer order (%d) < 0 or "
221 "no so many pointers (%d), only (%d) or "
222 "first key order %d < 0", first_p
, first_p
+ del_num
,
223 B_NR_ITEMS(cur
) + 1, first_i
);
227 blkh
= B_BLK_HEAD(cur
);
228 nr
= blkh_nr_item(blkh
);
230 if (first_p
== 0 && del_num
== nr
+ 1) {
232 "1st deleted key must have order 0, not %d", first_i
);
233 make_empty_node(cur_bi
);
237 RFALSE(first_i
+ del_num
> B_NR_ITEMS(cur
),
238 "first_i = %d del_num = %d "
239 "no so many keys (%d) in the node (%b)(%z)",
240 first_i
, del_num
, first_i
+ del_num
, cur
, cur
);
243 dc
= B_N_CHILD(cur
, first_p
);
245 memmove(dc
, dc
+ del_num
, (nr
+ 1 - first_p
- del_num
) * DC_SIZE
);
246 key
= internal_key(cur
, first_i
);
247 memmove(key
, key
+ del_num
,
248 (nr
- first_i
- del_num
) * KEY_SIZE
+ (nr
+ 1 -
251 /* sizes, item number */
252 set_blkh_nr_item(blkh
, blkh_nr_item(blkh
) - del_num
);
253 set_blkh_free_space(blkh
,
254 blkh_free_space(blkh
) +
255 (del_num
* (KEY_SIZE
+ DC_SIZE
)));
257 do_balance_mark_internal_dirty(cur_bi
->tb
, cur
, 0);
258 /*&&&&&&&&&&&&&&&&&&&&&&& */
260 /*&&&&&&&&&&&&&&&&&&&&&&& */
262 if (cur_bi
->bi_parent
) {
263 struct disk_child
*t_dc
;
264 t_dc
= B_N_CHILD(cur_bi
->bi_parent
, cur_bi
->bi_position
);
266 dc_size(t_dc
) - (del_num
* (KEY_SIZE
+ DC_SIZE
)));
268 do_balance_mark_internal_dirty(cur_bi
->tb
, cur_bi
->bi_parent
,
270 /*&&&&&&&&&&&&&&&&&&&&&&&& */
271 check_internal(cur_bi
->bi_parent
);
272 /*&&&&&&&&&&&&&&&&&&&&&&&& */
276 /* delete n node pointers and items starting from given position */
277 static void internal_delete_childs(struct buffer_info
*cur_bi
, int from
, int n
)
281 i_from
= (from
== 0) ? from
: from
- 1;
284 * delete n pointers starting from `from' position in CUR;
285 * delete n keys starting from 'i_from' position in CUR;
287 internal_delete_pointers_items(cur_bi
, from
, i_from
, n
);
291 * copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer
293 * last_first == FIRST_TO_LAST means that we copy first items
294 * from src to tail of dest
295 * last_first == LAST_TO_FIRST means that we copy last items
296 * from src to head of dest
298 static void internal_copy_pointers_items(struct buffer_info
*dest_bi
,
299 struct buffer_head
*src
,
300 int last_first
, int cpy_num
)
303 * ATTENTION! Number of node pointers in DEST is equal to number
304 * of items in DEST as delimiting key have already inserted to
307 struct buffer_head
*dest
= dest_bi
->bi_bh
;
309 int dest_order
, src_order
;
310 struct block_head
*blkh
;
311 struct reiserfs_key
*key
;
312 struct disk_child
*dc
;
314 nr_src
= B_NR_ITEMS(src
);
316 RFALSE(dest
== NULL
|| src
== NULL
,
317 "src (%p) or dest (%p) buffer is 0", src
, dest
);
318 RFALSE(last_first
!= FIRST_TO_LAST
&& last_first
!= LAST_TO_FIRST
,
319 "invalid last_first parameter (%d)", last_first
);
320 RFALSE(nr_src
< cpy_num
- 1,
321 "no so many items (%d) in src (%d)", cpy_num
, nr_src
);
322 RFALSE(cpy_num
< 0, "cpy_num less than 0 (%d)", cpy_num
);
323 RFALSE(cpy_num
- 1 + B_NR_ITEMS(dest
) > (int)MAX_NR_KEY(dest
),
324 "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
325 cpy_num
, B_NR_ITEMS(dest
), MAX_NR_KEY(dest
));
331 blkh
= B_BLK_HEAD(dest
);
332 nr_dest
= blkh_nr_item(blkh
);
