1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly
;
76 EXPORT_SYMBOL(memory_cgrp_subsys
);
78 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket
;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem
;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly
;
92 #define do_swap_account 0
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys
) && do_swap_account
;
101 static const char * const mem_cgroup_stat_names
[] = {
111 static const char * const mem_cgroup_events_names
[] = {
118 static const char * const mem_cgroup_lru_names
[] = {
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_zone
{
136 struct rb_root rb_root
;
140 struct mem_cgroup_tree_per_node
{
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
144 struct mem_cgroup_tree
{
145 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
151 struct mem_cgroup_eventfd_list
{
152 struct list_head list
;
153 struct eventfd_ctx
*eventfd
;
157 * cgroup_event represents events which userspace want to receive.
159 struct mem_cgroup_event
{
161 * memcg which the event belongs to.
163 struct mem_cgroup
*memcg
;
165 * eventfd to signal userspace about the event.
167 struct eventfd_ctx
*eventfd
;
169 * Each of these stored in a list by the cgroup.
171 struct list_head list
;
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
177 int (*register_event
)(struct mem_cgroup
*memcg
,
178 struct eventfd_ctx
*eventfd
, const char *args
);
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
184 void (*unregister_event
)(struct mem_cgroup
*memcg
,
185 struct eventfd_ctx
*eventfd
);
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
191 wait_queue_head_t
*wqh
;
193 struct work_struct remove
;
196 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
);
197 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
);
199 /* Stuffs for move charges at task migration. */
201 * Types of charges to be moved.
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct
{
209 spinlock_t lock
; /* for from, to */
210 struct mm_struct
*mm
;
211 struct mem_cgroup
*from
;
212 struct mem_cgroup
*to
;
214 unsigned long precharge
;
215 unsigned long moved_charge
;
216 unsigned long moved_swap
;
217 struct task_struct
*moving_task
; /* a task moving charges */
218 wait_queue_head_t waitq
; /* a waitq for other context */
220 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
221 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
232 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON
,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
239 /* for encoding cft->private value on file */
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure
*memcg_to_vmpressure(struct mem_cgroup
*memcg
)
258 memcg
= root_mem_cgroup
;
259 return &memcg
->vmpressure
;
262 struct cgroup_subsys_state
*vmpressure_to_css(struct vmpressure
*vmpr
)
264 return &container_of(vmpr
, struct mem_cgroup
, vmpressure
)->css
;
267 static inline bool mem_cgroup_is_root(struct mem_cgroup
*memcg
)
269 return (memcg
== root_mem_cgroup
);
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
284 static DEFINE_IDA(memcg_cache_ida
);
285 int memcg_nr_cache_ids
;
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem
);
290 void memcg_get_cache_ids(void)
292 down_read(&memcg_cache_ids_sem
);
295 void memcg_put_cache_ids(void)
297 up_read(&memcg_cache_ids_sem
);
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key
);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key
);
324 #endif /* !CONFIG_SLOB */
326 static struct mem_cgroup_per_zone
*
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup
*memcg
, struct zone
*zone
)
329 int nid
= zone_to_nid(zone
);
330 int zid
= zone_idx(zone
);
332 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
346 struct cgroup_subsys_state
*mem_cgroup_css_from_page(struct page
*page
)
348 struct mem_cgroup
*memcg
;
350 memcg
= page
->mem_cgroup
;
352 if (!memcg
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
353 memcg
= root_mem_cgroup
;
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
371 ino_t
page_cgroup_ino(struct page
*page
)
373 struct mem_cgroup
*memcg
;
374 unsigned long ino
= 0;
377 memcg
= READ_ONCE(page
->mem_cgroup
);
378 while (memcg
&& !(memcg
->css
.flags
& CSS_ONLINE
))
379 memcg
= parent_mem_cgroup(memcg
);
381 ino
= cgroup_ino(memcg
->css
.cgroup
);
386 static struct mem_cgroup_per_zone
*
387 mem_cgroup_page_zoneinfo(struct mem_cgroup
*memcg
, struct page
*page
)
389 int nid
= page_to_nid(page
);
390 int zid
= page_zonenum(page
);
392 return &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
395 static struct mem_cgroup_tree_per_zone
*
396 soft_limit_tree_node_zone(int nid
, int zid
)
398 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
401 static struct mem_cgroup_tree_per_zone
*
402 soft_limit_tree_from_page(struct page
*page
)
404 int nid
= page_to_nid(page
);
405 int zid
= page_zonenum(page
);
407 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone
*mz
,
411 struct mem_cgroup_tree_per_zone
*mctz
,
412 unsigned long new_usage_in_excess
)
414 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
415 struct rb_node
*parent
= NULL
;
416 struct mem_cgroup_per_zone
*mz_node
;
421 mz
->usage_in_excess
= new_usage_in_excess
;
422 if (!mz
->usage_in_excess
)
426 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
428 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
434 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
437 rb_link_node(&mz
->tree_node
, parent
, p
);
438 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
443 struct mem_cgroup_tree_per_zone
*mctz
)
447 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone
*mz
,
452 struct mem_cgroup_tree_per_zone
*mctz
)
456 spin_lock_irqsave(&mctz
->lock
, flags
);
457 __mem_cgroup_remove_exceeded(mz
, mctz
);
458 spin_unlock_irqrestore(&mctz
->lock
, flags
);
461 static unsigned long soft_limit_excess(struct mem_cgroup
*memcg
)
463 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
464 unsigned long soft_limit
= READ_ONCE(memcg
->soft_limit
);
465 unsigned long excess
= 0;
467 if (nr_pages
> soft_limit
)
468 excess
= nr_pages
- soft_limit
;
473 static void mem_cgroup_update_tree(struct mem_cgroup
*memcg
, struct page
*page
)
475 unsigned long excess
;
476 struct mem_cgroup_per_zone
*mz
;
477 struct mem_cgroup_tree_per_zone
*mctz
;
479 mctz
= soft_limit_tree_from_page(page
);
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
484 for (; memcg
; memcg
= parent_mem_cgroup(memcg
)) {
485 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
486 excess
= soft_limit_excess(memcg
);
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
491 if (excess
|| mz
->on_tree
) {
494 spin_lock_irqsave(&mctz
->lock
, flags
);
495 /* if on-tree, remove it */
497 __mem_cgroup_remove_exceeded(mz
, mctz
);
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
502 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
503 spin_unlock_irqrestore(&mctz
->lock
, flags
);
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*memcg
)
510 struct mem_cgroup_tree_per_zone
*mctz
;
511 struct mem_cgroup_per_zone
*mz
;
515 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
516 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
517 mctz
= soft_limit_tree_node_zone(nid
, zid
);
518 mem_cgroup_remove_exceeded(mz
, mctz
);
523 static struct mem_cgroup_per_zone
*
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
526 struct rb_node
*rightmost
= NULL
;
527 struct mem_cgroup_per_zone
*mz
;
531 rightmost
= rb_last(&mctz
->rb_root
);
533 goto done
; /* Nothing to reclaim from */
535 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
541 __mem_cgroup_remove_exceeded(mz
, mctz
);
542 if (!soft_limit_excess(mz
->memcg
) ||
543 !css_tryget_online(&mz
->memcg
->css
))
549 static struct mem_cgroup_per_zone
*
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
552 struct mem_cgroup_per_zone
*mz
;
554 spin_lock_irq(&mctz
->lock
);
555 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
556 spin_unlock_irq(&mctz
->lock
);
561 * Return page count for single (non recursive) @memcg.
563 * Implementation Note: reading percpu statistics for memcg.
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
582 mem_cgroup_read_stat(struct mem_cgroup
*memcg
, enum mem_cgroup_stat_index idx
)
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu
)
589 val
+= per_cpu(memcg
->stat
->count
[idx
], cpu
);
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup
*memcg
,
600 enum mem_cgroup_events_index idx
)
602 unsigned long val
= 0;
605 for_each_possible_cpu(cpu
)
606 val
+= per_cpu(memcg
->stat
->events
[idx
], cpu
);
610 static void mem_cgroup_charge_statistics(struct mem_cgroup
*memcg
,
612 bool compound
, int nr_pages
)
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
619 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
],
622 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
],
626 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
627 __this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
631 /* pagein of a big page is an event. So, ignore page size */
633 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGIN
]);
635 __this_cpu_inc(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
]);
636 nr_pages
= -nr_pages
; /* for event */
639 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup
*memcg
,
643 int nid
, unsigned int lru_mask
)
645 unsigned long nr
= 0;
648 VM_BUG_ON((unsigned)nid
>= nr_node_ids
);
650 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
651 struct mem_cgroup_per_zone
*mz
;
655 if (!(BIT(lru
) & lru_mask
))
657 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
658 nr
+= mz
->lru_size
[lru
];
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup
*memcg
,
665 unsigned int lru_mask
)
667 unsigned long nr
= 0;
670 for_each_node_state(nid
, N_MEMORY
)
671 nr
+= mem_cgroup_node_nr_lru_pages(memcg
, nid
, lru_mask
);
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup
*memcg
,
676 enum mem_cgroup_events_target target
)
678 unsigned long val
, next
;
680 val
= __this_cpu_read(memcg
->stat
->nr_page_events
);
681 next
= __this_cpu_read(memcg
->stat
->targets
[target
]);
682 /* from time_after() in jiffies.h */
683 if ((long)next
- (long)val
< 0) {
685 case MEM_CGROUP_TARGET_THRESH
:
686 next
= val
+ THRESHOLDS_EVENTS_TARGET
;
688 case MEM_CGROUP_TARGET_SOFTLIMIT
:
689 next
= val
+ SOFTLIMIT_EVENTS_TARGET
;
691 case MEM_CGROUP_TARGET_NUMAINFO
:
692 next
= val
+ NUMAINFO_EVENTS_TARGET
;
697 __this_cpu_write(memcg
->stat
->targets
[target
], next
);
704 * Check events in order.
707 static void memcg_check_events(struct mem_cgroup
*memcg
, struct page
*page
)
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg
,
711 MEM_CGROUP_TARGET_THRESH
))) {
713 bool do_numainfo __maybe_unused
;
715 do_softlimit
= mem_cgroup_event_ratelimit(memcg
,
716 MEM_CGROUP_TARGET_SOFTLIMIT
);
718 do_numainfo
= mem_cgroup_event_ratelimit(memcg
,
719 MEM_CGROUP_TARGET_NUMAINFO
);
721 mem_cgroup_threshold(memcg
);
722 if (unlikely(do_softlimit
))
723 mem_cgroup_update_tree(memcg
, page
);
725 if (unlikely(do_numainfo
))
726 atomic_inc(&memcg
->numainfo_events
);
731 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
741 return mem_cgroup_from_css(task_css(p
, memory_cgrp_id
));
743 EXPORT_SYMBOL(mem_cgroup_from_task
);
745 static struct mem_cgroup
*get_mem_cgroup_from_mm(struct mm_struct
*mm
)
747 struct mem_cgroup
*memcg
= NULL
;
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
757 memcg
= root_mem_cgroup
;
759 memcg
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
760 if (unlikely(!memcg
))
761 memcg
= root_mem_cgroup
;
763 } while (!css_tryget_online(&memcg
->css
));
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
785 struct mem_cgroup
*mem_cgroup_iter(struct mem_cgroup
*root
,
786 struct mem_cgroup
*prev
,
787 struct mem_cgroup_reclaim_cookie
*reclaim
)
789 struct mem_cgroup_reclaim_iter
*uninitialized_var(iter
);
790 struct cgroup_subsys_state
*css
= NULL
;
791 struct mem_cgroup
*memcg
= NULL
;
792 struct mem_cgroup
*pos
= NULL
;
794 if (mem_cgroup_disabled())
798 root
= root_mem_cgroup
;
800 if (prev
&& !reclaim
)
803 if (!root
->use_hierarchy
&& root
!= root_mem_cgroup
) {
812 struct mem_cgroup_per_zone
*mz
;
814 mz
= mem_cgroup_zone_zoneinfo(root
, reclaim
->zone
);
815 iter
= &mz
->iter
[reclaim
->priority
];
817 if (prev
&& reclaim
->generation
!= iter
->generation
)
821 pos
= READ_ONCE(iter
->position
);
822 if (!pos
|| css_tryget(&pos
->css
))
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
832 (void)cmpxchg(&iter
->position
, pos
, NULL
);
840 css
= css_next_descendant_pre(css
, &root
->css
);
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
858 memcg
= mem_cgroup_from_css(css
);
860 if (css
== &root
->css
)
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
875 (void)cmpxchg(&iter
->position
, pos
, memcg
);
883 reclaim
->generation
= iter
->generation
;
889 if (prev
&& prev
!= root
)
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
900 void mem_cgroup_iter_break(struct mem_cgroup
*root
,
901 struct mem_cgroup
*prev
)
904 root
= root_mem_cgroup
;
905 if (prev
&& prev
!= root
)
909 static void invalidate_reclaim_iterators(struct mem_cgroup
*dead_memcg
)
911 struct mem_cgroup
*memcg
= dead_memcg
;
912 struct mem_cgroup_reclaim_iter
*iter
;
913 struct mem_cgroup_per_zone
*mz
;
917 while ((memcg
= parent_mem_cgroup(memcg
))) {
919 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
920 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
921 for (i
= 0; i
<= DEF_PRIORITY
; i
++) {
923 cmpxchg(&iter
->position
,
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
939 iter = mem_cgroup_iter(root, iter, NULL))
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
955 struct lruvec
*mem_cgroup_zone_lruvec(struct zone
*zone
,
956 struct mem_cgroup
*memcg
)
958 struct mem_cgroup_per_zone
*mz
;
959 struct lruvec
*lruvec
;
961 if (mem_cgroup_disabled()) {
962 lruvec
= &zone
->lruvec
;
966 mz
= mem_cgroup_zone_zoneinfo(memcg
, zone
);
967 lruvec
= &mz
->lruvec
;
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
974 if (unlikely(lruvec
->zone
!= zone
))
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
982 * @zone: zone of the page
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
988 struct lruvec
*mem_cgroup_page_lruvec(struct page
*page
, struct zone
*zone
)
990 struct mem_cgroup_per_zone
*mz
;
991 struct mem_cgroup
*memcg
;
992 struct lruvec
*lruvec
;
994 if (mem_cgroup_disabled()) {
995 lruvec
= &zone
->lruvec
;
999 memcg
= page
->mem_cgroup
;
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1005 memcg
= root_mem_cgroup
;
1007 mz
= mem_cgroup_page_zoneinfo(memcg
, page
);
1008 lruvec
= &mz
->lruvec
;
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1015 if (unlikely(lruvec
->zone
!= zone
))
1016 lruvec
->zone
= zone
;
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1026 * This function must be called when a page is added to or removed from an
1029 void mem_cgroup_update_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
1032 struct mem_cgroup_per_zone
*mz
;
1033 unsigned long *lru_size
;
1035 if (mem_cgroup_disabled())
1038 mz
= container_of(lruvec
, struct mem_cgroup_per_zone
, lruvec
);
1039 lru_size
= mz
->lru_size
+ lru
;
1040 *lru_size
+= nr_pages
;
1041 VM_BUG_ON((long)(*lru_size
) < 0);
1044 bool task_in_mem_cgroup(struct task_struct
*task
, struct mem_cgroup
*memcg
)
1046 struct mem_cgroup
*task_memcg
;
1047 struct task_struct
*p
;
1050 p
= find_lock_task_mm(task
);
1052 task_memcg
= get_mem_cgroup_from_mm(p
->mm
);
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1061 task_memcg
= mem_cgroup_from_task(task
);
1062 css_get(&task_memcg
->css
);
1065 ret
= mem_cgroup_is_descendant(task_memcg
, memcg
);
1066 css_put(&task_memcg
->css
);
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1074 * Returns the maximum amount of memory @mem can be charged with, in
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup
*memcg
)
1079 unsigned long margin
= 0;
1080 unsigned long count
;
1081 unsigned long limit
;
1083 count
= page_counter_read(&memcg
->memory
);
1084 limit
= READ_ONCE(memcg
->memory
.limit
);
1086 margin
= limit
- count
;
1088 if (do_memsw_account()) {
1089 count
= page_counter_read(&memcg
->memsw
);
1090 limit
= READ_ONCE(memcg
->memsw
.limit
);
1092 margin
= min(margin
, limit
- count
);
1099 * A routine for checking "mem" is under move_account() or not.
