Linux 4.6-rc6
[cris-mirror.git] / lib / radix-tree.c
blob1624c41179614321728bcdd878c7fb4153a91748
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/kmemleak.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/rcupdate.h>
36 #include <linux/preempt.h> /* in_interrupt() */
40 * The height_to_maxindex array needs to be one deeper than the maximum
41 * path as height 0 holds only 1 entry.
43 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
46 * Radix tree node cache.
48 static struct kmem_cache *radix_tree_node_cachep;
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
64 * Per-cpu pool of preloaded nodes
66 struct radix_tree_preload {
67 int nr;
68 /* nodes->private_data points to next preallocated node */
69 struct radix_tree_node *nodes;
71 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
73 static inline void *ptr_to_indirect(void *ptr)
75 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
78 static inline void *indirect_to_ptr(void *ptr)
80 return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
83 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
85 return root->gfp_mask & __GFP_BITS_MASK;
88 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
89 int offset)
91 __set_bit(offset, node->tags[tag]);
94 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
95 int offset)
97 __clear_bit(offset, node->tags[tag]);
100 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
101 int offset)
103 return test_bit(offset, node->tags[tag]);
106 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
108 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
111 static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
113 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
116 static inline void root_tag_clear_all(struct radix_tree_root *root)
118 root->gfp_mask &= __GFP_BITS_MASK;
121 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
123 return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
127 * Returns 1 if any slot in the node has this tag set.
128 * Otherwise returns 0.
130 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
132 int idx;
133 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
134 if (node->tags[tag][idx])
135 return 1;
137 return 0;
141 * radix_tree_find_next_bit - find the next set bit in a memory region
143 * @addr: The address to base the search on
144 * @size: The bitmap size in bits
145 * @offset: The bitnumber to start searching at
147 * Unrollable variant of find_next_bit() for constant size arrays.
148 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
149 * Returns next bit offset, or size if nothing found.
151 static __always_inline unsigned long
152 radix_tree_find_next_bit(const unsigned long *addr,
153 unsigned long size, unsigned long offset)
155 if (!__builtin_constant_p(size))
156 return find_next_bit(addr, size, offset);
158 if (offset < size) {
159 unsigned long tmp;
161 addr += offset / BITS_PER_LONG;
162 tmp = *addr >> (offset % BITS_PER_LONG);
163 if (tmp)
164 return __ffs(tmp) + offset;
165 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
166 while (offset < size) {
167 tmp = *++addr;
168 if (tmp)
169 return __ffs(tmp) + offset;
170 offset += BITS_PER_LONG;
173 return size;
176 #if 0
177 static void dump_node(void *slot, int height, int offset)
179 struct radix_tree_node *node;
180 int i;
182 if (!slot)
183 return;
185 if (height == 0) {
186 pr_debug("radix entry %p offset %d\n", slot, offset);
187 return;
190 node = indirect_to_ptr(slot);
191 pr_debug("radix node: %p offset %d tags %lx %lx %lx path %x count %d parent %p\n",
192 slot, offset, node->tags[0][0], node->tags[1][0],
193 node->tags[2][0], node->path, node->count, node->parent);
195 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
196 dump_node(node->slots[i], height - 1, i);
199 /* For debug */
200 static void radix_tree_dump(struct radix_tree_root *root)
202 pr_debug("radix root: %p height %d rnode %p tags %x\n",
203 root, root->height, root->rnode,
204 root->gfp_mask >> __GFP_BITS_SHIFT);
205 if (!radix_tree_is_indirect_ptr(root->rnode))
206 return;
207 dump_node(root->rnode, root->height, 0);
209 #endif
212 * This assumes that the caller has performed appropriate preallocation, and
213 * that the caller has pinned this thread of control to the current CPU.
215 static struct radix_tree_node *
216 radix_tree_node_alloc(struct radix_tree_root *root)
218 struct radix_tree_node *ret = NULL;
219 gfp_t gfp_mask = root_gfp_mask(root);
222 * Preload code isn't irq safe and it doesn't make sence to use
223 * preloading in the interrupt anyway as all the allocations have to
224 * be atomic. So just do normal allocation when in interrupt.
226 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
227 struct radix_tree_preload *rtp;
230 * Even if the caller has preloaded, try to allocate from the
231 * cache first for the new node to get accounted.
233 ret = kmem_cache_alloc(radix_tree_node_cachep,
234 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
235 if (ret)
236 goto out;
239 * Provided the caller has preloaded here, we will always
240 * succeed in getting a node here (and never reach
241 * kmem_cache_alloc)
243 rtp = this_cpu_ptr(&radix_tree_preloads);
244 if (rtp->nr) {
245 ret = rtp->nodes;
246 rtp->nodes = ret->private_data;
247 ret->private_data = NULL;
248 rtp->nr--;
251 * Update the allocation stack trace as this is more useful
252 * for debugging.
254 kmemleak_update_trace(ret);
255 goto out;
257 ret = kmem_cache_alloc(radix_tree_node_cachep,
258 gfp_mask | __GFP_ACCOUNT);
259 out:
260 BUG_ON(radix_tree_is_indirect_ptr(ret));
261 return ret;
264 static void radix_tree_node_rcu_free(struct rcu_head *head)
266 struct radix_tree_node *node =
267 container_of(head, struct radix_tree_node, rcu_head);
268 int i;
271 * must only free zeroed nodes into the slab. radix_tree_shrink
272 * can leave us with a non-NULL entry in the first slot, so clear
273 * that here to make sure.