334 /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
335 /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
336 (last_first
== LAST_TO_FIRST
) ? (dest_order
= 0, src_order
=
337 nr_src
- cpy_num
+ 1) : (dest_order
=
342 /* prepare space for cpy_num pointers */
343 dc
= B_N_CHILD(dest
, dest_order
);
345 memmove(dc
+ cpy_num
, dc
, (nr_dest
- dest_order
) * DC_SIZE
);
347 /* insert pointers */
348 memcpy(dc
, B_N_CHILD(src
, src_order
), DC_SIZE
* cpy_num
);
350 /* prepare space for cpy_num - 1 item headers */
351 key
= internal_key(dest
, dest_order
);
352 memmove(key
+ cpy_num
- 1, key
,
353 KEY_SIZE
* (nr_dest
- dest_order
) + DC_SIZE
* (nr_dest
+
357 memcpy(key
, internal_key(src
, src_order
), KEY_SIZE
* (cpy_num
- 1));
359 /* sizes, item number */
360 set_blkh_nr_item(blkh
, blkh_nr_item(blkh
) + (cpy_num
- 1));
361 set_blkh_free_space(blkh
,
362 blkh_free_space(blkh
) - (KEY_SIZE
* (cpy_num
- 1) +
365 do_balance_mark_internal_dirty(dest_bi
->tb
, dest
, 0);
367 /*&&&&&&&&&&&&&&&&&&&&&&&& */
368 check_internal(dest
);
369 /*&&&&&&&&&&&&&&&&&&&&&&&& */
371 if (dest_bi
->bi_parent
) {
372 struct disk_child
*t_dc
;
373 t_dc
= B_N_CHILD(dest_bi
->bi_parent
, dest_bi
->bi_position
);
375 dc_size(t_dc
) + (KEY_SIZE
* (cpy_num
- 1) +
378 do_balance_mark_internal_dirty(dest_bi
->tb
, dest_bi
->bi_parent
,
380 /*&&&&&&&&&&&&&&&&&&&&&&&& */
381 check_internal(dest_bi
->bi_parent
);
382 /*&&&&&&&&&&&&&&&&&&&&&&&& */
388 * Copy cpy_num node pointers and cpy_num - 1 items from buffer src to
390 * Delete cpy_num - del_par items and node pointers from buffer src.
391 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
392 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
394 static void internal_move_pointers_items(struct buffer_info
*dest_bi
,
395 struct buffer_info
*src_bi
,
396 int last_first
, int cpy_num
,
402 internal_copy_pointers_items(dest_bi
, src_bi
->bi_bh
, last_first
,
405 if (last_first
== FIRST_TO_LAST
) { /* shift_left occurs */
409 * delete cpy_num - del_par pointers and keys starting for
410 * pointers with first_pointer, for key - with first_item
412 internal_delete_pointers_items(src_bi
, first_pointer
,
413 first_item
, cpy_num
- del_par
);
414 } else { /* shift_right occurs */
417 i
= (cpy_num
- del_par
==
419 B_NR_ITEMS(src_bi
->bi_bh
)) + 1) ? 0 : j
- cpy_num
+
422 internal_delete_pointers_items(src_bi
,
423 j
+ 1 - cpy_num
+ del_par
, i
,
428 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
429 static void internal_insert_key(struct buffer_info
*dest_bi
,
430 /* insert key before key with n_dest number */
431 int dest_position_before
,
432 struct buffer_head
*src
, int src_position
)
434 struct buffer_head
*dest
= dest_bi
->bi_bh
;
436 struct block_head
*blkh
;
437 struct reiserfs_key
*key
;
439 RFALSE(dest
== NULL
|| src
== NULL
,
440 "source(%p) or dest(%p) buffer is 0", src
, dest
);
441 RFALSE(dest_position_before
< 0 || src_position
< 0,
442 "source(%d) or dest(%d) key number less than 0",
443 src_position
, dest_position_before
);
444 RFALSE(dest_position_before
> B_NR_ITEMS(dest
) ||
445 src_position
>= B_NR_ITEMS(src
),
446 "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
447 dest_position_before
, B_NR_ITEMS(dest
),
448 src_position
, B_NR_ITEMS(src
));