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1105 static bool mem_cgroup_under_move(struct mem_cgroup
*memcg
)
1107 struct mem_cgroup
*from
;
1108 struct mem_cgroup
*to
;
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1114 spin_lock(&mc
.lock
);
1120 ret
= mem_cgroup_is_descendant(from
, memcg
) ||
1121 mem_cgroup_is_descendant(to
, memcg
);
1123 spin_unlock(&mc
.lock
);
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*memcg
)
1129 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1130 if (mem_cgroup_under_move(memcg
)) {
1132 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1133 /* moving charge context might have finished. */
1136 finish_wait(&mc
.waitq
, &wait
);
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1152 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1154 struct mem_cgroup
*iter
;
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p
, memory_cgrp_id
));
1162 pr_cont(" killed as a result of limit of ");
1164 pr_info("Memory limit reached of cgroup ");
1167 pr_cont_cgroup_path(memcg
->css
.cgroup
);
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64
)page_counter_read(&memcg
->memory
)),
1174 K((u64
)memcg
->memory
.limit
), memcg
->memory
.failcnt
);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64
)page_counter_read(&memcg
->memsw
)),
1177 K((u64
)memcg
->memsw
.limit
), memcg
->memsw
.failcnt
);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64
)page_counter_read(&memcg
->kmem
)),
1180 K((u64
)memcg
->kmem
.limit
), memcg
->kmem
.failcnt
);
1182 for_each_mem_cgroup_tree(iter
, memcg
) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter
->css
.cgroup
);
1187 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
1188 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_swap_account
)
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names
[i
],
1191 K(mem_cgroup_read_stat(iter
, i
)));
1194 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names
[i
],
1196 K(mem_cgroup_nr_lru_pages(iter
, BIT(i
))));
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1206 static int mem_cgroup_count_children(struct mem_cgroup
*memcg
)
1209 struct mem_cgroup
*iter
;
1211 for_each_mem_cgroup_tree(iter
, memcg
)
1217 * Return the memory (and swap, if configured) limit for a memcg.
1219 static unsigned long mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1221 unsigned long limit
;
1223 limit
= memcg
->memory
.limit
;
1224 if (mem_cgroup_swappiness(memcg
)) {
1225 unsigned long memsw_limit
;
1226 unsigned long swap_limit
;
1228 memsw_limit
= memcg
->memsw
.limit
;
1229 swap_limit
= memcg
->swap
.limit
;
1230 swap_limit
= min(swap_limit
, (unsigned long)total_swap_pages
);
1231 limit
= min(limit
+ swap_limit
, memsw_limit
);
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1239 struct oom_control oc
= {
1242 .gfp_mask
= gfp_mask
,
1245 struct mem_cgroup
*iter
;
1246 unsigned long chosen_points
= 0;
1247 unsigned long totalpages
;
1248 unsigned int points
= 0;
1249 struct task_struct
*chosen
= NULL
;
1251 mutex_lock(&oom_lock
);
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1258 if (fatal_signal_pending(current
) || task_will_free_mem(current
)) {
1259 mark_oom_victim(current
);
1263 check_panic_on_oom(&oc
, CONSTRAINT_MEMCG
, memcg
);
1264 totalpages
= mem_cgroup_get_limit(memcg
) ? : 1;
1265 for_each_mem_cgroup_tree(iter
, memcg
) {
1266 struct css_task_iter it
;
1267 struct task_struct
*task
;
1269 css_task_iter_start(&iter
->css
, &it
);
1270 while ((task
= css_task_iter_next(&it
))) {
1271 switch (oom_scan_process_thread(&oc
, task
, totalpages
)) {
1272 case OOM_SCAN_SELECT
:
1274 put_task_struct(chosen
);
1276 chosen_points
= ULONG_MAX
;
1277 get_task_struct(chosen
);
1279 case OOM_SCAN_CONTINUE
:
1281 case OOM_SCAN_ABORT
:
1282 css_task_iter_end(&it
);
1283 mem_cgroup_iter_break(memcg
, iter
);
1285 put_task_struct(chosen
);
1290 points
= oom_badness(task
, memcg
, NULL
, totalpages
);
1291 if (!points
|| points
< chosen_points
)
1293 /* Prefer thread group leaders for display purposes */
1294 if (points
== chosen_points
&&
1295 thread_group_leader(chosen
))
1299 put_task_struct(chosen
);
1301 chosen_points
= points
;
1302 get_task_struct(chosen
);
1304 css_task_iter_end(&it
);
1308 points
= chosen_points
* 1000 / totalpages
;
1309 oom_kill_process(&oc
, chosen
, points
, totalpages
, memcg
,
1310 "Memory cgroup out of memory");
1313 mutex_unlock(&oom_lock
);
1317 #if MAX_NUMNODES > 1
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1329 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup
*memcg
,
1330 int nid
, bool noswap
)
1332 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_FILE
))
1334 if (noswap
|| !total_swap_pages
)
1336 if (mem_cgroup_node_nr_lru_pages(memcg
, nid
, LRU_ALL_ANON
))
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1348 static void mem_cgroup_may_update_nodemask(struct mem_cgroup
*memcg
)
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1355 if (!atomic_read(&memcg
->numainfo_events
))
1357 if (atomic_inc_return(&memcg
->numainfo_updating
) > 1)
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg
->scan_nodes
= node_states
[N_MEMORY
];
1363 for_each_node_mask(nid
, node_states
[N_MEMORY
]) {
1365 if (!test_mem_cgroup_node_reclaimable(memcg
, nid
, false))
1366 node_clear(nid
, memcg
->scan_nodes
);
1369 atomic_set(&memcg
->numainfo_events
, 0);
1370 atomic_set(&memcg
->numainfo_updating
, 0);
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1383 * Now, we use round-robin. Better algorithm is welcomed.
1385 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1389 mem_cgroup_may_update_nodemask(memcg
);
1390 node
= memcg
->last_scanned_node
;
1392 node
= next_node(node
, memcg
->scan_nodes
);
1393 if (node
== MAX_NUMNODES
)
1394 node
= first_node(memcg
->scan_nodes
);
1396 * We call this when we hit limit, not when pages are added to LRU.
1397 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 * memcg is too small and all pages are not on LRU. In that case,
1399 * we use curret node.
1401 if (unlikely(node
== MAX_NUMNODES
))
1402 node
= numa_node_id();
1404 memcg
->last_scanned_node
= node
;
1408 int mem_cgroup_select_victim_node(struct mem_cgroup
*memcg
)
1414 static int mem_cgroup_soft_reclaim(struct mem_cgroup
*root_memcg
,
1417 unsigned long *total_scanned
)
1419 struct mem_cgroup
*victim
= NULL
;
1422 unsigned long excess
;
1423 unsigned long nr_scanned
;
1424 struct mem_cgroup_reclaim_cookie reclaim
= {
1429 excess
= soft_limit_excess(root_memcg
);
1432 victim
= mem_cgroup_iter(root_memcg
, victim
, &reclaim
);
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1444 * We want to do more targeted reclaim.
1445 * excess >> 2 is not to excessive so as to
1446 * reclaim too much, nor too less that we keep
1447 * coming back to reclaim from this cgroup
1449 if (total
>= (excess
>> 2) ||
1450 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
))
1455 total
+= mem_cgroup_shrink_node_zone(victim
, gfp_mask
, false,
1457 *total_scanned
+= nr_scanned
;
1458 if (!soft_limit_excess(root_memcg
))
1461 mem_cgroup_iter_break(root_memcg
, victim
);
1465 #ifdef CONFIG_LOCKDEP
1466 static struct lockdep_map memcg_oom_lock_dep_map
= {
1467 .name
= "memcg_oom_lock",
1471 static DEFINE_SPINLOCK(memcg_oom_lock
);
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1477 static bool mem_cgroup_oom_trylock(struct mem_cgroup
*memcg
)
1479 struct mem_cgroup
*iter
, *failed
= NULL
;
1481 spin_lock(&memcg_oom_lock
);
1483 for_each_mem_cgroup_tree(iter
, memcg
) {
1484 if (iter
->oom_lock
) {
1486 * this subtree of our hierarchy is already locked
1487 * so we cannot give a lock.
1490 mem_cgroup_iter_break(memcg
, iter
);
1493 iter
->oom_lock
= true;
1498 * OK, we failed to lock the whole subtree so we have
1499 * to clean up what we set up to the failing subtree
1501 for_each_mem_cgroup_tree(iter
, memcg
) {
1502 if (iter
== failed
) {
1503 mem_cgroup_iter_break(memcg
, iter
);
1506 iter
->oom_lock
= false;
1509 mutex_acquire(&memcg_oom_lock_dep_map
, 0, 1, _RET_IP_
);
1511 spin_unlock(&memcg_oom_lock
);
1516 static void mem_cgroup_oom_unlock(struct mem_cgroup
*memcg
)
1518 struct mem_cgroup
*iter
;
1520 spin_lock(&memcg_oom_lock
);
1521 mutex_release(&memcg_oom_lock_dep_map
, 1, _RET_IP_
);
1522 for_each_mem_cgroup_tree(iter
, memcg
)
1523 iter
->oom_lock
= false;
1524 spin_unlock(&memcg_oom_lock
);
1527 static void mem_cgroup_mark_under_oom(struct mem_cgroup
*memcg
)
1529 struct mem_cgroup
*iter
;
1531 spin_lock(&memcg_oom_lock
);
1532 for_each_mem_cgroup_tree(iter
, memcg
)
1534 spin_unlock(&memcg_oom_lock
);
1537 static void mem_cgroup_unmark_under_oom(struct mem_cgroup
*memcg
)
1539 struct mem_cgroup
*iter
;
1542 * When a new child is created while the hierarchy is under oom,
1543 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1545 spin_lock(&memcg_oom_lock
);
1546 for_each_mem_cgroup_tree(iter
, memcg
)
1547 if (iter
->under_oom
> 0)
1549 spin_unlock(&memcg_oom_lock
);
1552 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1554 struct oom_wait_info
{
1555 struct mem_cgroup
*memcg
;
1559 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1560 unsigned mode
, int sync
, void *arg
)
1562 struct mem_cgroup
*wake_memcg
= (struct mem_cgroup
*)arg
;
1563 struct mem_cgroup
*oom_wait_memcg
;
1564 struct oom_wait_info
*oom_wait_info
;
1566 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1567 oom_wait_memcg
= oom_wait_info
->memcg
;
1569 if (!mem_cgroup_is_descendant(wake_memcg
, oom_wait_memcg
) &&
1570 !mem_cgroup_is_descendant(oom_wait_memcg
, wake_memcg
))
1572 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1575 static void memcg_oom_recover(struct mem_cgroup
*memcg
)
1578 * For the following lockless ->under_oom test, the only required
1579 * guarantee is that it must see the state asserted by an OOM when
1580 * this function is called as a result of userland actions
1581 * triggered by the notification of the OOM. This is trivially
1582 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 * triggering notification.
1585 if (memcg
&& memcg
->under_oom
)
1586 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, memcg
);
1589 static void mem_cgroup_oom(struct mem_cgroup
*memcg
, gfp_t mask
, int order
)
1591 if (!current
->memcg_may_oom
)
1594 * We are in the middle of the charge context here, so we
1595 * don't want to block when potentially sitting on a callstack
1596 * that holds all kinds of filesystem and mm locks.