275 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
276 tag_clear(node, i, 0);
278 node->slots[0] = NULL;
279 node->count = 0;
281 kmem_cache_free(radix_tree_node_cachep, node);
284 static inline void
285 radix_tree_node_free(struct radix_tree_node *node)
287 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
291 * Load up this CPU's radix_tree_node buffer with sufficient objects to
292 * ensure that the addition of a single element in the tree cannot fail. On
293 * success, return zero, with preemption disabled. On error, return -ENOMEM
294 * with preemption not disabled.
296 * To make use of this facility, the radix tree must be initialised without
297 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
299 static int __radix_tree_preload(gfp_t gfp_mask)
301 struct radix_tree_preload *rtp;
302 struct radix_tree_node *node;
303 int ret = -ENOMEM;
305 preempt_disable();
306 rtp = this_cpu_ptr(&radix_tree_preloads);
307 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
308 preempt_enable();
309 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
310 if (node == NULL)
311 goto out;
312 preempt_disable();
313 rtp = this_cpu_ptr(&radix_tree_preloads);
314 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
315 node->private_data = rtp->nodes;
316 rtp->nodes = node;
317 rtp->nr++;
318 } else {
319 kmem_cache_free(radix_tree_node_cachep, node);
322 ret = 0;
323 out:
324 return ret;
328 * Load up this CPU's radix_tree_node buffer with sufficient objects to
329 * ensure that the addition of a single element in the tree cannot fail. On
330 * success, return zero, with preemption disabled. On error, return -ENOMEM
331 * with preemption not disabled.
333 * To make use of this facility, the radix tree must be initialised without
334 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
336 int radix_tree_preload(gfp_t gfp_mask)
338 /* Warn on non-sensical use... */
339 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
340 return __radix_tree_preload(gfp_mask);
342 EXPORT_SYMBOL(radix_tree_preload);
345 * The same as above function, except we don't guarantee preloading happens.
346 * We do it, if we decide it helps. On success, return zero with preemption
347 * disabled. On error, return -ENOMEM with preemption not disabled.
349 int radix_tree_maybe_preload(gfp_t gfp_mask)
351 if (gfpflags_allow_blocking(gfp_mask))
352 return __radix_tree_preload(gfp_mask);
353 /* Preloading doesn't help anything with this gfp mask, skip it */
354 preempt_disable();
355 return 0;
357 EXPORT_SYMBOL(radix_tree_maybe_preload);
360 * Return the maximum key which can be store into a
361 * radix tree with height HEIGHT.
363 static inline unsigned long radix_tree_maxindex(unsigned int height)
365 return height_to_maxindex[height];
369 * Extend a radix tree so it can store key @index.
371 static int radix_tree_extend(struct radix_tree_root *root,
372 unsigned long index, unsigned order)
374 struct radix_tree_node *node;
375 struct radix_tree_node *slot;
376 unsigned int height;
377 int tag;
379 /* Figure out what the height should be. */
380 height = root->height + 1;
381 while (index > radix_tree_maxindex(height))
382 height++;
384 if ((root->rnode == NULL) && (order == 0)) {
385 root->height = height;
386 goto out;
389 do {
390 unsigned int newheight;
391 if (!(node = radix_tree_node_alloc(root)))
392 return -ENOMEM;
394 /* Propagate the aggregated tag info into the new root */
395 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
396 if (root_tag_get(root, tag))
397 tag_set(node, tag, 0);
400 /* Increase the height. */
401 newheight = root->height+1;
402 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
403 node->path = newheight;
404 node->count = 1;
405 node->parent = NULL;
406 slot = root->rnode;
407 if (radix_tree_is_indirect_ptr(slot) && newheight > 1) {
408 slot = indirect_to_ptr(slot);
409 slot->parent = node;
410 slot = ptr_to_indirect(slot);
412 node->slots[0] = slot;
413 node = ptr_to_indirect(node);
414 rcu_assign_pointer(root->rnode, node);
415 root->height = newheight;
416 } while (height > root->height);
417 out:
418 return 0;
422 * __radix_tree_create - create a slot in a radix tree
423 * @root: radix tree root
424 * @index: index key
425 * @order: index occupies 2^order aligned slots
426 * @nodep: returns node
427 * @slotp: returns slot
429 * Create, if necessary, and return the node and slot for an item
430 * at position @index in the radix tree @root.
432 * Until there is more than one item in the tree, no nodes are
433 * allocated and @root->rnode is used as a direct slot instead of
434 * pointing to a node, in which case *@nodep will be NULL.
436 * Returns -ENOMEM, or 0 for success.