449 RFALSE(B_FREE_SPACE(dest
) < KEY_SIZE
,
450 "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest
));
452 blkh
= B_BLK_HEAD(dest
);
453 nr
= blkh_nr_item(blkh
);
455 /* prepare space for inserting key */
456 key
= internal_key(dest
, dest_position_before
);
457 memmove(key
+ 1, key
,
458 (nr
- dest_position_before
) * KEY_SIZE
+ (nr
+ 1) * DC_SIZE
);
461 memcpy(key
, internal_key(src
, src_position
), KEY_SIZE
);
463 /* Change dirt, free space, item number fields. */
465 set_blkh_nr_item(blkh
, blkh_nr_item(blkh
) + 1);
466 set_blkh_free_space(blkh
, blkh_free_space(blkh
) - KEY_SIZE
);
468 do_balance_mark_internal_dirty(dest_bi
->tb
, dest
, 0);
470 if (dest_bi
->bi_parent
) {
471 struct disk_child
*t_dc
;
472 t_dc
= B_N_CHILD(dest_bi
->bi_parent
, dest_bi
->bi_position
);
473 put_dc_size(t_dc
, dc_size(t_dc
) + KEY_SIZE
);
475 do_balance_mark_internal_dirty(dest_bi
->tb
, dest_bi
->bi_parent
,
481 * Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
482 * Copy pointer_amount node pointers and pointer_amount - 1 items from
483 * buffer src to buffer dest.
484 * Replace d_key'th key in buffer cfl.
485 * Delete pointer_amount items and node pointers from buffer src.
487 /* this can be invoked both to shift from S to L and from R to S */
488 static void internal_shift_left(
490 * INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S
493 struct tree_balance
*tb
,
494 int h
, int pointer_amount
)
496 struct buffer_info dest_bi
, src_bi
;
497 struct buffer_head
*cf
;
500 internal_define_dest_src_infos(mode
, tb
, h
, &dest_bi
, &src_bi
,
501 &d_key_position
, &cf
);
503 /*printk("pointer_amount = %d\n",pointer_amount); */
505 if (pointer_amount
) {
507 * insert delimiting key from common father of dest and
508 * src to node dest into position B_NR_ITEM(dest)
510 internal_insert_key(&dest_bi
, B_NR_ITEMS(dest_bi
.bi_bh
), cf
,
513 if (B_NR_ITEMS(src_bi
.bi_bh
) == pointer_amount
- 1) {
514 if (src_bi
.bi_position
/*src->b_item_order */ == 0)
515 replace_key(tb
, cf
, d_key_position
,
517 bi_parent
/*src->b_parent */ , 0);
519 replace_key(tb
, cf
, d_key_position
, src_bi
.bi_bh
,
522 /* last parameter is del_parameter */
523 internal_move_pointers_items(&dest_bi
, &src_bi
, FIRST_TO_LAST
,
529 * Insert delimiting key to L[h].
530 * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
531 * Delete n - 1 items and node pointers from buffer S[h].
533 /* it always shifts from S[h] to L[h] */
534 static void internal_shift1_left(struct tree_balance
*tb
,
535 int h
, int pointer_amount
)
537 struct buffer_info dest_bi
, src_bi
;
538 struct buffer_head
*cf
;
541 internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
,
542 &dest_bi
, &src_bi
, &d_key_position
, &cf
);
544 /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */
545 if (pointer_amount
> 0)
546 internal_insert_key(&dest_bi
, B_NR_ITEMS(dest_bi
.bi_bh
), cf
,
549 /* last parameter is del_parameter */
550 internal_move_pointers_items(&dest_bi
, &src_bi
, FIRST_TO_LAST
,
555 * Insert d_key'th (delimiting) key from buffer cfr to head of dest.
556 * Copy n node pointers and n - 1 items from buffer src to buffer dest.
557 * Replace d_key'th key in buffer cfr.
558 * Delete n items and node pointers from buffer src.