1598 * Also, the caller may handle a failed allocation gracefully
1599 * (like optional page cache readahead) and so an OOM killer
1600 * invocation might not even be necessary.
1602 * That's why we don't do anything here except remember the
1603 * OOM context and then deal with it at the end of the page
1604 * fault when the stack is unwound, the locks are released,
1605 * and when we know whether the fault was overall successful.
1607 css_get(&memcg
->css
);
1608 current
->memcg_in_oom
= memcg
;
1609 current
->memcg_oom_gfp_mask
= mask
;
1610 current
->memcg_oom_order
= order
;
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation. Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1630 bool mem_cgroup_oom_synchronize(bool handle
)
1632 struct mem_cgroup
*memcg
= current
->memcg_in_oom
;
1633 struct oom_wait_info owait
;
1636 /* OOM is global, do not handle */
1640 if (!handle
|| oom_killer_disabled
)
1643 owait
.memcg
= memcg
;
1644 owait
.wait
.flags
= 0;
1645 owait
.wait
.func
= memcg_oom_wake_function
;
1646 owait
.wait
.private = current
;
1647 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1649 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1650 mem_cgroup_mark_under_oom(memcg
);
1652 locked
= mem_cgroup_oom_trylock(memcg
);
1655 mem_cgroup_oom_notify(memcg
);
1657 if (locked
&& !memcg
->oom_kill_disable
) {
1658 mem_cgroup_unmark_under_oom(memcg
);
1659 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1660 mem_cgroup_out_of_memory(memcg
, current
->memcg_oom_gfp_mask
,
1661 current
->memcg_oom_order
);
1664 mem_cgroup_unmark_under_oom(memcg
);
1665 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1669 mem_cgroup_oom_unlock(memcg
);
1671 * There is no guarantee that an OOM-lock contender
1672 * sees the wakeups triggered by the OOM kill
1673 * uncharges. Wake any sleepers explicitely.
1675 memcg_oom_recover(memcg
);
1678 current
->memcg_in_oom
= NULL
;
1679 css_put(&memcg
->css
);
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1690 void lock_page_memcg(struct page
*page
)
1692 struct mem_cgroup
*memcg
;
1693 unsigned long flags
;
1696 * The RCU lock is held throughout the transaction. The fast
1697 * path can get away without acquiring the memcg->move_lock
1698 * because page moving starts with an RCU grace period.
1702 if (mem_cgroup_disabled())
1705 memcg
= page
->mem_cgroup
;
1706 if (unlikely(!memcg
))
1709 if (atomic_read(&memcg
->moving_account
) <= 0)
1712 spin_lock_irqsave(&memcg
->move_lock
, flags
);
1713 if (memcg
!= page
->mem_cgroup
) {
1714 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1719 * When charge migration first begins, we can have locked and
1720 * unlocked page stat updates happening concurrently. Track
1721 * the task who has the lock for unlock_page_memcg().
1723 memcg
->move_lock_task
= current
;
1724 memcg
->move_lock_flags
= flags
;
1728 EXPORT_SYMBOL(lock_page_memcg
);
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1734 void unlock_page_memcg(struct page
*page
)
1736 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
1738 if (memcg
&& memcg
->move_lock_task
== current
) {
1739 unsigned long flags
= memcg
->move_lock_flags
;
1741 memcg
->move_lock_task
= NULL
;
1742 memcg
->move_lock_flags
= 0;
1744 spin_unlock_irqrestore(&memcg
->move_lock
, flags
);
1749 EXPORT_SYMBOL(unlock_page_memcg
);
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1755 #define CHARGE_BATCH 32U
1756 struct memcg_stock_pcp
{
1757 struct mem_cgroup
*cached
; /* this never be root cgroup */
1758 unsigned int nr_pages
;
1759 struct work_struct work
;
1760 unsigned long flags
;
1761 #define FLUSHING_CACHED_CHARGE 0
1763 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1764 static DEFINE_MUTEX(percpu_charge_mutex
);
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock. Failure to
1773 * service an allocation will refill the stock.
1775 * returns true if successful, false otherwise.
1777 static bool consume_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1779 struct memcg_stock_pcp
*stock
;
1782 if (nr_pages
> CHARGE_BATCH
)
1785 stock
= &get_cpu_var(memcg_stock
);
1786 if (memcg
== stock
->cached
&& stock
->nr_pages
>= nr_pages
) {
1787 stock
->nr_pages
-= nr_pages
;
1790 put_cpu_var(memcg_stock
);
1795 * Returns stocks cached in percpu and reset cached information.
1797 static void drain_stock(struct memcg_stock_pcp
*stock
)
1799 struct mem_cgroup
*old
= stock
->cached
;
1801 if (stock
->nr_pages
) {
1802 page_counter_uncharge(&old
->memory
, stock
->nr_pages
);
1803 if (do_memsw_account())
1804 page_counter_uncharge(&old
->memsw
, stock
->nr_pages
);
1805 css_put_many(&old
->css
, stock
->nr_pages
);
1806 stock
->nr_pages
= 0;
1808 stock
->cached
= NULL
;
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1815 static void drain_local_stock(struct work_struct
*dummy
)
1817 struct memcg_stock_pcp
*stock
= this_cpu_ptr(&memcg_stock
);
1819 clear_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
);
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1826 static void refill_stock(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
1828 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1830 if (stock
->cached
!= memcg
) { /* reset if necessary */
1832 stock
->cached
= memcg
;
1834 stock
->nr_pages
+= nr_pages
;
1835 put_cpu_var(memcg_stock
);
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1842 static void drain_all_stock(struct mem_cgroup
*root_memcg
)
1846 /* If someone's already draining, avoid adding running more workers. */
1847 if (!mutex_trylock(&percpu_charge_mutex
))
1849 /* Notify other cpus that system-wide "drain" is running */
1852 for_each_online_cpu(cpu
) {
1853 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1854 struct mem_cgroup
*memcg
;
1856 memcg
= stock
->cached
;
1857 if (!memcg
|| !stock
->nr_pages
)
1859 if (!mem_cgroup_is_descendant(memcg
, root_memcg
))
1861 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE
, &stock
->flags
)) {
1863 drain_local_stock(&stock
->work
);
1865 schedule_work_on(cpu
, &stock
->work
);
1870 mutex_unlock(&percpu_charge_mutex
);
1873 static int memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1874 unsigned long action
,
1877 int cpu
= (unsigned long)hcpu
;
1878 struct memcg_stock_pcp
*stock
;
1880 if (action
== CPU_ONLINE
)
1883 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
)
1886 stock
= &per_cpu(memcg_stock
, cpu
);
1891 static void reclaim_high(struct mem_cgroup
*memcg
,
1892 unsigned int nr_pages
,
1896 if (page_counter_read(&memcg
->memory
) <= memcg
->high
)
1898 mem_cgroup_events(memcg
, MEMCG_HIGH
, 1);
1899 try_to_free_mem_cgroup_pages(memcg
, nr_pages
, gfp_mask
, true);
1900 } while ((memcg
= parent_mem_cgroup(memcg
)));
1903 static void high_work_func(struct work_struct
*work
)
1905 struct mem_cgroup
*memcg
;
1907 memcg
= container_of(work
, struct mem_cgroup
, high_work
);
1908 reclaim_high(memcg
, CHARGE_BATCH
, GFP_KERNEL
);
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1915 void mem_cgroup_handle_over_high(void)
1917 unsigned int nr_pages
= current
->memcg_nr_pages_over_high
;
1918 struct mem_cgroup
*memcg
;
1920 if (likely(!nr_pages
))
1923 memcg
= get_mem_cgroup_from_mm(current
->mm
);
1924 reclaim_high(memcg
, nr_pages
, GFP_KERNEL
);
1925 css_put(&memcg
->css
);
1926 current
->memcg_nr_pages_over_high
= 0;
1929 static int try_charge(struct mem_cgroup
*memcg
, gfp_t gfp_mask
,
1930 unsigned int nr_pages
)
1932 unsigned int batch
= max(CHARGE_BATCH
, nr_pages
);
1933 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1934 struct mem_cgroup
*mem_over_limit
;
1935 struct page_counter
*counter
;
1936 unsigned long nr_reclaimed
;
1937 bool may_swap
= true;
1938 bool drained
= false;
1940 if (mem_cgroup_is_root(memcg
))
1943 if (consume_stock(memcg
, nr_pages
))
1946 if (!do_memsw_account() ||
1947 page_counter_try_charge(&memcg
->memsw
, batch
, &counter
)) {
1948 if (page_counter_try_charge(&memcg
->memory
, batch
, &counter
))
1950 if (do_memsw_account())
1951 page_counter_uncharge(&memcg
->memsw
, batch
);
1952 mem_over_limit
= mem_cgroup_from_counter(counter
, memory
);
1954 mem_over_limit
= mem_cgroup_from_counter(counter
, memsw
);
1958 if (batch
> nr_pages
) {
1964 * Unlike in global OOM situations, memcg is not in a physical
1965 * memory shortage. Allow dying and OOM-killed tasks to
1966 * bypass the last charges so that they can exit quickly and
1967 * free their memory.
1969 if (unlikely(test_thread_flag(TIF_MEMDIE
) ||
1970 fatal_signal_pending(current
) ||
1971 current
->flags
& PF_EXITING
))
1974 if (unlikely(task_in_memcg_oom(current
)))
1977 if (!gfpflags_allow_blocking(gfp_mask
))
1980 mem_cgroup_events(mem_over_limit
, MEMCG_MAX
, 1);
1982 nr_reclaimed
= try_to_free_mem_cgroup_pages(mem_over_limit
, nr_pages
,
1983 gfp_mask
, may_swap
);
1985 if (mem_cgroup_margin(mem_over_limit
) >= nr_pages
)
1989 drain_all_stock(mem_over_limit
);
1994 if (gfp_mask
& __GFP_NORETRY
)
1997 * Even though the limit is exceeded at this point, reclaim
1998 * may have been able to free some pages. Retry the charge
1999 * before killing the task.
2001 * Only for regular pages, though: huge pages are rather
2002 * unlikely to succeed so close to the limit, and we fall back
2003 * to regular pages anyway in case of failure.
2005 if (nr_reclaimed
&& nr_pages
<= (1 << PAGE_ALLOC_COSTLY_ORDER
))
2008 * At task move, charge accounts can be doubly counted. So, it's
2009 * better to wait until the end of task_move if something is going on.
2011 if (mem_cgroup_wait_acct_move(mem_over_limit
))
2017 if (gfp_mask
& __GFP_NOFAIL
)
2020 if (fatal_signal_pending(current
))
2023 mem_cgroup_events(mem_over_limit
, MEMCG_OOM
, 1);
2025 mem_cgroup_oom(mem_over_limit
, gfp_mask
,
2026 get_order(nr_pages
* PAGE_SIZE
));
2028 if (!(gfp_mask
& __GFP_NOFAIL
))
2032 * The allocation either can't fail or will lead to more memory
2033 * being freed very soon. Allow memory usage go over the limit
2034 * temporarily by force charging it.
2036 page_counter_charge(&memcg
->memory
, nr_pages
);
2037 if (do_memsw_account())
2038 page_counter_charge(&memcg
->memsw
, nr_pages
);
2039 css_get_many(&memcg
->css
, nr_pages
);
2044 css_get_many(&memcg
->css
, batch
);
2045 if (batch
> nr_pages
)
2046 refill_stock(memcg
, batch
- nr_pages
);
2049 * If the hierarchy is above the normal consumption range, schedule
2050 * reclaim on returning to userland. We can perform reclaim here
2051 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2053 * not recorded as it most likely matches current's and won't
2054 * change in the meantime. As high limit is checked again before
2055 * reclaim, the cost of mismatch is negligible.
2058 if (page_counter_read(&memcg
->memory
) > memcg
->high
) {
2059 /* Don't bother a random interrupted task */
2060 if (in_interrupt()) {
2061 schedule_work(&memcg
->high_work
);
2064 current
->memcg_nr_pages_over_high
+= batch
;
2065 set_notify_resume(current
);
2068 } while ((memcg
= parent_mem_cgroup(memcg
)));
2073 static void cancel_charge(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
2075 if (mem_cgroup_is_root(memcg
))
2078 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2079 if (do_memsw_account())
2080 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2082 css_put_many(&memcg
->css
, nr_pages
);
2085 static void lock_page_lru(struct page
*page
, int *isolated
)
2087 struct zone
*zone
= page_zone(page
);
2089 spin_lock_irq(&zone
->lru_lock
);
2090 if (PageLRU(page
)) {
2091 struct lruvec
*lruvec
;
2093 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2095 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
2101 static void unlock_page_lru(struct page
*page
, int isolated
)
2103 struct zone
*zone
= page_zone(page
);
2106 struct lruvec
*lruvec
;
2108 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
2109 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2111 add_page_to_lru_list(page
, lruvec
, page_lru(page
));
2113 spin_unlock_irq(&zone
->lru_lock
);
2116 static void commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
2121 VM_BUG_ON_PAGE(page
->mem_cgroup
, page
);
2124 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 * may already be on some other mem_cgroup's LRU. Take care of it.
2128 lock_page_lru(page
, &isolated
);
2131 * Nobody should be changing or seriously looking at
2132 * page->mem_cgroup at this point:
2134 * - the page is uncharged
2136 * - the page is off-LRU
2138 * - an anonymous fault has exclusive page access, except for
2139 * a locked page table
2141 * - a page cache insertion, a swapin fault, or a migration
2142 * have the page locked
2144 page
->mem_cgroup
= memcg
;
2147 unlock_page_lru(page
, isolated
);
2151 static int memcg_alloc_cache_id(void)
2156 id
= ida_simple_get(&memcg_cache_ida
,
2157 0, MEMCG_CACHES_MAX_SIZE
, GFP_KERNEL
);
2161 if (id
< memcg_nr_cache_ids
)
2165 * There's no space for the new id in memcg_caches arrays,
2166 * so we have to grow them.