438 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
439 unsigned order, struct radix_tree_node **nodep,
440 void ***slotp)
442 struct radix_tree_node *node = NULL, *slot;
443 unsigned int height, shift, offset;
444 int error;
446 BUG_ON((0 < order) && (order < RADIX_TREE_MAP_SHIFT));
448 /* Make sure the tree is high enough. */
449 if (index > radix_tree_maxindex(root->height)) {
450 error = radix_tree_extend(root, index, order);
451 if (error)
452 return error;
455 slot = root->rnode;
457 height = root->height;
458 shift = height * RADIX_TREE_MAP_SHIFT;
460 offset = 0; /* uninitialised var warning */
461 while (shift > order) {
462 if (slot == NULL) {
463 /* Have to add a child node. */
464 if (!(slot = radix_tree_node_alloc(root)))
465 return -ENOMEM;
466 slot->path = height;
467 slot->parent = node;
468 if (node) {
469 rcu_assign_pointer(node->slots[offset],
470 ptr_to_indirect(slot));
471 node->count++;
472 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
473 } else
474 rcu_assign_pointer(root->rnode,
475 ptr_to_indirect(slot));
476 } else if (!radix_tree_is_indirect_ptr(slot))
477 break;
479 /* Go a level down */
480 height--;
481 shift -= RADIX_TREE_MAP_SHIFT;
482 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
483 node = indirect_to_ptr(slot);
484 slot = node->slots[offset];
487 /* Insert pointers to the canonical entry */
488 if ((shift - order) > 0) {
489 int i, n = 1 << (shift - order);
490 offset = offset & ~(n - 1);
491 slot = ptr_to_indirect(&node->slots[offset]);
492 for (i = 0; i < n; i++) {
493 if (node->slots[offset + i])
494 return -EEXIST;
497 for (i = 1; i < n; i++) {
498 rcu_assign_pointer(node->slots[offset + i], slot);
499 node->count++;
503 if (nodep)
504 *nodep = node;
505 if (slotp)
506 *slotp = node ? node->slots + offset : (void **)&root->rnode;
507 return 0;
511 * __radix_tree_insert - insert into a radix tree
512 * @root: radix tree root
513 * @index: index key
514 * @order: key covers the 2^order indices around index
515 * @item: item to insert
517 * Insert an item into the radix tree at position @index.
519 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
520 unsigned order, void *item)
522 struct radix_tree_node *node;
523 void **slot;
524 int error;
526 BUG_ON(radix_tree_is_indirect_ptr(item));
528 error = __radix_tree_create(root, index, order, &node, &slot);
529 if (error)
530 return error;
531 if (*slot != NULL)
532 return -EEXIST;
533 rcu_assign_pointer(*slot, item);
535 if (node) {
536 node->count++;
537 BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
538 BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
539 } else {
540 BUG_ON(root_tag_get(root, 0));
541 BUG_ON(root_tag_get(root, 1));
544 return 0;
546 EXPORT_SYMBOL(__radix_tree_insert);
549 * __radix_tree_lookup - lookup an item in a radix tree
550 * @root: radix tree root
551 * @index: index key
552 * @nodep: returns node
553 * @slotp: returns slot
555 * Lookup and return the item at position @index in the radix
556 * tree @root.
558 * Until there is more than one item in the tree, no nodes are
559 * allocated and @root->rnode is used as a direct slot instead of
560 * pointing to a node, in which case *@nodep will be NULL.
562 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
563 struct radix_tree_node **nodep, void ***slotp)
565 struct radix_tree_node *node, *parent;
566 unsigned int height, shift;
567 void **slot;
569 node = rcu_dereference_raw(root->rnode);
570 if (node == NULL)
571 return NULL;
573 if (!radix_tree_is_indirect_ptr(node)) {
574 if (index > 0)
575 return NULL;
577 if (nodep)
578 *nodep = NULL;
579 if (slotp)
580 *slotp = (void **)&root->rnode;
581 return node;
583 node = indirect_to_ptr(node);
585 height = node->path & RADIX_TREE_HEIGHT_MASK;
586 if (index > radix_tree_maxindex(height))
587 return NULL;
589 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
591 do {
592 parent = node;
593 slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
594 node = rcu_dereference_raw(*slot);
595 if (node == NULL)
596 return NULL;
597 if (!radix_tree_is_indirect_ptr(node))
598 break;
599 node = indirect_to_ptr(node);
601 shift -= RADIX_TREE_MAP_SHIFT;
602 height--;
603 } while (height > 0);
605 if (nodep)
606 *nodep = parent;
607 if (slotp)
608 *slotp = slot;
609 return node;
613 * radix_tree_lookup_slot - lookup a slot in a radix tree
614 * @root: radix tree root
615 * @index: index key
617 * Returns: the slot corresponding to the position @index in the
618 * radix tree @root. This is useful for update-if-exists operations.
620 * This function can be called under rcu_read_lock iff the slot is not
621 * modified by radix_tree_replace_slot, otherwise it must be called
622 * exclusive from other writers. Any dereference of the slot must be done
623 * using radix_tree_deref_slot.
625 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
627 void **slot;
629 if (!__radix_tree_lookup(root, index, NULL, &slot))
630 return NULL;
631 return slot;
633 EXPORT_SYMBOL(radix_tree_lookup_slot);
636 * radix_tree_lookup - perform lookup operation on a radix tree
637 * @root: radix tree root
638 * @index: index key
640 * Lookup the item at the position @index in the radix tree @root.
642 * This function can be called under rcu_read_lock, however the caller
643 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
644 * them safely). No RCU barriers are required to access or modify the
645 * returned item, however.
647 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
649 return __radix_tree_lookup(root, index, NULL, NULL);
651 EXPORT_SYMBOL(radix_tree_lookup);
654 * radix_tree_tag_set - set a tag on a radix tree node
655 * @root: radix tree root
656 * @index: index key
657 * @tag: tag index
659 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
660 * corresponding to @index in the radix tree. From
661 * the root all the way down to the leaf node.