560 static void internal_shift_right(
562 * INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S
565 struct tree_balance
*tb
,
566 int h
, int pointer_amount
)
568 struct buffer_info dest_bi
, src_bi
;
569 struct buffer_head
*cf
;
573 internal_define_dest_src_infos(mode
, tb
, h
, &dest_bi
, &src_bi
,
574 &d_key_position
, &cf
);
576 nr
= B_NR_ITEMS(src_bi
.bi_bh
);
578 if (pointer_amount
> 0) {
580 * insert delimiting key from common father of dest
581 * and src to dest node into position 0
583 internal_insert_key(&dest_bi
, 0, cf
, d_key_position
);
584 if (nr
== pointer_amount
- 1) {
585 RFALSE(src_bi
.bi_bh
!= PATH_H_PBUFFER(tb
->tb_path
, h
) /*tb->S[h] */ ||
586 dest_bi
.bi_bh
!= tb
->R
[h
],
587 "src (%p) must be == tb->S[h](%p) when it disappears",
588 src_bi
.bi_bh
, PATH_H_PBUFFER(tb
->tb_path
, h
));
589 /* when S[h] disappers replace left delemiting key as well */
591 replace_key(tb
, cf
, d_key_position
, tb
->CFL
[h
],
594 replace_key(tb
, cf
, d_key_position
, src_bi
.bi_bh
,
595 nr
- pointer_amount
);
598 /* last parameter is del_parameter */
599 internal_move_pointers_items(&dest_bi
, &src_bi
, LAST_TO_FIRST
,
604 * Insert delimiting key to R[h].
605 * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
606 * Delete n - 1 items and node pointers from buffer S[h].
608 /* it always shift from S[h] to R[h] */
609 static void internal_shift1_right(struct tree_balance
*tb
,
610 int h
, int pointer_amount
)
612 struct buffer_info dest_bi
, src_bi
;
613 struct buffer_head
*cf
;
616 internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
,
617 &dest_bi
, &src_bi
, &d_key_position
, &cf
);
619 /* insert rkey from CFR[h] to right neighbor R[h] */
620 if (pointer_amount
> 0)
621 internal_insert_key(&dest_bi
, 0, cf
, d_key_position
);
623 /* last parameter is del_parameter */
624 internal_move_pointers_items(&dest_bi
, &src_bi
, LAST_TO_FIRST
,
629 * Delete insert_num node pointers together with their left items
630 * and balance current node.
632 static void balance_internal_when_delete(struct tree_balance
*tb
,
633 int h
, int child_pos
)
637 struct buffer_head
*tbSh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
638 struct buffer_info bi
;
640 insert_num
= tb
->insert_size
[h
] / ((int)(DC_SIZE
+ KEY_SIZE
));
642 /* delete child-node-pointer(s) together with their left item(s) */
645 bi
.bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
646 bi
.bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
648 internal_delete_childs(&bi
, child_pos
, -insert_num
);
650 RFALSE(tb
->blknum
[h
] > 1,
651 "tb->blknum[%d]=%d when insert_size < 0", h
, tb
->blknum
[h
]);
653 n
= B_NR_ITEMS(tbSh
);
655 if (tb
->lnum
[h
] == 0 && tb
->rnum
[h
] == 0) {
656 if (tb
->blknum
[h
] == 0) {
657 /* node S[h] (root of the tree) is empty now */
658 struct buffer_head
*new_root
;
661 || B_FREE_SPACE(tbSh
) !=
662 MAX_CHILD_SIZE(tbSh
) - DC_SIZE
,
663 "buffer must have only 0 keys (%d)", n
);
664 RFALSE(bi
.bi_parent
, "root has parent (%p)",
667 /* choose a new root */
668 if (!tb
->L
[h
- 1] || !B_NR_ITEMS(tb
->L
[h
- 1]))
669 new_root
= tb
->R
[h
- 1];
671 new_root
= tb
->L
[h
- 1];
673 * switch super block's tree root block
674 * number to the new value */
675 PUT_SB_ROOT_BLOCK(tb
->tb_sb
, new_root
->b_blocknr
);
676 /*REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; */
677 PUT_SB_TREE_HEIGHT(tb
->tb_sb
,
678 SB_TREE_HEIGHT(tb
->tb_sb
) - 1);
680 do_balance_mark_sb_dirty(tb
,
681 REISERFS_SB(tb
->tb_sb
)->s_sbh
,
683 /*&&&&&&&&&&&&&&&&&&&&&& */