2168 down_write(&memcg_cache_ids_sem
);
2170 size
= 2 * (id
+ 1);
2171 if (size
< MEMCG_CACHES_MIN_SIZE
)
2172 size
= MEMCG_CACHES_MIN_SIZE
;
2173 else if (size
> MEMCG_CACHES_MAX_SIZE
)
2174 size
= MEMCG_CACHES_MAX_SIZE
;
2176 err
= memcg_update_all_caches(size
);
2178 err
= memcg_update_all_list_lrus(size
);
2180 memcg_nr_cache_ids
= size
;
2182 up_write(&memcg_cache_ids_sem
);
2185 ida_simple_remove(&memcg_cache_ida
, id
);
2191 static void memcg_free_cache_id(int id
)
2193 ida_simple_remove(&memcg_cache_ida
, id
);
2196 struct memcg_kmem_cache_create_work
{
2197 struct mem_cgroup
*memcg
;
2198 struct kmem_cache
*cachep
;
2199 struct work_struct work
;
2202 static void memcg_kmem_cache_create_func(struct work_struct
*w
)
2204 struct memcg_kmem_cache_create_work
*cw
=
2205 container_of(w
, struct memcg_kmem_cache_create_work
, work
);
2206 struct mem_cgroup
*memcg
= cw
->memcg
;
2207 struct kmem_cache
*cachep
= cw
->cachep
;
2209 memcg_create_kmem_cache(memcg
, cachep
);
2211 css_put(&memcg
->css
);
2216 * Enqueue the creation of a per-memcg kmem_cache.
2218 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2219 struct kmem_cache
*cachep
)
2221 struct memcg_kmem_cache_create_work
*cw
;
2223 cw
= kmalloc(sizeof(*cw
), GFP_NOWAIT
);
2227 css_get(&memcg
->css
);
2230 cw
->cachep
= cachep
;
2231 INIT_WORK(&cw
->work
, memcg_kmem_cache_create_func
);
2233 schedule_work(&cw
->work
);
2236 static void memcg_schedule_kmem_cache_create(struct mem_cgroup
*memcg
,
2237 struct kmem_cache
*cachep
)
2240 * We need to stop accounting when we kmalloc, because if the
2241 * corresponding kmalloc cache is not yet created, the first allocation
2242 * in __memcg_schedule_kmem_cache_create will recurse.
2244 * However, it is better to enclose the whole function. Depending on
2245 * the debugging options enabled, INIT_WORK(), for instance, can
2246 * trigger an allocation. This too, will make us recurse. Because at
2247 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 * the safest choice is to do it like this, wrapping the whole function.
2250 current
->memcg_kmem_skip_account
= 1;
2251 __memcg_schedule_kmem_cache_create(memcg
, cachep
);
2252 current
->memcg_kmem_skip_account
= 0;
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2268 struct kmem_cache
*__memcg_kmem_get_cache(struct kmem_cache
*cachep
, gfp_t gfp
)
2270 struct mem_cgroup
*memcg
;
2271 struct kmem_cache
*memcg_cachep
;
2274 VM_BUG_ON(!is_root_cache(cachep
));
2276 if (cachep
->flags
& SLAB_ACCOUNT
)
2277 gfp
|= __GFP_ACCOUNT
;
2279 if (!(gfp
& __GFP_ACCOUNT
))
2282 if (current
->memcg_kmem_skip_account
)
2285 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2286 kmemcg_id
= READ_ONCE(memcg
->kmemcg_id
);
2290 memcg_cachep
= cache_from_memcg_idx(cachep
, kmemcg_id
);
2291 if (likely(memcg_cachep
))
2292 return memcg_cachep
;
2295 * If we are in a safe context (can wait, and not in interrupt
2296 * context), we could be be predictable and return right away.
2297 * This would guarantee that the allocation being performed
2298 * already belongs in the new cache.
2300 * However, there are some clashes that can arrive from locking.
2301 * For instance, because we acquire the slab_mutex while doing
2302 * memcg_create_kmem_cache, this means no further allocation
2303 * could happen with the slab_mutex held. So it's better to
2306 memcg_schedule_kmem_cache_create(memcg
, cachep
);
2308 css_put(&memcg
->css
);
2312 void __memcg_kmem_put_cache(struct kmem_cache
*cachep
)
2314 if (!is_root_cache(cachep
))
2315 css_put(&cachep
->memcg_params
.memcg
->css
);
2318 int __memcg_kmem_charge_memcg(struct page
*page
, gfp_t gfp
, int order
,
2319 struct mem_cgroup
*memcg
)
2321 unsigned int nr_pages
= 1 << order
;
2322 struct page_counter
*counter
;
2325 ret
= try_charge(memcg
, gfp
, nr_pages
);
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) &&
2330 !page_counter_try_charge(&memcg
->kmem
, nr_pages
, &counter
)) {
2331 cancel_charge(memcg
, nr_pages
);
2335 page
->mem_cgroup
= memcg
;
2340 int __memcg_kmem_charge(struct page
*page
, gfp_t gfp
, int order
)
2342 struct mem_cgroup
*memcg
;
2345 memcg
= get_mem_cgroup_from_mm(current
->mm
);
2346 if (!mem_cgroup_is_root(memcg
))
2347 ret
= __memcg_kmem_charge_memcg(page
, gfp
, order
, memcg
);
2348 css_put(&memcg
->css
);
2352 void __memcg_kmem_uncharge(struct page
*page
, int order
)
2354 struct mem_cgroup
*memcg
= page
->mem_cgroup
;
2355 unsigned int nr_pages
= 1 << order
;
2360 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg
), page
);
2362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
))
2363 page_counter_uncharge(&memcg
->kmem
, nr_pages
);
2365 page_counter_uncharge(&memcg
->memory
, nr_pages
);
2366 if (do_memsw_account())
2367 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
2369 page
->mem_cgroup
= NULL
;
2370 css_put_many(&memcg
->css
, nr_pages
);
2372 #endif /* !CONFIG_SLOB */
2374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2380 void mem_cgroup_split_huge_fixup(struct page
*head
)
2384 if (mem_cgroup_disabled())
2387 for (i
= 1; i
< HPAGE_PMD_NR
; i
++)
2388 head
[i
].mem_cgroup
= head
->mem_cgroup
;
2390 __this_cpu_sub(head
->mem_cgroup
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
],
2393 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2395 #ifdef CONFIG_MEMCG_SWAP
2396 static void mem_cgroup_swap_statistics(struct mem_cgroup
*memcg
,
2399 int val
= (charge
) ? 1 : -1;
2400 this_cpu_add(memcg
->stat
->count
[MEM_CGROUP_STAT_SWAP
], val
);
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2412 * Returns 0 on success, -EINVAL on failure.
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2417 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2418 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2420 unsigned short old_id
, new_id
;
2422 old_id
= mem_cgroup_id(from
);
2423 new_id
= mem_cgroup_id(to
);
2425 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2426 mem_cgroup_swap_statistics(from
, false);
2427 mem_cgroup_swap_statistics(to
, true);
2433 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2434 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
2440 static DEFINE_MUTEX(memcg_limit_mutex
);
2442 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2443 unsigned long limit
)
2445 unsigned long curusage
;
2446 unsigned long oldusage
;
2447 bool enlarge
= false;
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2456 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2457 mem_cgroup_count_children(memcg
);
2459 oldusage
= page_counter_read(&memcg
->memory
);
2462 if (signal_pending(current
)) {
2467 mutex_lock(&memcg_limit_mutex
);
2468 if (limit
> memcg
->memsw
.limit
) {
2469 mutex_unlock(&memcg_limit_mutex
);
2473 if (limit
> memcg
->memory
.limit
)
2475 ret
= page_counter_limit(&memcg
->memory
, limit
);
2476 mutex_unlock(&memcg_limit_mutex
);
2481 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, true);
2483 curusage
= page_counter_read(&memcg
->memory
);
2484 /* Usage is reduced ? */
2485 if (curusage
>= oldusage
)
2488 oldusage
= curusage
;
2489 } while (retry_count
);
2491 if (!ret
&& enlarge
)
2492 memcg_oom_recover(memcg
);
2497 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
2498 unsigned long limit
)
2500 unsigned long curusage
;
2501 unsigned long oldusage
;
2502 bool enlarge
= false;
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
*
2508 mem_cgroup_count_children(memcg
);
2510 oldusage
= page_counter_read(&memcg
->memsw
);
2513 if (signal_pending(current
)) {
2518 mutex_lock(&memcg_limit_mutex
);
2519 if (limit
< memcg
->memory
.limit
) {
2520 mutex_unlock(&memcg_limit_mutex
);
2524 if (limit
> memcg
->memsw
.limit
)
2526 ret
= page_counter_limit(&memcg
->memsw
, limit
);
2527 mutex_unlock(&memcg_limit_mutex
);
2532 try_to_free_mem_cgroup_pages(memcg
, 1, GFP_KERNEL
, false);
2534 curusage
= page_counter_read(&memcg
->memsw
);
2535 /* Usage is reduced ? */
2536 if (curusage
>= oldusage
)
2539 oldusage
= curusage
;
2540 } while (retry_count
);
2542 if (!ret
&& enlarge
)
2543 memcg_oom_recover(memcg
);
2548 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
2550 unsigned long *total_scanned
)
2552 unsigned long nr_reclaimed
= 0;
2553 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
2554 unsigned long reclaimed
;
2556 struct mem_cgroup_tree_per_zone
*mctz
;
2557 unsigned long excess
;
2558 unsigned long nr_scanned
;
2563 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2573 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
2578 reclaimed
= mem_cgroup_soft_reclaim(mz
->memcg
, zone
,
2579 gfp_mask
, &nr_scanned
);
2580 nr_reclaimed
+= reclaimed
;
2581 *total_scanned
+= nr_scanned
;
2582 spin_lock_irq(&mctz
->lock
);
2583 __mem_cgroup_remove_exceeded(mz
, mctz
);
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2591 next_mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
2593 excess
= soft_limit_excess(mz
->memcg
);
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz
, mctz
, excess
);
2604 spin_unlock_irq(&mctz
->lock
);
2605 css_put(&mz
->memcg
->css
);
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2612 if (!nr_reclaimed
&&
2614 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
2616 } while (!nr_reclaimed
);
2618 css_put(&next_mz
->memcg
->css
);
2619 return nr_reclaimed
;
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2628 static inline bool memcg_has_children(struct mem_cgroup
*memcg
)
2633 ret
= css_next_child(NULL
, &memcg
->css
);
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2642 * Caller is responsible for holding css reference for memcg.
