Linux 4.6-rc6
[cris-mirror.git] / include / linux / ktime.h
blob2b6a204bd8d40cfb74db80e19bec216795366e33
1 /*
2 * include/linux/ktime.h
4 * ktime_t - nanosecond-resolution time format.
6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
9 * data type definitions, declarations, prototypes and macros.
11 * Started by: Thomas Gleixner and Ingo Molnar
13 * Credits:
15 * Roman Zippel provided the ideas and primary code snippets of
16 * the ktime_t union and further simplifications of the original
17 * code.
19 * For licencing details see kernel-base/COPYING
21 #ifndef _LINUX_KTIME_H
22 #define _LINUX_KTIME_H
24 #include <linux/time.h>
25 #include <linux/jiffies.h>
28 * ktime_t:
30 * A single 64-bit variable is used to store the hrtimers
31 * internal representation of time values in scalar nanoseconds. The
32 * design plays out best on 64-bit CPUs, where most conversions are
33 * NOPs and most arithmetic ktime_t operations are plain arithmetic
34 * operations.
37 union ktime {
38 s64 tv64;
41 typedef union ktime ktime_t; /* Kill this */
43 /**
44 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value
45 * @secs: seconds to set
46 * @nsecs: nanoseconds to set
48 * Return: The ktime_t representation of the value.
50 static inline ktime_t ktime_set(const s64 secs, const unsigned long nsecs)
52 if (unlikely(secs >= KTIME_SEC_MAX))
53 return (ktime_t){ .tv64 = KTIME_MAX };
55 return (ktime_t) { .tv64 = secs * NSEC_PER_SEC + (s64)nsecs };
58 /* Subtract two ktime_t variables. rem = lhs -rhs: */
59 #define ktime_sub(lhs, rhs) \
60 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; })
62 /* Add two ktime_t variables. res = lhs + rhs: */
63 #define ktime_add(lhs, rhs) \
64 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; })
67 * Add a ktime_t variable and a scalar nanosecond value.
68 * res = kt + nsval:
70 #define ktime_add_ns(kt, nsval) \
71 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; })
74 * Subtract a scalar nanosecod from a ktime_t variable
75 * res = kt - nsval:
77 #define ktime_sub_ns(kt, nsval) \
78 ({ (ktime_t){ .tv64 = (kt).tv64 - (nsval) }; })
80 /* convert a timespec to ktime_t format: */
81 static inline ktime_t timespec_to_ktime(struct timespec ts)
83 return ktime_set(ts.tv_sec, ts.tv_nsec);
86 /* convert a timespec64 to ktime_t format: */
87 static inline ktime_t timespec64_to_ktime(struct timespec64 ts)
89 return ktime_set(ts.tv_sec, ts.tv_nsec);
92 /* convert a timeval to ktime_t format: */
93 static inline ktime_t timeval_to_ktime(struct timeval tv)
95 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC);
98 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
99 #define ktime_to_timespec(kt) ns_to_timespec((kt).tv64)
101 /* Map the ktime_t to timespec conversion to ns_to_timespec function */
102 #define ktime_to_timespec64(kt) ns_to_timespec64((kt).tv64)
104 /* Map the ktime_t to timeval conversion to ns_to_timeval function */
105 #define ktime_to_timeval(kt) ns_to_timeval((kt).tv64)
107 /* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */
108 #define ktime_to_ns(kt) ((kt).tv64)
112 * ktime_equal - Compares two ktime_t variables to see if they are equal
113 * @cmp1: comparable1
114 * @cmp2: comparable2
116 * Compare two ktime_t variables.
118 * Return: 1 if equal.
120 static inline int ktime_equal(const ktime_t cmp1, const ktime_t cmp2)
122 return cmp1.tv64 == cmp2.tv64;
126 * ktime_compare - Compares two ktime_t variables for less, greater or equal
127 * @cmp1: comparable1
128 * @cmp2: comparable2
130 * Return: ...
131 * cmp1 < cmp2: return <0
132 * cmp1 == cmp2: return 0
133 * cmp1 > cmp2: return >0
135 static inline int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)
137 if (cmp1.tv64 < cmp2.tv64)
138 return -1;
139 if (cmp1.tv64 > cmp2.tv64)
140 return 1;
141 return 0;
145 * ktime_after - Compare if a ktime_t value is bigger than another one.