684 /* use check_internal if new root is an internal node */
686 check_internal(new_root
);
687 /*&&&&&&&&&&&&&&&&&&&&&& */
689 /* do what is needed for buffer thrown from tree */
690 reiserfs_invalidate_buffer(tb
, tbSh
);
696 /* join S[h] with L[h] */
697 if (tb
->L
[h
] && tb
->lnum
[h
] == -B_NR_ITEMS(tb
->L
[h
]) - 1) {
699 RFALSE(tb
->rnum
[h
] != 0,
700 "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
703 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
, n
+ 1);
704 reiserfs_invalidate_buffer(tb
, tbSh
);
709 /* join S[h] with R[h] */
710 if (tb
->R
[h
] && tb
->rnum
[h
] == -B_NR_ITEMS(tb
->R
[h
]) - 1) {
711 RFALSE(tb
->lnum
[h
] != 0,
712 "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
715 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
, n
+ 1);
717 reiserfs_invalidate_buffer(tb
, tbSh
);
721 /* borrow from left neighbor L[h] */
722 if (tb
->lnum
[h
] < 0) {
723 RFALSE(tb
->rnum
[h
] != 0,
724 "wrong tb->rnum[%d]==%d when borrow from L[h]", h
,
726 internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S
, tb
, h
,
731 /* borrow from right neighbor R[h] */
732 if (tb
->rnum
[h
] < 0) {
733 RFALSE(tb
->lnum
[h
] != 0,
734 "invalid tb->lnum[%d]==%d when borrow from R[h]",
736 internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S
, tb
, h
, -tb
->rnum
[h
]); /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
740 /* split S[h] into two parts and put them into neighbors */
741 if (tb
->lnum
[h
] > 0) {
742 RFALSE(tb
->rnum
[h
] == 0 || tb
->lnum
[h
] + tb
->rnum
[h
] != n
+ 1,
743 "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
744 h
, tb
->lnum
[h
], h
, tb
->rnum
[h
], n
);
746 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
, tb
->lnum
[h
]); /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
747 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
,
750 reiserfs_invalidate_buffer(tb
, tbSh
);
754 reiserfs_panic(tb
->tb_sb
, "ibalance-2",
755 "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
756 h
, tb
->lnum
[h
], h
, tb
->rnum
[h
]);
759 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
760 static void replace_lkey(struct tree_balance
*tb
, int h
, struct item_head
*key
)
762 RFALSE(tb
->L
[h
] == NULL
|| tb
->CFL
[h
] == NULL
,
763 "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
764 tb
->L
[h
], tb
->CFL
[h
]);
766 if (B_NR_ITEMS(PATH_H_PBUFFER(tb
->tb_path
, h
)) == 0)
769 memcpy(internal_key(tb
->CFL
[h
], tb
->lkey
[h
]), key
, KEY_SIZE
);
771 do_balance_mark_internal_dirty(tb
, tb
->CFL
[h
], 0);
774 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
775 static void replace_rkey(struct tree_balance
*tb
, int h
, struct item_head
*key
)
777 RFALSE(tb
->R
[h
] == NULL
|| tb
->CFR
[h
] == NULL
,
778 "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
779 tb
->R
[h
], tb
->CFR
[h
]);
780 RFALSE(B_NR_ITEMS(tb
->R
[h
]) == 0,
781 "R[h] can not be empty if it exists (item number=%d)",
782 B_NR_ITEMS(tb
->R
[h
]));
784 memcpy(internal_key(tb
->CFR
[h
], tb
->rkey
[h
]), key
, KEY_SIZE
);
786 do_balance_mark_internal_dirty(tb
, tb
->CFR
[h
], 0);
791 * if inserting/pasting {
792 * child_pos is the position of the node-pointer in S[h] that
793 * pointed to S[h-1] before balancing of the h-1 level;
794 * this means that new pointers and items must be inserted AFTER
797 * it is the position of the leftmost pointer that must be deleted
798 * (together with its corresponding key to the left of the pointer)
799 * as a result of the previous level's balancing.