2644 static int mem_cgroup_force_empty(struct mem_cgroup
*memcg
)
2646 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries
&& page_counter_read(&memcg
->memory
)) {
2654 if (signal_pending(current
))
2657 progress
= try_to_free_mem_cgroup_pages(memcg
, 1,
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2670 static ssize_t
mem_cgroup_force_empty_write(struct kernfs_open_file
*of
,
2671 char *buf
, size_t nbytes
,
2674 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2676 if (mem_cgroup_is_root(memcg
))
2678 return mem_cgroup_force_empty(memcg
) ?: nbytes
;
2681 static u64
mem_cgroup_hierarchy_read(struct cgroup_subsys_state
*css
,
2684 return mem_cgroup_from_css(css
)->use_hierarchy
;
2687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state
*css
,
2688 struct cftype
*cft
, u64 val
)
2691 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2692 struct mem_cgroup
*parent_memcg
= mem_cgroup_from_css(memcg
->css
.parent
);
2694 if (memcg
->use_hierarchy
== val
)
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2705 if ((!parent_memcg
|| !parent_memcg
->use_hierarchy
) &&
2706 (val
== 1 || val
== 0)) {
2707 if (!memcg_has_children(memcg
))
2708 memcg
->use_hierarchy
= val
;
2717 static void tree_stat(struct mem_cgroup
*memcg
, unsigned long *stat
)
2719 struct mem_cgroup
*iter
;
2722 memset(stat
, 0, sizeof(*stat
) * MEMCG_NR_STAT
);
2724 for_each_mem_cgroup_tree(iter
, memcg
) {
2725 for (i
= 0; i
< MEMCG_NR_STAT
; i
++)
2726 stat
[i
] += mem_cgroup_read_stat(iter
, i
);
2730 static void tree_events(struct mem_cgroup
*memcg
, unsigned long *events
)
2732 struct mem_cgroup
*iter
;
2735 memset(events
, 0, sizeof(*events
) * MEMCG_NR_EVENTS
);
2737 for_each_mem_cgroup_tree(iter
, memcg
) {
2738 for (i
= 0; i
< MEMCG_NR_EVENTS
; i
++)
2739 events
[i
] += mem_cgroup_read_events(iter
, i
);
2743 static unsigned long mem_cgroup_usage(struct mem_cgroup
*memcg
, bool swap
)
2745 unsigned long val
= 0;
2747 if (mem_cgroup_is_root(memcg
)) {
2748 struct mem_cgroup
*iter
;
2750 for_each_mem_cgroup_tree(iter
, memcg
) {
2751 val
+= mem_cgroup_read_stat(iter
,
2752 MEM_CGROUP_STAT_CACHE
);
2753 val
+= mem_cgroup_read_stat(iter
,
2754 MEM_CGROUP_STAT_RSS
);
2756 val
+= mem_cgroup_read_stat(iter
,
2757 MEM_CGROUP_STAT_SWAP
);
2761 val
= page_counter_read(&memcg
->memory
);
2763 val
= page_counter_read(&memcg
->memsw
);
2776 static u64
mem_cgroup_read_u64(struct cgroup_subsys_state
*css
,
2779 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
2780 struct page_counter
*counter
;
2782 switch (MEMFILE_TYPE(cft
->private)) {
2784 counter
= &memcg
->memory
;
2787 counter
= &memcg
->memsw
;
2790 counter
= &memcg
->kmem
;
2793 counter
= &memcg
->tcpmem
;
2799 switch (MEMFILE_ATTR(cft
->private)) {
2801 if (counter
== &memcg
->memory
)
2802 return (u64
)mem_cgroup_usage(memcg
, false) * PAGE_SIZE
;
2803 if (counter
== &memcg
->memsw
)
2804 return (u64
)mem_cgroup_usage(memcg
, true) * PAGE_SIZE
;
2805 return (u64
)page_counter_read(counter
) * PAGE_SIZE
;
2807 return (u64
)counter
->limit
* PAGE_SIZE
;
2809 return (u64
)counter
->watermark
* PAGE_SIZE
;
2811 return counter
->failcnt
;
2812 case RES_SOFT_LIMIT
:
2813 return (u64
)memcg
->soft_limit
* PAGE_SIZE
;
2820 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2824 if (cgroup_memory_nokmem
)
2827 BUG_ON(memcg
->kmemcg_id
>= 0);
2828 BUG_ON(memcg
->kmem_state
);
2830 memcg_id
= memcg_alloc_cache_id();
2834 static_branch_inc(&memcg_kmem_enabled_key
);
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2841 memcg
->kmemcg_id
= memcg_id
;
2842 memcg
->kmem_state
= KMEM_ONLINE
;
2847 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2849 struct cgroup_subsys_state
*css
;
2850 struct mem_cgroup
*parent
, *child
;
2853 if (memcg
->kmem_state
!= KMEM_ONLINE
)
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2861 memcg
->kmem_state
= KMEM_ALLOCATED
;
2863 memcg_deactivate_kmem_caches(memcg
);
2865 kmemcg_id
= memcg
->kmemcg_id
;
2866 BUG_ON(kmemcg_id
< 0);
2868 parent
= parent_mem_cgroup(memcg
);
2870 parent
= root_mem_cgroup
;
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2880 css_for_each_descendant_pre(css
, &memcg
->css
) {
2881 child
= mem_cgroup_from_css(css
);
2882 BUG_ON(child
->kmemcg_id
!= kmemcg_id
);
2883 child
->kmemcg_id
= parent
->kmemcg_id
;
2884 if (!memcg
->use_hierarchy
)
2887 memcg_drain_all_list_lrus(kmemcg_id
, parent
->kmemcg_id
);
2889 memcg_free_cache_id(kmemcg_id
);
2892 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg
->kmem_state
== KMEM_ONLINE
))
2896 memcg_offline_kmem(memcg
);
2898 if (memcg
->kmem_state
== KMEM_ALLOCATED
) {
2899 memcg_destroy_kmem_caches(memcg
);
2900 static_branch_dec(&memcg_kmem_enabled_key
);
2901 WARN_ON(page_counter_read(&memcg
->kmem
));
2905 static int memcg_online_kmem(struct mem_cgroup
*memcg
)
2909 static void memcg_offline_kmem(struct mem_cgroup
*memcg
)
2912 static void memcg_free_kmem(struct mem_cgroup
*memcg
)
2915 #endif /* !CONFIG_SLOB */
2917 static int memcg_update_kmem_limit(struct mem_cgroup
*memcg
,
2918 unsigned long limit
)
2922 mutex_lock(&memcg_limit_mutex
);
2923 ret
= page_counter_limit(&memcg
->kmem
, limit
);
2924 mutex_unlock(&memcg_limit_mutex
);
2928 static int memcg_update_tcp_limit(struct mem_cgroup
*memcg
, unsigned long limit
)
2932 mutex_lock(&memcg_limit_mutex
);
2934 ret
= page_counter_limit(&memcg
->tcpmem
, limit
);
2938 if (!memcg
->tcpmem_active
) {
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2955 static_branch_inc(&memcg_sockets_enabled_key
);
2956 memcg
->tcpmem_active
= true;
2959 mutex_unlock(&memcg_limit_mutex
);
2964 * The user of this function is...
2967 static ssize_t
mem_cgroup_write(struct kernfs_open_file
*of
,
2968 char *buf
, size_t nbytes
, loff_t off
)
2970 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
2971 unsigned long nr_pages
;
2974 buf
= strstrip(buf
);
2975 ret
= page_counter_memparse(buf
, "-1", &nr_pages
);
2979 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
2981 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
2985 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
2987 ret
= mem_cgroup_resize_limit(memcg
, nr_pages
);
2990 ret
= mem_cgroup_resize_memsw_limit(memcg
, nr_pages
);
2993 ret
= memcg_update_kmem_limit(memcg
, nr_pages
);
2996 ret
= memcg_update_tcp_limit(memcg
, nr_pages
);
3000 case RES_SOFT_LIMIT
:
3001 memcg
->soft_limit
= nr_pages
;
3005 return ret
?: nbytes
;
3008 static ssize_t
mem_cgroup_reset(struct kernfs_open_file
*of
, char *buf
,
3009 size_t nbytes
, loff_t off
)
3011 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
3012 struct page_counter
*counter
;
3014 switch (MEMFILE_TYPE(of_cft(of
)->private)) {
3016 counter
= &memcg
->memory
;
3019 counter
= &memcg
->memsw
;
3022 counter
= &memcg
->kmem
;
3025 counter
= &memcg
->tcpmem
;
3031 switch (MEMFILE_ATTR(of_cft(of
)->private)) {
3033 page_counter_reset_watermark(counter
);
3036 counter
->failcnt
= 0;
3045 static u64
mem_cgroup_move_charge_read(struct cgroup_subsys_state
*css
,
3048 return mem_cgroup_from_css(css
)->move_charge_at_immigrate
;
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3053 struct cftype
*cft
, u64 val
)
3055 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3057 if (val
& ~MOVE_MASK
)
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3066 memcg
->move_charge_at_immigrate
= val
;
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state
*css
,
3071 struct cftype
*cft
, u64 val
)
3078 static int memcg_numa_stat_show(struct seq_file
*m
, void *v
)
3082 unsigned int lru_mask
;
3085 static const struct numa_stat stats
[] = {
3086 { "total", LRU_ALL
},
3087 { "file", LRU_ALL_FILE
},
3088 { "anon", LRU_ALL_ANON
},
3089 { "unevictable", BIT(LRU_UNEVICTABLE
) },
3091 const struct numa_stat
*stat
;
3094 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3096 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3097 nr
= mem_cgroup_nr_lru_pages(memcg
, stat
->lru_mask
);
3098 seq_printf(m
, "%s=%lu", stat
->name
, nr
);
3099 for_each_node_state(nid
, N_MEMORY
) {
3100 nr
= mem_cgroup_node_nr_lru_pages(memcg
, nid
,
3102 seq_printf(m
, " N%d=%lu", nid
, nr
);
3107 for (stat
= stats
; stat
< stats
+ ARRAY_SIZE(stats
); stat
++) {
3108 struct mem_cgroup
*iter
;
3111 for_each_mem_cgroup_tree(iter
, memcg
)
3112 nr
+= mem_cgroup_nr_lru_pages(iter
, stat
->lru_mask
);
3113 seq_printf(m
, "hierarchical_%s=%lu", stat
->name
, nr
);
3114 for_each_node_state(nid
, N_MEMORY
) {
3116 for_each_mem_cgroup_tree(iter
, memcg
)
3117 nr
+= mem_cgroup_node_nr_lru_pages(
3118 iter
, nid
, stat
->lru_mask
);
3119 seq_printf(m
, " N%d=%lu", nid
, nr
);
3126 #endif /* CONFIG_NUMA */
3128 static int memcg_stat_show(struct seq_file
*m
, void *v
)
3130 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
3131 unsigned long memory
, memsw
;
3132 struct mem_cgroup
*mi
;
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names
) !=
3136 MEM_CGROUP_STAT_NSTATS
);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names
) !=
3138 MEM_CGROUP_EVENTS_NSTATS
);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names
) != NR_LRU_LISTS
);
3141 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3142 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3144 seq_printf(m
, "%s %lu\n", mem_cgroup_stat_names
[i
],
3145 mem_cgroup_read_stat(memcg
, i
) * PAGE_SIZE
);
3148 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++)
3149 seq_printf(m
, "%s %lu\n", mem_cgroup_events_names
[i
],
3150 mem_cgroup_read_events(memcg
, i
));
3152 for (i
= 0; i
< NR_LRU_LISTS
; i
++)
3153 seq_printf(m
, "%s %lu\n", mem_cgroup_lru_names
[i
],
3154 mem_cgroup_nr_lru_pages(memcg
, BIT(i
)) * PAGE_SIZE
);
3156 /* Hierarchical information */
3157 memory
= memsw
= PAGE_COUNTER_MAX
;
3158 for (mi
= memcg
; mi
; mi
= parent_mem_cgroup(mi
)) {
3159 memory
= min(memory
, mi
->memory
.limit
);
3160 memsw
= min(memsw
, mi
->memsw
.limit
);
3162 seq_printf(m
, "hierarchical_memory_limit %llu\n",
3163 (u64
)memory
* PAGE_SIZE
);
3164 if (do_memsw_account())
3165 seq_printf(m
, "hierarchical_memsw_limit %llu\n",
3166 (u64
)memsw
* PAGE_SIZE
);
3168 for (i
= 0; i
< MEM_CGROUP_STAT_NSTATS
; i
++) {
3169 unsigned long long val
= 0;
3171 if (i
== MEM_CGROUP_STAT_SWAP
&& !do_memsw_account())
3173 for_each_mem_cgroup_tree(mi
, memcg
)
3174 val
+= mem_cgroup_read_stat(mi
, i
) * PAGE_SIZE
;
3175 seq_printf(m
, "total_%s %llu\n", mem_cgroup_stat_names
[i
], val
);
3178 for (i
= 0; i
< MEM_CGROUP_EVENTS_NSTATS
; i
++) {
3179 unsigned long long val
= 0;
3181 for_each_mem_cgroup_tree(mi
, memcg
)
3182 val
+= mem_cgroup_read_events(mi
, i
);
3183 seq_printf(m
, "total_%s %llu\n",
3184 mem_cgroup_events_names
[i
], val
);
3187 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
3188 unsigned long long val
= 0;
3190 for_each_mem_cgroup_tree(mi
, memcg
)
3191 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
)) * PAGE_SIZE
;
3192 seq_printf(m
, "total_%s %llu\n", mem_cgroup_lru_names
[i
], val
);
3195 #ifdef CONFIG_DEBUG_VM
3198 struct mem_cgroup_per_zone
*mz
;
3199 struct zone_reclaim_stat
*rstat
;
3200 unsigned long recent_rotated
[2] = {0, 0};
3201 unsigned long recent_scanned
[2] = {0, 0};
3203 for_each_online_node(nid
)
3204 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3205 mz
= &memcg
->nodeinfo
[nid
]->zoneinfo
[zid
];
3206 rstat
= &mz
->lruvec
.reclaim_stat
;
3208 recent_rotated
[0] += rstat
->recent_rotated
[0];
3209 recent_rotated
[1] += rstat
->recent_rotated
[1];
3210 recent_scanned
[0] += rstat
->recent_scanned
[0];
3211 recent_scanned
[1] += rstat
->recent_scanned
[1];
3213 seq_printf(m
, "recent_rotated_anon %lu\n", recent_rotated
[0]);
3214 seq_printf(m
, "recent_rotated_file %lu\n", recent_rotated
[1]);
3215 seq_printf(m
, "recent_scanned_anon %lu\n", recent_scanned
[0]);
3216 seq_printf(m
, "recent_scanned_file %lu\n", recent_scanned
[1]);
3223 static u64
mem_cgroup_swappiness_read(struct cgroup_subsys_state
*css
,
3226 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3228 return mem_cgroup_swappiness(memcg
);
3231 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state
*css
,
3232 struct cftype
*cft
, u64 val
)
3234 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3240 memcg
->swappiness
= val
;
3242 vm_swappiness
= val
;
3247 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3249 struct mem_cgroup_threshold_ary
*t
;
3250 unsigned long usage
;
3255 t
= rcu_dereference(memcg
->thresholds
.primary
);
3257 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3262 usage
= mem_cgroup_usage(memcg
, swap
);
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3269 i
= t
->current_threshold
;
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3277 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3278 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3280 /* i = current_threshold + 1 */
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3289 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3290 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3292 /* Update current_threshold */
3293 t
->current_threshold
= i
- 1;
3298 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3301 __mem_cgroup_threshold(memcg
, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg
, true);
3305 memcg
= parent_mem_cgroup(memcg
);
3309 static int compare_thresholds(const void *a
, const void *b
)
3311 const struct mem_cgroup_threshold
*_a
= a
;
3312 const struct mem_cgroup_threshold
*_b
= b
;
3314 if (_a
->threshold
> _b
->threshold
)
3317 if (_a
->threshold
< _b
->threshold
)
3323 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*memcg
)
3325 struct mem_cgroup_eventfd_list
*ev
;
3327 spin_lock(&memcg_oom_lock
);
3329 list_for_each_entry(ev
, &memcg
->oom_notify
, list
)
3330 eventfd_signal(ev
->eventfd
, 1);
3332 spin_unlock(&memcg_oom_lock
);
3336 static void mem_cgroup_oom_notify(struct mem_cgroup
*memcg
)
3338 struct mem_cgroup
*iter
;
3340 for_each_mem_cgroup_tree(iter
, memcg
)
3341 mem_cgroup_oom_notify_cb(iter
);
3344 static int __mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3345 struct eventfd_ctx
*eventfd
, const char *args
, enum res_type type
)
3347 struct mem_cgroup_thresholds
*thresholds
;
3348 struct mem_cgroup_threshold_ary
*new;
3349 unsigned long threshold
;
3350 unsigned long usage
;
3353 ret
= page_counter_memparse(args
, "-1", &threshold
);
3357 mutex_lock(&memcg
->thresholds_lock
);
3360 thresholds
= &memcg
->thresholds
;
3361 usage
= mem_cgroup_usage(memcg
, false);