663 * Returns the address of the tagged item. Setting a tag on a not-present
664 * item is a bug.
666 void *radix_tree_tag_set(struct radix_tree_root *root,
667 unsigned long index, unsigned int tag)
669 unsigned int height, shift;
670 struct radix_tree_node *slot;
672 height = root->height;
673 BUG_ON(index > radix_tree_maxindex(height));
675 slot = indirect_to_ptr(root->rnode);
676 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
678 while (height > 0) {
679 int offset;
681 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
682 if (!tag_get(slot, tag, offset))
683 tag_set(slot, tag, offset);
684 slot = slot->slots[offset];
685 BUG_ON(slot == NULL);
686 if (!radix_tree_is_indirect_ptr(slot))
687 break;
688 slot = indirect_to_ptr(slot);
689 shift -= RADIX_TREE_MAP_SHIFT;
690 height--;
693 /* set the root's tag bit */
694 if (slot && !root_tag_get(root, tag))
695 root_tag_set(root, tag);
697 return slot;
699 EXPORT_SYMBOL(radix_tree_tag_set);
702 * radix_tree_tag_clear - clear a tag on a radix tree node
703 * @root: radix tree root
704 * @index: index key
705 * @tag: tag index
707 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
708 * corresponding to @index in the radix tree. If
709 * this causes the leaf node to have no tags set then clear the tag in the
710 * next-to-leaf node, etc.
712 * Returns the address of the tagged item on success, else NULL. ie:
713 * has the same return value and semantics as radix_tree_lookup().
715 void *radix_tree_tag_clear(struct radix_tree_root *root,
716 unsigned long index, unsigned int tag)
718 struct radix_tree_node *node = NULL;
719 struct radix_tree_node *slot = NULL;
720 unsigned int height, shift;
721 int uninitialized_var(offset);
723 height = root->height;
724 if (index > radix_tree_maxindex(height))
725 goto out;
727 shift = height * RADIX_TREE_MAP_SHIFT;
728 slot = root->rnode;
730 while (shift) {
731 if (slot == NULL)
732 goto out;
733 if (!radix_tree_is_indirect_ptr(slot))
734 break;
735 slot = indirect_to_ptr(slot);
737 shift -= RADIX_TREE_MAP_SHIFT;
738 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
739 node = slot;
740 slot = slot->slots[offset];
743 if (slot == NULL)
744 goto out;
746 while (node) {
747 if (!tag_get(node, tag, offset))
748 goto out;
749 tag_clear(node, tag, offset);
750 if (any_tag_set(node, tag))
751 goto out;
753 index >>= RADIX_TREE_MAP_SHIFT;
754 offset = index & RADIX_TREE_MAP_MASK;
755 node = node->parent;
758 /* clear the root's tag bit */
759 if (root_tag_get(root, tag))
760 root_tag_clear(root, tag);
762 out:
763 return slot;
765 EXPORT_SYMBOL(radix_tree_tag_clear);
768 * radix_tree_tag_get - get a tag on a radix tree node
769 * @root: radix tree root
770 * @index: index key
771 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
773 * Return values:
775 * 0: tag not present or not set
776 * 1: tag set
778 * Note that the return value of this function may not be relied on, even if
779 * the RCU lock is held, unless tag modification and node deletion are excluded
780 * from concurrency.
782 int radix_tree_tag_get(struct radix_tree_root *root,
783 unsigned long index, unsigned int tag)
785 unsigned int height, shift;
786 struct radix_tree_node *node;
788 /* check the root's tag bit */
789 if (!root_tag_get(root, tag))
790 return 0;
792 node = rcu_dereference_raw(root->rnode);
793 if (node == NULL)
794 return 0;
796 if (!radix_tree_is_indirect_ptr(node))
797 return (index == 0);
798 node = indirect_to_ptr(node);
800 height = node->path & RADIX_TREE_HEIGHT_MASK;
801 if (index > radix_tree_maxindex(height))
802 return 0;
804 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
806 for ( ; ; ) {
807 int offset;
809 if (node == NULL)
810 return 0;
811 node = indirect_to_ptr(node);
813 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
814 if (!tag_get(node, tag, offset))
815 return 0;
816 if (height == 1)
817 return 1;
818 node = rcu_dereference_raw(node->slots[offset]);
819 if (!radix_tree_is_indirect_ptr(node))
820 return 1;
821 shift -= RADIX_TREE_MAP_SHIFT;
822 height--;
825 EXPORT_SYMBOL(radix_tree_tag_get);
828 * radix_tree_next_chunk - find next chunk of slots for iteration
830 * @root: radix tree root
831 * @iter: iterator state
832 * @flags: RADIX_TREE_ITER_* flags and tag index
833 * Returns: pointer to chunk first slot, or NULL if iteration is over
835 void **radix_tree_next_chunk(struct radix_tree_root *root,
836 struct radix_tree_iter *iter, unsigned flags)
838 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
839 struct radix_tree_node *rnode, *node;
840 unsigned long index, offset, height;
842 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
843 return NULL;
846 * Catch next_index overflow after ~0UL. iter->index never overflows
847 * during iterating; it can be zero only at the beginning.
848 * And we cannot overflow iter->next_index in a single step,
849 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
851 * This condition also used by radix_tree_next_slot() to stop
852 * contiguous iterating, and forbid swithing to the next chunk.