803 int balance_internal(struct tree_balance
*tb
,
804 int h
, /* level of the tree */
806 /* key for insertion on higher level */
807 struct item_head
*insert_key
,
808 /* node for insertion on higher level */
809 struct buffer_head
**insert_ptr
)
811 struct buffer_head
*tbSh
= PATH_H_PBUFFER(tb
->tb_path
, h
);
812 struct buffer_info bi
;
815 * we return this: it is 0 if there is no S[h],
816 * else it is tb->S[h]->b_item_order
819 int insert_num
, n
, k
;
820 struct buffer_head
*S_new
;
821 struct item_head new_insert_key
;
822 struct buffer_head
*new_insert_ptr
= NULL
;
823 struct item_head
*new_insert_key_addr
= insert_key
;
825 RFALSE(h
< 1, "h (%d) can not be < 1 on internal level", h
);
827 PROC_INFO_INC(tb
->tb_sb
, balance_at
[h
]);
830 (tbSh
) ? PATH_H_POSITION(tb
->tb_path
,
831 h
+ 1) /*tb->S[h]->b_item_order */ : 0;
834 * Using insert_size[h] calculate the number insert_num of items
835 * that must be inserted to or deleted from S[h].
837 insert_num
= tb
->insert_size
[h
] / ((int)(KEY_SIZE
+ DC_SIZE
));
839 /* Check whether insert_num is proper * */
840 RFALSE(insert_num
< -2 || insert_num
> 2,
841 "incorrect number of items inserted to the internal node (%d)",
843 RFALSE(h
> 1 && (insert_num
> 1 || insert_num
< -1),
844 "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
847 /* Make balance in case insert_num < 0 */
848 if (insert_num
< 0) {
849 balance_internal_when_delete(tb
, h
, child_pos
);
854 if (tb
->lnum
[h
] > 0) {
856 * shift lnum[h] items from S[h] to the left neighbor L[h].
857 * check how many of new items fall into L[h] or CFL[h] after
860 n
= B_NR_ITEMS(tb
->L
[h
]); /* number of items in L[h] */
861 if (tb
->lnum
[h
] <= child_pos
) {
862 /* new items don't fall into L[h] or CFL[h] */
863 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
,
865 child_pos
-= tb
->lnum
[h
];
866 } else if (tb
->lnum
[h
] > child_pos
+ insert_num
) {
867 /* all new items fall into L[h] */
868 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L
, tb
, h
,
869 tb
->lnum
[h
] - insert_num
);
870 /* insert insert_num keys and node-pointers into L[h] */
873 bi
.bi_parent
= tb
->FL
[h
];
874 bi
.bi_position
= get_left_neighbor_position(tb
, h
);
875 internal_insert_childs(&bi
,
876 /*tb->L[h], tb->S[h-1]->b_next */
878 insert_num
, insert_key
,
883 struct disk_child
*dc
;
886 * some items fall into L[h] or CFL[h],
887 * but some don't fall
889 internal_shift1_left(tb
, h
, child_pos
+ 1);
890 /* calculate number of new items that fall into L[h] */
891 k
= tb
->lnum
[h
] - child_pos
- 1;
894 bi
.bi_parent
= tb
->FL
[h
];
895 bi
.bi_position
= get_left_neighbor_position(tb
, h
);
896 internal_insert_childs(&bi
,
897 /*tb->L[h], tb->S[h-1]->b_next, */
898 n
+ child_pos
+ 1, k
,
899 insert_key
, insert_ptr
);
901 replace_lkey(tb
, h
, insert_key
+ k
);
904 * replace the first node-ptr in S[h] by
905 * node-ptr to insert_ptr[k]
907 dc
= B_N_CHILD(tbSh
, 0);
909 MAX_CHILD_SIZE(insert_ptr
[k
]) -
910 B_FREE_SPACE(insert_ptr
[k
]));
911 put_dc_block_number(dc
, insert_ptr
[k
]->b_blocknr
);
913 do_balance_mark_internal_dirty(tb
, tbSh
, 0);
922 /* tb->lnum[h] > 0 */
923 if (tb
->rnum
[h
] > 0) {
924 /*shift rnum[h] items from S[h] to the right neighbor R[h] */