3362 } else if (type
== _MEMSWAP
) {
3363 thresholds
= &memcg
->memsw_thresholds
;
3364 usage
= mem_cgroup_usage(memcg
, true);
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds
->primary
)
3370 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3372 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds
->primary
) {
3385 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3386 sizeof(struct mem_cgroup_threshold
));
3389 /* Add new threshold */
3390 new->entries
[size
- 1].eventfd
= eventfd
;
3391 new->entries
[size
- 1].threshold
= threshold
;
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3395 compare_thresholds
, NULL
);
3397 /* Find current threshold */
3398 new->current_threshold
= -1;
3399 for (i
= 0; i
< size
; i
++) {
3400 if (new->entries
[i
].threshold
<= usage
) {
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3406 ++new->current_threshold
;
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds
->spare
);
3413 thresholds
->spare
= thresholds
->primary
;
3415 rcu_assign_pointer(thresholds
->primary
, new);
3417 /* To be sure that nobody uses thresholds */
3421 mutex_unlock(&memcg
->thresholds_lock
);
3426 static int mem_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3427 struct eventfd_ctx
*eventfd
, const char *args
)
3429 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEM
);
3432 static int memsw_cgroup_usage_register_event(struct mem_cgroup
*memcg
,
3433 struct eventfd_ctx
*eventfd
, const char *args
)
3435 return __mem_cgroup_usage_register_event(memcg
, eventfd
, args
, _MEMSWAP
);
3438 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3439 struct eventfd_ctx
*eventfd
, enum res_type type
)
3441 struct mem_cgroup_thresholds
*thresholds
;
3442 struct mem_cgroup_threshold_ary
*new;
3443 unsigned long usage
;
3446 mutex_lock(&memcg
->thresholds_lock
);
3449 thresholds
= &memcg
->thresholds
;
3450 usage
= mem_cgroup_usage(memcg
, false);
3451 } else if (type
== _MEMSWAP
) {
3452 thresholds
= &memcg
->memsw_thresholds
;
3453 usage
= mem_cgroup_usage(memcg
, true);
3457 if (!thresholds
->primary
)
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3463 /* Calculate new number of threshold */
3465 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3466 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3470 new = thresholds
->spare
;
3472 /* Set thresholds array to NULL if we don't have thresholds */
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold
= -1;
3483 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3484 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3487 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3488 if (new->entries
[j
].threshold
<= usage
) {
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3494 ++new->current_threshold
;
3500 /* Swap primary and spare array */
3501 thresholds
->spare
= thresholds
->primary
;
3503 rcu_assign_pointer(thresholds
->primary
, new);
3505 /* To be sure that nobody uses thresholds */
3508 /* If all events are unregistered, free the spare array */
3510 kfree(thresholds
->spare
);
3511 thresholds
->spare
= NULL
;
3514 mutex_unlock(&memcg
->thresholds_lock
);
3517 static void mem_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3518 struct eventfd_ctx
*eventfd
)
3520 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEM
);
3523 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup
*memcg
,
3524 struct eventfd_ctx
*eventfd
)
3526 return __mem_cgroup_usage_unregister_event(memcg
, eventfd
, _MEMSWAP
);
3529 static int mem_cgroup_oom_register_event(struct mem_cgroup
*memcg
,
3530 struct eventfd_ctx
*eventfd
, const char *args
)
3532 struct mem_cgroup_eventfd_list
*event
;
3534 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3538 spin_lock(&memcg_oom_lock
);
3540 event
->eventfd
= eventfd
;
3541 list_add(&event
->list
, &memcg
->oom_notify
);
3543 /* already in OOM ? */
3544 if (memcg
->under_oom
)
3545 eventfd_signal(eventfd
, 1);
3546 spin_unlock(&memcg_oom_lock
);
3551 static void mem_cgroup_oom_unregister_event(struct mem_cgroup
*memcg
,
3552 struct eventfd_ctx
*eventfd
)
3554 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3556 spin_lock(&memcg_oom_lock
);
3558 list_for_each_entry_safe(ev
, tmp
, &memcg
->oom_notify
, list
) {
3559 if (ev
->eventfd
== eventfd
) {
3560 list_del(&ev
->list
);
3565 spin_unlock(&memcg_oom_lock
);
3568 static int mem_cgroup_oom_control_read(struct seq_file
*sf
, void *v
)
3570 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(sf
));
3572 seq_printf(sf
, "oom_kill_disable %d\n", memcg
->oom_kill_disable
);
3573 seq_printf(sf
, "under_oom %d\n", (bool)memcg
->under_oom
);
3577 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state
*css
,
3578 struct cftype
*cft
, u64 val
)
3580 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css
->parent
|| !((val
== 0) || (val
== 1)))
3586 memcg
->oom_kill_disable
= val
;
3588 memcg_oom_recover(memcg
);
3593 #ifdef CONFIG_CGROUP_WRITEBACK
3595 struct list_head
*mem_cgroup_cgwb_list(struct mem_cgroup
*memcg
)
3597 return &memcg
->cgwb_list
;
3600 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3602 return wb_domain_init(&memcg
->cgwb_domain
, gfp
);
3605 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3607 wb_domain_exit(&memcg
->cgwb_domain
);
3610 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3612 wb_domain_size_changed(&memcg
->cgwb_domain
);
3615 struct wb_domain
*mem_cgroup_wb_domain(struct bdi_writeback
*wb
)
3617 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3619 if (!memcg
->css
.parent
)
3622 return &memcg
->cgwb_domain
;
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3643 void mem_cgroup_wb_stats(struct bdi_writeback
*wb
, unsigned long *pfilepages
,
3644 unsigned long *pheadroom
, unsigned long *pdirty
,
3645 unsigned long *pwriteback
)
3647 struct mem_cgroup
*memcg
= mem_cgroup_from_css(wb
->memcg_css
);
3648 struct mem_cgroup
*parent
;
3650 *pdirty
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_DIRTY
);
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback
= mem_cgroup_read_stat(memcg
, MEM_CGROUP_STAT_WRITEBACK
);
3654 *pfilepages
= mem_cgroup_nr_lru_pages(memcg
, (1 << LRU_INACTIVE_FILE
) |
3655 (1 << LRU_ACTIVE_FILE
));
3656 *pheadroom
= PAGE_COUNTER_MAX
;
3658 while ((parent
= parent_mem_cgroup(memcg
))) {
3659 unsigned long ceiling
= min(memcg
->memory
.limit
, memcg
->high
);
3660 unsigned long used
= page_counter_read(&memcg
->memory
);
3662 *pheadroom
= min(*pheadroom
, ceiling
- min(ceiling
, used
));
3667 #else /* CONFIG_CGROUP_WRITEBACK */
3669 static int memcg_wb_domain_init(struct mem_cgroup
*memcg
, gfp_t gfp
)
3674 static void memcg_wb_domain_exit(struct mem_cgroup
*memcg
)
3678 static void memcg_wb_domain_size_changed(struct mem_cgroup
*memcg
)
3682 #endif /* CONFIG_CGROUP_WRITEBACK */
3685 * DO NOT USE IN NEW FILES.
3687 * "cgroup.event_control" implementation.
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3693 * Please deprecate this and replace with something simpler if at all
3698 * Unregister event and free resources.
3700 * Gets called from workqueue.
3702 static void memcg_event_remove(struct work_struct
*work
)
3704 struct mem_cgroup_event
*event
=
3705 container_of(work
, struct mem_cgroup_event
, remove
);
3706 struct mem_cgroup
*memcg
= event
->memcg
;
3708 remove_wait_queue(event
->wqh
, &event
->wait
);
3710 event
->unregister_event(memcg
, event
->eventfd
);
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event
->eventfd
, 1);
3715 eventfd_ctx_put(event
->eventfd
);
3717 css_put(&memcg
->css
);
3721 * Gets called on POLLHUP on eventfd when user closes it.
3723 * Called with wqh->lock held and interrupts disabled.
3725 static int memcg_event_wake(wait_queue_t
*wait
, unsigned mode
,
3726 int sync
, void *key
)
3728 struct mem_cgroup_event
*event
=
3729 container_of(wait
, struct mem_cgroup_event
, wait
);
3730 struct mem_cgroup
*memcg
= event
->memcg
;
3731 unsigned long flags
= (unsigned long)key
;
3733 if (flags
& POLLHUP
) {
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3743 spin_lock(&memcg
->event_list_lock
);
3744 if (!list_empty(&event
->list
)) {
3745 list_del_init(&event
->list
);
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3750 schedule_work(&event
->remove
);
3752 spin_unlock(&memcg
->event_list_lock
);
3758 static void memcg_event_ptable_queue_proc(struct file
*file
,
3759 wait_queue_head_t
*wqh
, poll_table
*pt
)
3761 struct mem_cgroup_event
*event
=
3762 container_of(pt
, struct mem_cgroup_event
, pt
);
3765 add_wait_queue(wqh
, &event
->wait
);
3769 * DO NOT USE IN NEW FILES.
3771 * Parse input and register new cgroup event handler.
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3776 static ssize_t
memcg_write_event_control(struct kernfs_open_file
*of
,
3777 char *buf
, size_t nbytes
, loff_t off
)
3779 struct cgroup_subsys_state
*css
= of_css(of
);
3780 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
3781 struct mem_cgroup_event
*event
;
3782 struct cgroup_subsys_state
*cfile_css
;
3783 unsigned int efd
, cfd
;
3790 buf
= strstrip(buf
);
3792 efd
= simple_strtoul(buf
, &endp
, 10);
3797 cfd
= simple_strtoul(buf
, &endp
, 10);
3798 if ((*endp
!= ' ') && (*endp
!= '\0'))
3802 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
3806 event
->memcg
= memcg
;
3807 INIT_LIST_HEAD(&event
->list
);
3808 init_poll_funcptr(&event
->pt
, memcg_event_ptable_queue_proc
);
3809 init_waitqueue_func_entry(&event
->wait
, memcg_event_wake
);
3810 INIT_WORK(&event
->remove
, memcg_event_remove
);
3818 event
->eventfd
= eventfd_ctx_fileget(efile
.file
);
3819 if (IS_ERR(event
->eventfd
)) {
3820 ret
= PTR_ERR(event
->eventfd
);
3827 goto out_put_eventfd
;
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret
= inode_permission(file_inode(cfile
.file
), MAY_READ
);
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3842 * DO NOT ADD NEW FILES.
3844 name
= cfile
.file
->f_path
.dentry
->d_name
.name
;
3846 if (!strcmp(name
, "memory.usage_in_bytes")) {
3847 event
->register_event
= mem_cgroup_usage_register_event
;
3848 event
->unregister_event
= mem_cgroup_usage_unregister_event
;
3849 } else if (!strcmp(name
, "memory.oom_control")) {
3850 event
->register_event
= mem_cgroup_oom_register_event
;
3851 event
->unregister_event
= mem_cgroup_oom_unregister_event
;
3852 } else if (!strcmp(name
, "memory.pressure_level")) {
3853 event
->register_event
= vmpressure_register_event
;
3854 event
->unregister_event
= vmpressure_unregister_event
;
3855 } else if (!strcmp(name
, "memory.memsw.usage_in_bytes")) {
3856 event
->register_event
= memsw_cgroup_usage_register_event
;
3857 event
->unregister_event
= memsw_cgroup_usage_unregister_event
;
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3868 cfile_css
= css_tryget_online_from_dir(cfile
.file
->f_path
.dentry
->d_parent
,
3869 &memory_cgrp_subsys
);
3871 if (IS_ERR(cfile_css
))
3873 if (cfile_css
!= css
) {
3878 ret
= event
->register_event(memcg
, event
->eventfd
, buf
);
3882 efile
.file
->f_op
->poll(efile
.file
, &event
->pt
);
3884 spin_lock(&memcg
->event_list_lock
);
3885 list_add(&event
->list
, &memcg
->event_list
);
3886 spin_unlock(&memcg
->event_list_lock
);
3898 eventfd_ctx_put(event
->eventfd
);
3907 static struct cftype mem_cgroup_legacy_files
[] = {
3909 .name
= "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
3911 .read_u64
= mem_cgroup_read_u64
,
3914 .name
= "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
3916 .write
= mem_cgroup_reset
,
3917 .read_u64
= mem_cgroup_read_u64
,
3920 .name
= "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
3922 .write
= mem_cgroup_write
,
3923 .read_u64
= mem_cgroup_read_u64
,
3926 .name
= "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
3928 .write
= mem_cgroup_write
,
3929 .read_u64
= mem_cgroup_read_u64
,
3933 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
3934 .write
= mem_cgroup_reset
,
3935 .read_u64
= mem_cgroup_read_u64
,
3939 .seq_show
= memcg_stat_show
,
3942 .name
= "force_empty",
3943 .write
= mem_cgroup_force_empty_write
,
3946 .name
= "use_hierarchy",
3947 .write_u64
= mem_cgroup_hierarchy_write
,
3948 .read_u64
= mem_cgroup_hierarchy_read
,
3951 .name
= "cgroup.event_control", /* XXX: for compat */
3952 .write
= memcg_write_event_control
,
3953 .flags
= CFTYPE_NO_PREFIX
| CFTYPE_WORLD_WRITABLE
,
3956 .name
= "swappiness",
3957 .read_u64
= mem_cgroup_swappiness_read
,
3958 .write_u64
= mem_cgroup_swappiness_write
,
3961 .name
= "move_charge_at_immigrate",
3962 .read_u64
= mem_cgroup_move_charge_read
,
3963 .write_u64
= mem_cgroup_move_charge_write
,
3966 .name
= "oom_control",
3967 .seq_show
= mem_cgroup_oom_control_read
,
3968 .write_u64
= mem_cgroup_oom_control_write
,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
3972 .name
= "pressure_level",
3976 .name
= "numa_stat",
3977 .seq_show
= memcg_numa_stat_show
,
3981 .name
= "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM
, RES_LIMIT
),
3983 .write
= mem_cgroup_write
,
3984 .read_u64
= mem_cgroup_read_u64
,
3987 .name
= "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM
, RES_USAGE
),
3989 .read_u64
= mem_cgroup_read_u64
,
3992 .name
= "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM
, RES_FAILCNT
),
3994 .write
= mem_cgroup_reset
,
3995 .read_u64
= mem_cgroup_read_u64
,
3998 .name
= "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM
, RES_MAX_USAGE
),
4000 .write
= mem_cgroup_reset
,
4001 .read_u64
= mem_cgroup_read_u64
,
4003 #ifdef CONFIG_SLABINFO
4005 .name
= "kmem.slabinfo",
4006 .seq_start
= slab_start
,
4007 .seq_next
= slab_next
,
4008 .seq_stop
= slab_stop
,
4009 .seq_show
= memcg_slab_show
,
4013 .name
= "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP
, RES_LIMIT
),
4015 .write
= mem_cgroup_write
,
4016 .read_u64
= mem_cgroup_read_u64
,
4019 .name
= "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP
, RES_USAGE
),
4021 .read_u64
= mem_cgroup_read_u64
,
4024 .name
= "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP
, RES_FAILCNT
),
4026 .write
= mem_cgroup_reset
,
4027 .read_u64
= mem_cgroup_read_u64
,
4030 .name
= "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP
, RES_MAX_USAGE
),
4032 .write
= mem_cgroup_reset
,
4033 .read_u64
= mem_cgroup_read_u64
,
4035 { }, /* terminate */
4038 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4040 struct mem_cgroup_per_node
*pn
;
4041 struct mem_cgroup_per_zone
*mz
;
4042 int zone
, tmp
= node
;
4044 * This routine is called against possible nodes.