854 index = iter->next_index;
855 if (!index && iter->index)
856 return NULL;
858 rnode = rcu_dereference_raw(root->rnode);
859 if (radix_tree_is_indirect_ptr(rnode)) {
860 rnode = indirect_to_ptr(rnode);
861 } else if (rnode && !index) {
862 /* Single-slot tree */
863 iter->index = 0;
864 iter->next_index = 1;
865 iter->tags = 1;
866 return (void **)&root->rnode;
867 } else
868 return NULL;
870 restart:
871 height = rnode->path & RADIX_TREE_HEIGHT_MASK;
872 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
873 offset = index >> shift;
875 /* Index outside of the tree */
876 if (offset >= RADIX_TREE_MAP_SIZE)
877 return NULL;
879 node = rnode;
880 while (1) {
881 struct radix_tree_node *slot;
882 if ((flags & RADIX_TREE_ITER_TAGGED) ?
883 !test_bit(offset, node->tags[tag]) :
884 !node->slots[offset]) {
885 /* Hole detected */
886 if (flags & RADIX_TREE_ITER_CONTIG)
887 return NULL;
889 if (flags & RADIX_TREE_ITER_TAGGED)
890 offset = radix_tree_find_next_bit(
891 node->tags[tag],
892 RADIX_TREE_MAP_SIZE,
893 offset + 1);
894 else
895 while (++offset < RADIX_TREE_MAP_SIZE) {
896 if (node->slots[offset])
897 break;
899 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
900 index += offset << shift;
901 /* Overflow after ~0UL */
902 if (!index)
903 return NULL;
904 if (offset == RADIX_TREE_MAP_SIZE)
905 goto restart;
908 /* This is leaf-node */
909 if (!shift)
910 break;
912 slot = rcu_dereference_raw(node->slots[offset]);
913 if (slot == NULL)
914 goto restart;
915 if (!radix_tree_is_indirect_ptr(slot))
916 break;
917 node = indirect_to_ptr(slot);
918 shift -= RADIX_TREE_MAP_SHIFT;
919 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
922 /* Update the iterator state */
923 iter->index = index;
924 iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
926 /* Construct iter->tags bit-mask from node->tags[tag] array */
927 if (flags & RADIX_TREE_ITER_TAGGED) {
928 unsigned tag_long, tag_bit;
930 tag_long = offset / BITS_PER_LONG;
931 tag_bit = offset % BITS_PER_LONG;
932 iter->tags = node->tags[tag][tag_long] >> tag_bit;
933 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
934 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
935 /* Pick tags from next element */
936 if (tag_bit)
937 iter->tags |= node->tags[tag][tag_long + 1] <<
938 (BITS_PER_LONG - tag_bit);
939 /* Clip chunk size, here only BITS_PER_LONG tags */
940 iter->next_index = index + BITS_PER_LONG;
944 return node->slots + offset;
946 EXPORT_SYMBOL(radix_tree_next_chunk);
949 * radix_tree_range_tag_if_tagged - for each item in given range set given
950 * tag if item has another tag set
951 * @root: radix tree root
952 * @first_indexp: pointer to a starting index of a range to scan
953 * @last_index: last index of a range to scan
954 * @nr_to_tag: maximum number items to tag
955 * @iftag: tag index to test
956 * @settag: tag index to set if tested tag is set
958 * This function scans range of radix tree from first_index to last_index
959 * (inclusive). For each item in the range if iftag is set, the function sets
960 * also settag. The function stops either after tagging nr_to_tag items or
961 * after reaching last_index.
963 * The tags must be set from the leaf level only and propagated back up the
964 * path to the root. We must do this so that we resolve the full path before
965 * setting any tags on intermediate nodes. If we set tags as we descend, then
966 * we can get to the leaf node and find that the index that has the iftag
967 * set is outside the range we are scanning. This reults in dangling tags and
968 * can lead to problems with later tag operations (e.g. livelocks on lookups).
970 * The function returns number of leaves where the tag was set and sets
971 * *first_indexp to the first unscanned index.
972 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
973 * be prepared to handle that.
975 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
976 unsigned long *first_indexp, unsigned long last_index,
977 unsigned long nr_to_tag,
978 unsigned int iftag, unsigned int settag)
980 unsigned int height = root->height;
981 struct radix_tree_node *node = NULL;
982 struct radix_tree_node *slot;
983 unsigned int shift;
984 unsigned long tagged = 0;
985 unsigned long index = *first_indexp;
987 last_index = min(last_index, radix_tree_maxindex(height));
988 if (index > last_index)
989 return 0;
990 if (!nr_to_tag)
991 return 0;
992 if (!root_tag_get(root, iftag)) {
993 *first_indexp = last_index + 1;
994 return 0;
996 if (height == 0) {
997 *first_indexp = last_index + 1;
998 root_tag_set(root, settag);
999 return 1;
1002 shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1003 slot = indirect_to_ptr(root->rnode);
1005 for (;;) {
1006 unsigned long upindex;
1007 int offset;
1009 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1010 if (!slot->slots[offset])
1011 goto next;
1012 if (!tag_get(slot, iftag, offset))
1013 goto next;
1014 if (shift) {
1015 node = slot;
1016 slot = slot->slots[offset];
1017 if (radix_tree_is_indirect_ptr(slot)) {
1018 slot = indirect_to_ptr(slot);
1019 shift -= RADIX_TREE_MAP_SHIFT;
1020 continue;
1021 } else {
1022 slot = node;
1023 node = node->parent;
1027 /* tag the leaf */
1028 tagged += 1 << shift;
1029 tag_set(slot, settag, offset);
1031 /* walk back up the path tagging interior nodes */
1032 upindex = index;
1033 while (node) {
1034 upindex >>= RADIX_TREE_MAP_SHIFT;
1035 offset = upindex & RADIX_TREE_MAP_MASK;
1037 /* stop if we find a node with the tag already set */
1038 if (tag_get(node, settag, offset))
1039 break;
1040 tag_set(node, settag, offset);
1041 node = node->parent;
1045 * Small optimization: now clear that node pointer.