146 * @cmp1: comparable1
147 * @cmp2: comparable2
149 * Return: true if cmp1 happened after cmp2.
151 static inline bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)
153 return ktime_compare(cmp1, cmp2) > 0;
157 * ktime_before - Compare if a ktime_t value is smaller than another one.
158 * @cmp1: comparable1
159 * @cmp2: comparable2
161 * Return: true if cmp1 happened before cmp2.
163 static inline bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)
165 return ktime_compare(cmp1, cmp2) < 0;
168 #if BITS_PER_LONG < 64
169 extern s64 __ktime_divns(const ktime_t kt, s64 div);
170 static inline s64 ktime_divns(const ktime_t kt, s64 div)
173 * Negative divisors could cause an inf loop,
174 * so bug out here.
176 BUG_ON(div < 0);
177 if (__builtin_constant_p(div) && !(div >> 32)) {
178 s64 ns = kt.tv64;
179 u64 tmp = ns < 0 ? -ns : ns;
181 do_div(tmp, div);
182 return ns < 0 ? -tmp : tmp;
183 } else {
184 return __ktime_divns(kt, div);
187 #else /* BITS_PER_LONG < 64 */
188 static inline s64 ktime_divns(const ktime_t kt, s64 div)
191 * 32-bit implementation cannot handle negative divisors,
192 * so catch them on 64bit as well.
194 WARN_ON(div < 0);
195 return kt.tv64 / div;
197 #endif
199 static inline s64 ktime_to_us(const ktime_t kt)
201 return ktime_divns(kt, NSEC_PER_USEC);
204 static inline s64 ktime_to_ms(const ktime_t kt)
206 return ktime_divns(kt, NSEC_PER_MSEC);
209 static inline s64 ktime_us_delta(const ktime_t later, const ktime_t earlier)
211 return ktime_to_us(ktime_sub(later, earlier));
214 static inline s64 ktime_ms_delta(const ktime_t later, const ktime_t earlier)
216 return ktime_to_ms(ktime_sub(later, earlier));
219 static inline ktime_t ktime_add_us(const ktime_t kt, const u64 usec)
221 return ktime_add_ns(kt, usec * NSEC_PER_USEC);
224 static inline ktime_t ktime_add_ms(const ktime_t kt, const u64 msec)
226 return ktime_add_ns(kt, msec * NSEC_PER_MSEC);
229 static inline ktime_t ktime_sub_us(const ktime_t kt, const u64 usec)
231 return ktime_sub_ns(kt, usec * NSEC_PER_USEC);
234 extern ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs);
237 * ktime_to_timespec_cond - convert a ktime_t variable to timespec
238 * format only if the variable contains data
239 * @kt: the ktime_t variable to convert
240 * @ts: the timespec variable to store the result in
242 * Return: %true if there was a successful conversion, %false if kt was 0.
244 static inline __must_check bool ktime_to_timespec_cond(const ktime_t kt,
245 struct timespec *ts)
247 if (kt.tv64) {
248 *ts = ktime_to_timespec(kt);
249 return true;
250 } else {
251 return false;
256 * ktime_to_timespec64_cond - convert a ktime_t variable to timespec64
257 * format only if the variable contains data
258 * @kt: the ktime_t variable to convert
259 * @ts: the timespec variable to store the result in
261 * Return: %true if there was a successful conversion, %false if kt was 0.
263 static inline __must_check bool ktime_to_timespec64_cond(const ktime_t kt,
264 struct timespec64 *ts)
266 if (kt.tv64) {
267 *ts = ktime_to_timespec64(kt);
268 return true;
269 } else {
270 return false;
275 * The resolution of the clocks. The resolution value is returned in
276 * the clock_getres() system call to give application programmers an
277 * idea of the (in)accuracy of timers. Timer values are rounded up to
278 * this resolution values.
280 #define LOW_RES_NSEC TICK_NSEC
281 #define KTIME_LOW_RES (ktime_t){ .tv64 = LOW_RES_NSEC }
283 static inline ktime_t ns_to_ktime(u64 ns)
285 static const ktime_t ktime_zero = { .tv64 = 0 };
287 return ktime_add_ns(ktime_zero, ns);
290 static inline ktime_t ms_to_ktime(u64 ms)
292 static const ktime_t ktime_zero = { .tv64 = 0 };
294 return ktime_add_ms(ktime_zero, ms);
297 # include <linux/timekeeping.h>
299 #endif