4045 * But it's BUG to call kmalloc() against offline node.
4047 * TODO: this routine can waste much memory for nodes which will
4048 * never be onlined. It's better to use memory hotplug callback
4051 if (!node_state(node
, N_NORMAL_MEMORY
))
4053 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4057 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4058 mz
= &pn
->zoneinfo
[zone
];
4059 lruvec_init(&mz
->lruvec
);
4060 mz
->usage_in_excess
= 0;
4061 mz
->on_tree
= false;
4064 memcg
->nodeinfo
[node
] = pn
;
4068 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*memcg
, int node
)
4070 kfree(memcg
->nodeinfo
[node
]);
4073 static void mem_cgroup_free(struct mem_cgroup
*memcg
)
4077 memcg_wb_domain_exit(memcg
);
4079 free_mem_cgroup_per_zone_info(memcg
, node
);
4080 free_percpu(memcg
->stat
);
4084 static struct mem_cgroup
*mem_cgroup_alloc(void)
4086 struct mem_cgroup
*memcg
;
4090 size
= sizeof(struct mem_cgroup
);
4091 size
+= nr_node_ids
* sizeof(struct mem_cgroup_per_node
*);
4093 memcg
= kzalloc(size
, GFP_KERNEL
);
4097 memcg
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4102 if (alloc_mem_cgroup_per_zone_info(memcg
, node
))
4105 if (memcg_wb_domain_init(memcg
, GFP_KERNEL
))
4108 INIT_WORK(&memcg
->high_work
, high_work_func
);
4109 memcg
->last_scanned_node
= MAX_NUMNODES
;
4110 INIT_LIST_HEAD(&memcg
->oom_notify
);
4111 mutex_init(&memcg
->thresholds_lock
);
4112 spin_lock_init(&memcg
->move_lock
);
4113 vmpressure_init(&memcg
->vmpressure
);
4114 INIT_LIST_HEAD(&memcg
->event_list
);
4115 spin_lock_init(&memcg
->event_list_lock
);
4116 memcg
->socket_pressure
= jiffies
;
4118 memcg
->kmemcg_id
= -1;
4120 #ifdef CONFIG_CGROUP_WRITEBACK
4121 INIT_LIST_HEAD(&memcg
->cgwb_list
);
4125 mem_cgroup_free(memcg
);
4129 static struct cgroup_subsys_state
* __ref
4130 mem_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
4132 struct mem_cgroup
*parent
= mem_cgroup_from_css(parent_css
);
4133 struct mem_cgroup
*memcg
;
4134 long error
= -ENOMEM
;
4136 memcg
= mem_cgroup_alloc();
4138 return ERR_PTR(error
);
4140 memcg
->high
= PAGE_COUNTER_MAX
;
4141 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4143 memcg
->swappiness
= mem_cgroup_swappiness(parent
);
4144 memcg
->oom_kill_disable
= parent
->oom_kill_disable
;
4146 if (parent
&& parent
->use_hierarchy
) {
4147 memcg
->use_hierarchy
= true;
4148 page_counter_init(&memcg
->memory
, &parent
->memory
);
4149 page_counter_init(&memcg
->swap
, &parent
->swap
);
4150 page_counter_init(&memcg
->memsw
, &parent
->memsw
);
4151 page_counter_init(&memcg
->kmem
, &parent
->kmem
);
4152 page_counter_init(&memcg
->tcpmem
, &parent
->tcpmem
);
4154 page_counter_init(&memcg
->memory
, NULL
);
4155 page_counter_init(&memcg
->swap
, NULL
);
4156 page_counter_init(&memcg
->memsw
, NULL
);
4157 page_counter_init(&memcg
->kmem
, NULL
);
4158 page_counter_init(&memcg
->tcpmem
, NULL
);
4160 * Deeper hierachy with use_hierarchy == false doesn't make
4161 * much sense so let cgroup subsystem know about this
4162 * unfortunate state in our controller.
4164 if (parent
!= root_mem_cgroup
)
4165 memory_cgrp_subsys
.broken_hierarchy
= true;
4168 /* The following stuff does not apply to the root */
4170 root_mem_cgroup
= memcg
;
4174 error
= memcg_online_kmem(memcg
);
4178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4179 static_branch_inc(&memcg_sockets_enabled_key
);
4183 mem_cgroup_free(memcg
);
4188 mem_cgroup_css_online(struct cgroup_subsys_state
*css
)
4190 if (css
->id
> MEM_CGROUP_ID_MAX
)
4196 static void mem_cgroup_css_offline(struct cgroup_subsys_state
*css
)
4198 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4199 struct mem_cgroup_event
*event
, *tmp
;
4202 * Unregister events and notify userspace.
4203 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 * directory to avoid race between userspace and kernelspace.
4206 spin_lock(&memcg
->event_list_lock
);
4207 list_for_each_entry_safe(event
, tmp
, &memcg
->event_list
, list
) {
4208 list_del_init(&event
->list
);
4209 schedule_work(&event
->remove
);
4211 spin_unlock(&memcg
->event_list_lock
);
4213 memcg_offline_kmem(memcg
);
4214 wb_memcg_offline(memcg
);
4217 static void mem_cgroup_css_released(struct cgroup_subsys_state
*css
)
4219 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4221 invalidate_reclaim_iterators(memcg
);
4224 static void mem_cgroup_css_free(struct cgroup_subsys_state
*css
)
4226 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !cgroup_memory_nosocket
)
4229 static_branch_dec(&memcg_sockets_enabled_key
);
4231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && memcg
->tcpmem_active
)
4232 static_branch_dec(&memcg_sockets_enabled_key
);
4234 vmpressure_cleanup(&memcg
->vmpressure
);
4235 cancel_work_sync(&memcg
->high_work
);
4236 mem_cgroup_remove_from_trees(memcg
);
4237 memcg_free_kmem(memcg
);
4238 mem_cgroup_free(memcg
);
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4245 * Reset the states of the mem_cgroup associated with @css. This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency. The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4254 static void mem_cgroup_css_reset(struct cgroup_subsys_state
*css
)
4256 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4258 page_counter_limit(&memcg
->memory
, PAGE_COUNTER_MAX
);
4259 page_counter_limit(&memcg
->swap
, PAGE_COUNTER_MAX
);
4260 page_counter_limit(&memcg
->memsw
, PAGE_COUNTER_MAX
);
4261 page_counter_limit(&memcg
->kmem
, PAGE_COUNTER_MAX
);
4262 page_counter_limit(&memcg
->tcpmem
, PAGE_COUNTER_MAX
);
4264 memcg
->high
= PAGE_COUNTER_MAX
;
4265 memcg
->soft_limit
= PAGE_COUNTER_MAX
;
4266 memcg_wb_domain_size_changed(memcg
);
4270 /* Handlers for move charge at task migration. */
4271 static int mem_cgroup_do_precharge(unsigned long count
)
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_DIRECT_RECLAIM
, count
);
4278 mc
.precharge
+= count
;
4282 /* Try charges one by one with reclaim */
4284 ret
= try_charge(mc
.to
, GFP_KERNEL
& ~__GFP_NORETRY
, 1);
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4309 * Called with pte lock held.
4316 enum mc_target_type
{
4322 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4323 unsigned long addr
, pte_t ptent
)
4325 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4327 if (!page
|| !page_mapped(page
))
4329 if (PageAnon(page
)) {
4330 if (!(mc
.flags
& MOVE_ANON
))
4333 if (!(mc
.flags
& MOVE_FILE
))
4336 if (!get_page_unless_zero(page
))
4343 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4344 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4346 struct page
*page
= NULL
;
4347 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4349 if (!(mc
.flags
& MOVE_ANON
) || non_swap_entry(ent
))
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4355 page
= find_get_page(swap_address_space(ent
), ent
.val
);
4356 if (do_memsw_account())
4357 entry
->val
= ent
.val
;
4362 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4363 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4369 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4370 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4372 struct page
*page
= NULL
;
4373 struct address_space
*mapping
;
4376 if (!vma
->vm_file
) /* anonymous vma */
4378 if (!(mc
.flags
& MOVE_FILE
))
4381 mapping
= vma
->vm_file
->f_mapping
;
4382 pgoff
= linear_page_index(vma
, addr
);
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping
)) {
4388 page
= find_get_entry(mapping
, pgoff
);
4389 if (radix_tree_exceptional_entry(page
)) {
4390 swp_entry_t swp
= radix_to_swp_entry(page
);
4391 if (do_memsw_account())
4393 page
= find_get_page(swap_address_space(swp
), swp
.val
);
4396 page
= find_get_page(mapping
, pgoff
);
4398 page
= find_get_page(mapping
, pgoff
);
4404 * mem_cgroup_move_account - move account of the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4415 static int mem_cgroup_move_account(struct page
*page
,
4417 struct mem_cgroup
*from
,
4418 struct mem_cgroup
*to
)
4420 unsigned long flags
;
4421 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
4425 VM_BUG_ON(from
== to
);
4426 VM_BUG_ON_PAGE(PageLRU(page
), page
);
4427 VM_BUG_ON(compound
&& !PageTransHuge(page
));
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4434 if (!trylock_page(page
))
4438 if (page
->mem_cgroup
!= from
)
4441 anon
= PageAnon(page
);
4443 spin_lock_irqsave(&from
->move_lock
, flags
);
4445 if (!anon
&& page_mapped(page
)) {
4446 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4448 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
],
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4457 if (!anon
&& PageDirty(page
)) {
4458 struct address_space
*mapping
= page_mapping(page
);
4460 if (mapping_cap_account_dirty(mapping
)) {
4461 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4463 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_DIRTY
],
4468 if (PageWriteback(page
)) {
4469 __this_cpu_sub(from
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4471 __this_cpu_add(to
->stat
->count
[MEM_CGROUP_STAT_WRITEBACK
],
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4481 /* caller should have done css_get */
4482 page
->mem_cgroup
= to
;
4483 spin_unlock_irqrestore(&from
->move_lock
, flags
);
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to
, page
, compound
, nr_pages
);
4489 memcg_check_events(to
, page
);
4490 mem_cgroup_charge_statistics(from
, page
, compound
, -nr_pages
);
4491 memcg_check_events(from
, page
);
4499 static enum mc_target_type
get_mctgt_type(struct vm_area_struct
*vma
,
4500 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4502 struct page
*page
= NULL
;
4503 enum mc_target_type ret
= MC_TARGET_NONE
;
4504 swp_entry_t ent
= { .val
= 0 };
4506 if (pte_present(ptent
))
4507 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4508 else if (is_swap_pte(ptent
))
4509 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4510 else if (pte_none(ptent
))
4511 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4513 if (!page
&& !ent
.val
)
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4521 if (page
->mem_cgroup
== mc
.from
) {
4522 ret
= MC_TARGET_PAGE
;
4524 target
->page
= page
;
4526 if (!ret
|| !target
)
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent
.val
&& !ret
&&
4531 mem_cgroup_id(mc
.from
) == lookup_swap_cgroup_id(ent
)) {
4532 ret
= MC_TARGET_SWAP
;
4539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4545 static enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4546 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4548 struct page
*page
= NULL
;
4549 enum mc_target_type ret
= MC_TARGET_NONE
;
4551 page
= pmd_page(pmd
);
4552 VM_BUG_ON_PAGE(!page
|| !PageHead(page
), page
);
4553 if (!(mc
.flags
& MOVE_ANON
))
4555 if (page
->mem_cgroup
== mc
.from
) {
4556 ret
= MC_TARGET_PAGE
;
4559 target
->page
= page
;
4565 static inline enum mc_target_type
get_mctgt_type_thp(struct vm_area_struct
*vma
,
4566 unsigned long addr
, pmd_t pmd
, union mc_target
*target
)
4568 return MC_TARGET_NONE
;
4572 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4573 unsigned long addr
, unsigned long end
,
4574 struct mm_walk
*walk
)
4576 struct vm_area_struct
*vma
= walk
->vma
;
4580 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4582 if (get_mctgt_type_thp(vma
, addr
, *pmd
, NULL
) == MC_TARGET_PAGE
)
4583 mc
.precharge
+= HPAGE_PMD_NR
;
4588 if (pmd_trans_unstable(pmd
))
4590 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4591 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4592 if (get_mctgt_type(vma
, addr
, *pte
, NULL
))
4593 mc
.precharge
++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte
- 1, ptl
);
4600 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4602 unsigned long precharge
;
4604 struct mm_walk mem_cgroup_count_precharge_walk
= {
4605 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4608 down_read(&mm
->mmap_sem
);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk
);
4610 up_read(&mm
->mmap_sem
);
4612 precharge
= mc
.precharge
;
4618 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4620 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4622 VM_BUG_ON(mc
.moving_task
);
4623 mc
.moving_task
= current
;
4624 return mem_cgroup_do_precharge(precharge
);
4627 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628 static void __mem_cgroup_clear_mc(void)
4630 struct mem_cgroup
*from
= mc
.from
;
4631 struct mem_cgroup
*to
= mc
.to
;
4633 /* we must uncharge all the leftover precharges from mc.to */
4635 cancel_charge(mc
.to
, mc
.precharge
);
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4642 if (mc
.moved_charge
) {
4643 cancel_charge(mc
.from
, mc
.moved_charge
);
4644 mc
.moved_charge
= 0;
4646 /* we must fixup refcnts and charges */
4647 if (mc
.moved_swap
) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc
.from
))
4650 page_counter_uncharge(&mc
.from
->memsw
, mc
.moved_swap
);
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4656 if (!mem_cgroup_is_root(mc
.to
))
4657 page_counter_uncharge(&mc
.to
->memory
, mc
.moved_swap
);
4659 css_put_many(&mc
.from
->css
, mc
.moved_swap
);
4661 /* we've already done css_get(mc.to) */
4664 memcg_oom_recover(from
);
4665 memcg_oom_recover(to
);
4666 wake_up_all(&mc
.waitq
);
4669 static void mem_cgroup_clear_mc(void)
4671 struct mm_struct
*mm
= mc
.mm
;
4674 * we must clear moving_task before waking up waiters at the end of
4677 mc
.moving_task
= NULL
;
4678 __mem_cgroup_clear_mc();
4679 spin_lock(&mc
.lock
);
4683 spin_unlock(&mc
.lock
);
4688 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4690 struct cgroup_subsys_state
*css
;
4691 struct mem_cgroup
*memcg
= NULL
; /* unneeded init to make gcc happy */
4692 struct mem_cgroup
*from
;
4693 struct task_struct
*leader
, *p
;
4694 struct mm_struct
*mm
;
4695 unsigned long move_flags
;
4698 /* charge immigration isn't supported on the default hierarchy */
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4703 * Multi-process migrations only happen on the default hierarchy
4704 * where charge immigration is not used. Perform charge
4705 * immigration if @tset contains a leader and whine if there are
4709 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
4712 memcg
= mem_cgroup_from_css(css
);
4718 * We are now commited to this value whatever it is. Changes in this
4719 * tunable will only affect upcoming migrations, not the current one.