926 * check how many of new items fall into R or CFR
929 n
= B_NR_ITEMS(tbSh
); /* number of items in S[h] */
930 if (n
- tb
->rnum
[h
] >= child_pos
)
931 /* new items fall into S[h] */
932 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
,
934 else if (n
+ insert_num
- tb
->rnum
[h
] < child_pos
) {
935 /* all new items fall into R[h] */
936 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R
, tb
, h
,
937 tb
->rnum
[h
] - insert_num
);
939 /* insert insert_num keys and node-pointers into R[h] */
942 bi
.bi_parent
= tb
->FR
[h
];
943 bi
.bi_position
= get_right_neighbor_position(tb
, h
);
944 internal_insert_childs(&bi
,
945 /*tb->R[h],tb->S[h-1]->b_next */
946 child_pos
- n
- insert_num
+
948 insert_num
, insert_key
,
952 struct disk_child
*dc
;
954 /* one of the items falls into CFR[h] */
955 internal_shift1_right(tb
, h
, n
- child_pos
+ 1);
956 /* calculate number of new items that fall into R[h] */
957 k
= tb
->rnum
[h
] - n
+ child_pos
- 1;
960 bi
.bi_parent
= tb
->FR
[h
];
961 bi
.bi_position
= get_right_neighbor_position(tb
, h
);
962 internal_insert_childs(&bi
,
963 /*tb->R[h], tb->R[h]->b_child, */
964 0, k
, insert_key
+ 1,
967 replace_rkey(tb
, h
, insert_key
+ insert_num
- k
- 1);
970 * replace the first node-ptr in R[h] by
971 * node-ptr insert_ptr[insert_num-k-1]
973 dc
= B_N_CHILD(tb
->R
[h
], 0);
975 MAX_CHILD_SIZE(insert_ptr
976 [insert_num
- k
- 1]) -
977 B_FREE_SPACE(insert_ptr
978 [insert_num
- k
- 1]));
979 put_dc_block_number(dc
,
980 insert_ptr
[insert_num
- k
-
983 do_balance_mark_internal_dirty(tb
, tb
->R
[h
], 0);
985 insert_num
-= (k
+ 1);
989 /** Fill new node that appears instead of S[h] **/
990 RFALSE(tb
->blknum
[h
] > 2, "blknum can not be > 2 for internal level");
991 RFALSE(tb
->blknum
[h
] < 0, "blknum can not be < 0");
993 if (!tb
->blknum
[h
]) { /* node S[h] is empty now */
994 RFALSE(!tbSh
, "S[h] is equal NULL");
996 /* do what is needed for buffer thrown from tree */
997 reiserfs_invalidate_buffer(tb
, tbSh
);
1002 /* create new root */
1003 struct disk_child
*dc
;
1004 struct buffer_head
*tbSh_1
= PATH_H_PBUFFER(tb
->tb_path
, h
- 1);
1005 struct block_head
*blkh
;
1007 if (tb
->blknum
[h
] != 1)
1008 reiserfs_panic(NULL
, "ibalance-3", "One new node "
1009 "required for creating the new root");
1010 /* S[h] = empty buffer from the list FEB. */
1012 blkh
= B_BLK_HEAD(tbSh
);
1013 set_blkh_level(blkh
, h
+ 1);
1015 /* Put the unique node-pointer to S[h] that points to S[h-1]. */
1017 dc
= B_N_CHILD(tbSh
, 0);
1018 put_dc_block_number(dc
, tbSh_1
->b_blocknr
);
1020 (MAX_CHILD_SIZE(tbSh_1
) - B_FREE_SPACE(tbSh_1
)));
1022 tb
->insert_size
[h
] -= DC_SIZE
;
1023 set_blkh_free_space(blkh
, blkh_free_space(blkh
) - DC_SIZE
);
1025 do_balance_mark_internal_dirty(tb
, tbSh
, 0);
1027 /*&&&&&&&&&&&&&&&&&&&&&&&& */
1028 check_internal(tbSh
);
1029 /*&&&&&&&&&&&&&&&&&&&&&&&& */
1031 /* put new root into path structure */
1032 PATH_OFFSET_PBUFFER(tb
->tb_path
, ILLEGAL_PATH_ELEMENT_OFFSET
) =
1035 /* Change root in structure super block. */
1036 PUT_SB_ROOT_BLOCK(tb
->tb_sb
, tbSh
->b_blocknr
);
1037 PUT_SB_TREE_HEIGHT(tb
->tb_sb
, SB_TREE_HEIGHT(tb
->tb_sb
) + 1);
1038 do_balance_mark_sb_dirty(tb