1046 * Since all of this slot's ancestors now have the tag set
1047 * from setting it above, we have no further need to walk
1048 * back up the tree setting tags, until we update slot to
1049 * point to another radix_tree_node.
1051 node = NULL;
1053 next:
1054 /* Go to next item at level determined by 'shift' */
1055 index = ((index >> shift) + 1) << shift;
1056 /* Overflow can happen when last_index is ~0UL... */
1057 if (index > last_index || !index)
1058 break;
1059 if (tagged >= nr_to_tag)
1060 break;
1061 while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
1063 * We've fully scanned this node. Go up. Because
1064 * last_index is guaranteed to be in the tree, what
1065 * we do below cannot wander astray.
1067 slot = slot->parent;
1068 shift += RADIX_TREE_MAP_SHIFT;
1072 * We need not to tag the root tag if there is no tag which is set with
1073 * settag within the range from *first_indexp to last_index.
1075 if (tagged > 0)
1076 root_tag_set(root, settag);
1077 *first_indexp = index;
1079 return tagged;
1081 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1084 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1085 * @root: radix tree root
1086 * @results: where the results of the lookup are placed
1087 * @first_index: start the lookup from this key
1088 * @max_items: place up to this many items at *results
1090 * Performs an index-ascending scan of the tree for present items. Places
1091 * them at *@results and returns the number of items which were placed at
1092 * *@results.
1094 * The implementation is naive.
1096 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1097 * rcu_read_lock. In this case, rather than the returned results being
1098 * an atomic snapshot of the tree at a single point in time, the semantics
1099 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
1100 * have been issued in individual locks, and results stored in 'results'.
1102 unsigned int
1103 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1104 unsigned long first_index, unsigned int max_items)
1106 struct radix_tree_iter iter;
1107 void **slot;
1108 unsigned int ret = 0;
1110 if (unlikely(!max_items))
1111 return 0;
1113 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1114 results[ret] = rcu_dereference_raw(*slot);
1115 if (!results[ret])
1116 continue;
1117 if (radix_tree_is_indirect_ptr(results[ret])) {
1118 slot = radix_tree_iter_retry(&iter);
1119 continue;
1121 if (++ret == max_items)
1122 break;
1125 return ret;
1127 EXPORT_SYMBOL(radix_tree_gang_lookup);
1130 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1131 * @root: radix tree root
1132 * @results: where the results of the lookup are placed
1133 * @indices: where their indices should be placed (but usually NULL)
1134 * @first_index: start the lookup from this key
1135 * @max_items: place up to this many items at *results
1137 * Performs an index-ascending scan of the tree for present items. Places
1138 * their slots at *@results and returns the number of items which were
1139 * placed at *@results.
1141 * The implementation is naive.
1143 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1144 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1145 * protection, radix_tree_deref_slot may fail requiring a retry.
1147 unsigned int
1148 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1149 void ***results, unsigned long *indices,
1150 unsigned long first_index, unsigned int max_items)
1152 struct radix_tree_iter iter;
1153 void **slot;
1154 unsigned int ret = 0;
1156 if (unlikely(!max_items))
1157 return 0;
1159 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1160 results[ret] = slot;
1161 if (indices)
1162 indices[ret] = iter.index;
1163 if (++ret == max_items)
1164 break;
1167 return ret;
1169 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1172 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1173 * based on a tag
1174 * @root: radix tree root
1175 * @results: where the results of the lookup are placed
1176 * @first_index: start the lookup from this key
1177 * @max_items: place up to this many items at *results
1178 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1180 * Performs an index-ascending scan of the tree for present items which
1181 * have the tag indexed by @tag set. Places the items at *@results and
1182 * returns the number of items which were placed at *@results.
1184 unsigned int
1185 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1186 unsigned long first_index, unsigned int max_items,
1187 unsigned int tag)
1189 struct radix_tree_iter iter;
1190 void **slot;
1191 unsigned int ret = 0;
1193 if (unlikely(!max_items))
1194 return 0;
1196 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1197 results[ret] = rcu_dereference_raw(*slot);
1198 if (!results[ret])
1199 continue;
1200 if (radix_tree_is_indirect_ptr(results[ret])) {
1201 slot = radix_tree_iter_retry(&iter);
1202 continue;
1204 if (++ret == max_items)
1205 break;
1208 return ret;
1210 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1213 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1214 * radix tree based on a tag
1215 * @root: radix tree root
1216 * @results: where the results of the lookup are placed
1217 * @first_index: start the lookup from this key
1218 * @max_items: place up to this many items at *results
1219 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1221 * Performs an index-ascending scan of the tree for present items which
1222 * have the tag indexed by @tag set. Places the slots at *@results and
1223 * returns the number of slots which were placed at *@results.
1225 unsigned int
1226 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1227 unsigned long first_index, unsigned int max_items,
1228 unsigned int tag)
1230 struct radix_tree_iter iter;
1231 void **slot;
1232 unsigned int ret = 0;
1234 if (unlikely(!max_items))
1235 return 0;
1237 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1238 results[ret] = slot;
1239 if (++ret == max_items)
1240 break;
1243 return ret;
1245 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1247 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1248 #include <linux/sched.h> /* for cond_resched() */
1251 * This linear search is at present only useful to shmem_unuse_inode().
1253 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1254 unsigned long index, unsigned long *found_index)
1256 unsigned int shift, height;
1257 unsigned long i;
1259 height = slot->path & RADIX_TREE_HEIGHT_MASK;
1260 shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1262 for ( ; height > 1; height--) {
1263 i = (index >> shift) & RADIX_TREE_MAP_MASK;
1264 for (;;) {
1265 if (slot->slots[i] != NULL)
1266 break;
1267 index &= ~((1UL << shift) - 1);
1268 index += 1UL << shift;
1269 if (index == 0)
1270 goto out; /* 32-bit wraparound */
1271 i++;
1272 if (i == RADIX_TREE_MAP_SIZE)
1273 goto out;
1276 slot = rcu_dereference_raw(slot->slots[i]);
1277 if (slot == NULL)
1278 goto out;
1279 if (!radix_tree_is_indirect_ptr(slot)) {
1280 if (slot == item) {
1281 *found_index = index + i;
1282 index = 0;
1283 } else {
1284 index += shift;
1286 goto out;
1288 slot = indirect_to_ptr(slot);
1289 shift -= RADIX_TREE_MAP_SHIFT;
1292 /* Bottom level: check items */
1293 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1294 if (slot->slots[i] == item) {
1295 *found_index = index + i;
1296 index = 0;
1297 goto out;
1300 index += RADIX_TREE_MAP_SIZE;
1301 out:
1302 return index;
1306 * radix_tree_locate_item - search through radix tree for item
1307 * @root: radix tree root
1308 * @item: item to be found
1310 * Returns index where item was found, or -1 if not found.
1311 * Caller must hold no lock (since this time-consuming function needs
1312 * to be preemptible), and must check afterwards if item is still there.
1314 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1316 struct radix_tree_node *node;
1317 unsigned long max_index;
1318 unsigned long cur_index = 0;
1319 unsigned long found_index = -1;
1321 do {
1322 rcu_read_lock();
1323 node = rcu_dereference_raw(root->rnode);
1324 if (!radix_tree_is_indirect_ptr(node)) {
1325 rcu_read_unlock();
1326 if (node == item)
1327 found_index = 0;
1328 break;
1331 node = indirect_to_ptr(node);
1332 max_index = radix_tree_maxindex(node->path &
1333 RADIX_TREE_HEIGHT_MASK);
1334 if (cur_index > max_index) {
1335 rcu_read_unlock();
1336 break;
1339 cur_index = __locate(node, item, cur_index, &found_index);
1340 rcu_read_unlock();
1341 cond_resched();
1342 } while (cur_index != 0 && cur_index <= max_index);
1344 return found_index;
1346 #else
1347 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1349 return -1;
1351 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1354 * radix_tree_shrink - shrink height of a radix tree to minimal
1355 * @root radix tree root
1357 static inline void radix_tree_shrink(struct radix_tree_root *root)
1359 /* try to shrink tree height */
1360 while (root->height > 0) {
1361 struct radix_tree_node *to_free = root->rnode;
1362 struct radix_tree_node *slot;
1364 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1365 to_free = indirect_to_ptr(to_free);
1368 * The candidate node has more than one child, or its child
1369 * is not at the leftmost slot, or it is a multiorder entry,
1370 * we cannot shrink.
1372 if (to_free->count != 1)
1373 break;
1374 slot = to_free->slots[0];
1375 if (!slot)
1376 break;
1379 * We don't need rcu_assign_pointer(), since we are simply
1380 * moving the node from one part of the tree to another: if it
1381 * was safe to dereference the old pointer to it
1382 * (to_free->slots[0]), it will be safe to dereference the new
1383 * one (root->rnode) as far as dependent read barriers go.
1385 if (root->height > 1) {
1386 if (!radix_tree_is_indirect_ptr(slot))
1387 break;
1389 slot = indirect_to_ptr(slot);
1390 slot->parent = NULL;
1391 slot = ptr_to_indirect(slot);
1393 root->rnode = slot;
1394 root->height--;
1397 * We have a dilemma here. The node's slot[0] must not be
1398 * NULLed in case there are concurrent lookups expecting to
1399 * find the item. However if this was a bottom-level node,
1400 * then it may be subject to the slot pointer being visible
1401 * to callers dereferencing it. If item corresponding to
1402 * slot[0] is subsequently deleted, these callers would expect
1403 * their slot to become empty sooner or later.
1405 * For example, lockless pagecache will look up a slot, deref
1406 * the page pointer, and if the page is 0 refcount it means it
1407 * was concurrently deleted from pagecache so try the deref
1408 * again. Fortunately there is already a requirement for logic
1409 * to retry the entire slot lookup -- the indirect pointer
1410 * problem (replacing direct root node with an indirect pointer
1411 * also results in a stale slot). So tag the slot as indirect
1412 * to force callers to retry.