, REISERFS_SB(tb
->tb_sb
)->s_sbh
, 1);
1041 if (tb
->blknum
[h
] == 2) {
1043 struct buffer_info dest_bi
, src_bi
;
1045 /* S_new = free buffer from list FEB */
1046 S_new
= get_FEB(tb
);
1048 set_blkh_level(B_BLK_HEAD(S_new
), h
+ 1);
1051 dest_bi
.bi_bh
= S_new
;
1052 dest_bi
.bi_parent
= NULL
;
1053 dest_bi
.bi_position
= 0;
1055 src_bi
.bi_bh
= tbSh
;
1056 src_bi
.bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
1057 src_bi
.bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
1059 n
= B_NR_ITEMS(tbSh
); /* number of items in S[h] */
1060 snum
= (insert_num
+ n
+ 1) / 2;
1061 if (n
- snum
>= child_pos
) {
1062 /* new items don't fall into S_new */
1063 /* store the delimiting key for the next level */
1064 /* new_insert_key = (n - snum)'th key in S[h] */
1065 memcpy(&new_insert_key
, internal_key(tbSh
, n
- snum
),
1067 /* last parameter is del_par */
1068 internal_move_pointers_items(&dest_bi
, &src_bi
,
1069 LAST_TO_FIRST
, snum
, 0);
1070 } else if (n
+ insert_num
- snum
< child_pos
) {
1071 /* all new items fall into S_new */
1072 /* store the delimiting key for the next level */
1074 * new_insert_key = (n + insert_item - snum)'th
1077 memcpy(&new_insert_key
,
1078 internal_key(tbSh
, n
+ insert_num
- snum
),
1080 /* last parameter is del_par */
1081 internal_move_pointers_items(&dest_bi
, &src_bi
,
1083 snum
- insert_num
, 0);
1086 * insert insert_num keys and node-pointers
1089 internal_insert_childs(&dest_bi
,
1090 /*S_new,tb->S[h-1]->b_next, */
1091 child_pos
- n
- insert_num
+
1093 insert_num
, insert_key
,
1098 struct disk_child
*dc
;
1100 /* some items fall into S_new, but some don't fall */
1101 /* last parameter is del_par */
1102 internal_move_pointers_items(&dest_bi
, &src_bi
,
1104 n
- child_pos
+ 1, 1);
1105 /* calculate number of new items that fall into S_new */
1106 k
= snum
- n
+ child_pos
- 1;
1108 internal_insert_childs(&dest_bi
, /*S_new, */ 0, k
,
1109 insert_key
+ 1, insert_ptr
+ 1);
1111 /* new_insert_key = insert_key[insert_num - k - 1] */
1112 memcpy(&new_insert_key
, insert_key
+ insert_num
- k
- 1,
1115 * replace first node-ptr in S_new by node-ptr
1116 * to insert_ptr[insert_num-k-1]
1119 dc
= B_N_CHILD(S_new
, 0);
1122 (insert_ptr
[insert_num
- k
- 1]) -
1123 B_FREE_SPACE(insert_ptr
1124 [insert_num
- k
- 1])));
1125 put_dc_block_number(dc
,
1126 insert_ptr
[insert_num
- k
-
1129 do_balance_mark_internal_dirty(tb
, S_new
, 0);
1131 insert_num
-= (k
+ 1);
1133 /* new_insert_ptr = node_pointer to S_new */
1134 new_insert_ptr
= S_new
;
1136 RFALSE(!buffer_journaled(S_new
) || buffer_journal_dirty(S_new
)
1137 || buffer_dirty(S_new
), "cm-00001: bad S_new (%b)",
1140 /* S_new is released in unfix_nodes */
1143 n
= B_NR_ITEMS(tbSh
); /*number of items in S[h] */
1145 if (0 <= child_pos
&& child_pos
<= n
&& insert_num
> 0) {
1148 bi
.bi_parent
= PATH_H_PPARENT(tb
->tb_path
, h
);
1149 bi
.bi_position
= PATH_H_POSITION(tb
->tb_path
, h
+ 1);
1150 internal_insert_childs(&bi
, /*tbSh, */
1151 /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next, */
1152 child_pos
, insert_num
, insert_key
,
1156 memcpy(new_insert_key_addr
, &new_insert_key
, KEY_SIZE
);
1157 insert_ptr
[0] = new_insert_ptr
;