1414 if (root->height == 0)
1415 *((unsigned long *)&to_free->slots[0]) |=
1416 RADIX_TREE_INDIRECT_PTR;
1418 radix_tree_node_free(to_free);
1423 * __radix_tree_delete_node - try to free node after clearing a slot
1424 * @root: radix tree root
1425 * @node: node containing @index
1427 * After clearing the slot at @index in @node from radix tree
1428 * rooted at @root, call this function to attempt freeing the
1429 * node and shrinking the tree.
1431 * Returns %true if @node was freed, %false otherwise.
1433 bool __radix_tree_delete_node(struct radix_tree_root *root,
1434 struct radix_tree_node *node)
1436 bool deleted = false;
1438 do {
1439 struct radix_tree_node *parent;
1441 if (node->count) {
1442 if (node == indirect_to_ptr(root->rnode)) {
1443 radix_tree_shrink(root);
1444 if (root->height == 0)
1445 deleted = true;
1447 return deleted;
1450 parent = node->parent;
1451 if (parent) {
1452 unsigned int offset;
1454 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1455 parent->slots[offset] = NULL;
1456 parent->count--;
1457 } else {
1458 root_tag_clear_all(root);
1459 root->height = 0;
1460 root->rnode = NULL;
1463 radix_tree_node_free(node);
1464 deleted = true;
1466 node = parent;
1467 } while (node);
1469 return deleted;
1473 * radix_tree_delete_item - delete an item from a radix tree
1474 * @root: radix tree root
1475 * @index: index key
1476 * @item: expected item
1478 * Remove @item at @index from the radix tree rooted at @root.
1480 * Returns the address of the deleted item, or NULL if it was not present
1481 * or the entry at the given @index was not @item.
1483 void *radix_tree_delete_item(struct radix_tree_root *root,
1484 unsigned long index, void *item)
1486 struct radix_tree_node *node;
1487 unsigned int offset, i;
1488 void **slot;
1489 void *entry;
1490 int tag;
1492 entry = __radix_tree_lookup(root, index, &node, &slot);
1493 if (!entry)
1494 return NULL;
1496 if (item && entry != item)
1497 return NULL;
1499 if (!node) {
1500 root_tag_clear_all(root);
1501 root->rnode = NULL;
1502 return entry;
1505 offset = index & RADIX_TREE_MAP_MASK;
1508 * Clear all tags associated with the item to be deleted.
1509 * This way of doing it would be inefficient, but seldom is any set.
1511 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1512 if (tag_get(node, tag, offset))
1513 radix_tree_tag_clear(root, index, tag);
1516 /* Delete any sibling slots pointing to this slot */
1517 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1518 if (node->slots[offset + i] != ptr_to_indirect(slot))
1519 break;
1520 node->slots[offset + i] = NULL;
1521 node->count--;
1523 node->slots[offset] = NULL;
1524 node->count--;
1526 __radix_tree_delete_node(root, node);
1528 return entry;
1530 EXPORT_SYMBOL(radix_tree_delete_item);
1533 * radix_tree_delete - delete an item from a radix tree
1534 * @root: radix tree root
1535 * @index: index key
1537 * Remove the item at @index from the radix tree rooted at @root.
1539 * Returns the address of the deleted item, or NULL if it was not present.
1541 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1543 return radix_tree_delete_item(root, index, NULL);
1545 EXPORT_SYMBOL(radix_tree_delete);
1548 * radix_tree_tagged - test whether any items in the tree are tagged
1549 * @root: radix tree root
1550 * @tag: tag to test
1552 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1554 return root_tag_get(root, tag);
1556 EXPORT_SYMBOL(radix_tree_tagged);
1558 static void
1559 radix_tree_node_ctor(void *arg)
1561 struct radix_tree_node *node = arg;
1563 memset(node, 0, sizeof(*node));
1564 INIT_LIST_HEAD(&node->private_list);
1567 static __init unsigned long __maxindex(unsigned int height)
1569 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1570 int shift = RADIX_TREE_INDEX_BITS - width;
1572 if (shift < 0)
1573 return ~0UL;
1574 if (shift >= BITS_PER_LONG)
1575 return 0UL;
1576 return ~0UL >> shift;
1579 static __init void radix_tree_init_maxindex(void)
1581 unsigned int i;
1583 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1584 height_to_maxindex[i] = __maxindex(i);
1587 static int radix_tree_callback(struct notifier_block *nfb,
1588 unsigned long action,
1589 void *hcpu)
1591 int cpu = (long)hcpu;
1592 struct radix_tree_preload *rtp;
1593 struct radix_tree_node *node;
1595 /* Free per-cpu pool of perloaded nodes */
1596 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1597 rtp = &per_cpu(radix_tree_preloads, cpu);
1598 while (rtp->nr) {
1599 node = rtp->nodes;
1600 rtp->nodes = node->private_data;
1601 kmem_cache_free(radix_tree_node_cachep, node);
1602 rtp->nr--;
1605 return NOTIFY_OK;
1608 void __init radix_tree_init(void)
1610 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1611 sizeof(struct radix_tree_node), 0,
1612 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1613 radix_tree_node_ctor);
1614 radix_tree_init_maxindex();
1615 hotcpu_notifier(radix_tree_callback, 0);