4720 * So we need to save it, and keep it going.
4722 move_flags
= READ_ONCE(memcg
->move_charge_at_immigrate
);
4726 from
= mem_cgroup_from_task(p
);
4728 VM_BUG_ON(from
== memcg
);
4730 mm
= get_task_mm(p
);
4733 /* We move charges only when we move a owner of the mm */
4734 if (mm
->owner
== p
) {
4737 VM_BUG_ON(mc
.precharge
);
4738 VM_BUG_ON(mc
.moved_charge
);
4739 VM_BUG_ON(mc
.moved_swap
);
4741 spin_lock(&mc
.lock
);
4745 mc
.flags
= move_flags
;
4746 spin_unlock(&mc
.lock
);
4747 /* We set mc.moving_task later */
4749 ret
= mem_cgroup_precharge_mc(mm
);
4751 mem_cgroup_clear_mc();
4758 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4761 mem_cgroup_clear_mc();
4764 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4765 unsigned long addr
, unsigned long end
,
4766 struct mm_walk
*walk
)
4769 struct vm_area_struct
*vma
= walk
->vma
;
4772 enum mc_target_type target_type
;
4773 union mc_target target
;
4776 ptl
= pmd_trans_huge_lock(pmd
, vma
);
4778 if (mc
.precharge
< HPAGE_PMD_NR
) {
4782 target_type
= get_mctgt_type_thp(vma
, addr
, *pmd
, &target
);
4783 if (target_type
== MC_TARGET_PAGE
) {
4785 if (!isolate_lru_page(page
)) {
4786 if (!mem_cgroup_move_account(page
, true,
4788 mc
.precharge
-= HPAGE_PMD_NR
;
4789 mc
.moved_charge
+= HPAGE_PMD_NR
;
4791 putback_lru_page(page
);
4799 if (pmd_trans_unstable(pmd
))
4802 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4803 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4804 pte_t ptent
= *(pte
++);
4810 switch (get_mctgt_type(vma
, addr
, ptent
, &target
)) {
4811 case MC_TARGET_PAGE
:
4814 * We can have a part of the split pmd here. Moving it
4815 * can be done but it would be too convoluted so simply
4816 * ignore such a partial THP and keep it in original
4817 * memcg. There should be somebody mapping the head.
4819 if (PageTransCompound(page
))
4821 if (isolate_lru_page(page
))
4823 if (!mem_cgroup_move_account(page
, false,
4826 /* we uncharge from mc.from later. */
4829 putback_lru_page(page
);
4830 put
: /* get_mctgt_type() gets the page */
4833 case MC_TARGET_SWAP
:
4835 if (!mem_cgroup_move_swap_account(ent
, mc
.from
, mc
.to
)) {
4837 /* we fixup refcnts and charges later. */
4845 pte_unmap_unlock(pte
- 1, ptl
);
4850 * We have consumed all precharges we got in can_attach().
4851 * We try charge one by one, but don't do any additional
4852 * charges to mc.to if we have failed in charge once in attach()
4855 ret
= mem_cgroup_do_precharge(1);
4863 static void mem_cgroup_move_charge(void)
4865 struct mm_walk mem_cgroup_move_charge_walk
= {
4866 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4870 lru_add_drain_all();
4872 * Signal lock_page_memcg() to take the memcg's move_lock
4873 * while we're moving its pages to another memcg. Then wait
4874 * for already started RCU-only updates to finish.
4876 atomic_inc(&mc
.from
->moving_account
);
4879 if (unlikely(!down_read_trylock(&mc
.mm
->mmap_sem
))) {
4881 * Someone who are holding the mmap_sem might be waiting in
4882 * waitq. So we cancel all extra charges, wake up all waiters,
4883 * and retry. Because we cancel precharges, we might not be able
4884 * to move enough charges, but moving charge is a best-effort
4885 * feature anyway, so it wouldn't be a big problem.
4887 __mem_cgroup_clear_mc();
4892 * When we have consumed all precharges and failed in doing
4893 * additional charge, the page walk just aborts.
4895 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk
);
4896 up_read(&mc
.mm
->mmap_sem
);
4897 atomic_dec(&mc
.from
->moving_account
);
4900 static void mem_cgroup_move_task(void)
4903 mem_cgroup_move_charge();
4904 mem_cgroup_clear_mc();
4907 #else /* !CONFIG_MMU */
4908 static int mem_cgroup_can_attach(struct cgroup_taskset
*tset
)
4912 static void mem_cgroup_cancel_attach(struct cgroup_taskset
*tset
)
4915 static void mem_cgroup_move_task(void)
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4925 static void mem_cgroup_bind(struct cgroup_subsys_state
*root_css
)
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
4933 root_mem_cgroup
->use_hierarchy
= true;
4935 root_mem_cgroup
->use_hierarchy
= false;
4938 static u64
memory_current_read(struct cgroup_subsys_state
*css
,
4941 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
4943 return (u64
)page_counter_read(&memcg
->memory
) * PAGE_SIZE
;
4946 static int memory_low_show(struct seq_file
*m
, void *v
)
4948 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4949 unsigned long low
= READ_ONCE(memcg
->low
);
4951 if (low
== PAGE_COUNTER_MAX
)
4952 seq_puts(m
, "max\n");
4954 seq_printf(m
, "%llu\n", (u64
)low
* PAGE_SIZE
);
4959 static ssize_t
memory_low_write(struct kernfs_open_file
*of
,
4960 char *buf
, size_t nbytes
, loff_t off
)
4962 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4966 buf
= strstrip(buf
);
4967 err
= page_counter_memparse(buf
, "max", &low
);
4976 static int memory_high_show(struct seq_file
*m
, void *v
)
4978 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
4979 unsigned long high
= READ_ONCE(memcg
->high
);
4981 if (high
== PAGE_COUNTER_MAX
)
4982 seq_puts(m
, "max\n");
4984 seq_printf(m
, "%llu\n", (u64
)high
* PAGE_SIZE
);
4989 static ssize_t
memory_high_write(struct kernfs_open_file
*of
,
4990 char *buf
, size_t nbytes
, loff_t off
)
4992 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
4993 unsigned long nr_pages
;
4997 buf
= strstrip(buf
);
4998 err
= page_counter_memparse(buf
, "max", &high
);
5004 nr_pages
= page_counter_read(&memcg
->memory
);
5005 if (nr_pages
> high
)
5006 try_to_free_mem_cgroup_pages(memcg
, nr_pages
- high
,
5009 memcg_wb_domain_size_changed(memcg
);
5013 static int memory_max_show(struct seq_file
*m
, void *v
)
5015 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5016 unsigned long max
= READ_ONCE(memcg
->memory
.limit
);
5018 if (max
== PAGE_COUNTER_MAX
)
5019 seq_puts(m
, "max\n");
5021 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5026 static ssize_t
memory_max_write(struct kernfs_open_file
*of
,
5027 char *buf
, size_t nbytes
, loff_t off
)
5029 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5030 unsigned int nr_reclaims
= MEM_CGROUP_RECLAIM_RETRIES
;
5031 bool drained
= false;
5035 buf
= strstrip(buf
);
5036 err
= page_counter_memparse(buf
, "max", &max
);
5040 xchg(&memcg
->memory
.limit
, max
);
5043 unsigned long nr_pages
= page_counter_read(&memcg
->memory
);
5045 if (nr_pages
<= max
)
5048 if (signal_pending(current
)) {
5054 drain_all_stock(memcg
);
5060 if (!try_to_free_mem_cgroup_pages(memcg
, nr_pages
- max
,
5066 mem_cgroup_events(memcg
, MEMCG_OOM
, 1);
5067 if (!mem_cgroup_out_of_memory(memcg
, GFP_KERNEL
, 0))
5071 memcg_wb_domain_size_changed(memcg
);
5075 static int memory_events_show(struct seq_file
*m
, void *v
)
5077 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5079 seq_printf(m
, "low %lu\n", mem_cgroup_read_events(memcg
, MEMCG_LOW
));
5080 seq_printf(m
, "high %lu\n", mem_cgroup_read_events(memcg
, MEMCG_HIGH
));
5081 seq_printf(m
, "max %lu\n", mem_cgroup_read_events(memcg
, MEMCG_MAX
));
5082 seq_printf(m
, "oom %lu\n", mem_cgroup_read_events(memcg
, MEMCG_OOM
));
5087 static int memory_stat_show(struct seq_file
*m
, void *v
)
5089 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5090 unsigned long stat
[MEMCG_NR_STAT
];
5091 unsigned long events
[MEMCG_NR_EVENTS
];
5095 * Provide statistics on the state of the memory subsystem as
5096 * well as cumulative event counters that show past behavior.
5098 * This list is ordered following a combination of these gradients:
5099 * 1) generic big picture -> specifics and details
5100 * 2) reflecting userspace activity -> reflecting kernel heuristics
5102 * Current memory state:
5105 tree_stat(memcg
, stat
);
5106 tree_events(memcg
, events
);
5108 seq_printf(m
, "anon %llu\n",
5109 (u64
)stat
[MEM_CGROUP_STAT_RSS
] * PAGE_SIZE
);
5110 seq_printf(m
, "file %llu\n",
5111 (u64
)stat
[MEM_CGROUP_STAT_CACHE
] * PAGE_SIZE
);
5112 seq_printf(m
, "kernel_stack %llu\n",
5113 (u64
)stat
[MEMCG_KERNEL_STACK
] * PAGE_SIZE
);
5114 seq_printf(m
, "slab %llu\n",
5115 (u64
)(stat
[MEMCG_SLAB_RECLAIMABLE
] +
5116 stat
[MEMCG_SLAB_UNRECLAIMABLE
]) * PAGE_SIZE
);
5117 seq_printf(m
, "sock %llu\n",
5118 (u64
)stat
[MEMCG_SOCK
] * PAGE_SIZE
);
5120 seq_printf(m
, "file_mapped %llu\n",
5121 (u64
)stat
[MEM_CGROUP_STAT_FILE_MAPPED
] * PAGE_SIZE
);
5122 seq_printf(m
, "file_dirty %llu\n",
5123 (u64
)stat
[MEM_CGROUP_STAT_DIRTY
] * PAGE_SIZE
);
5124 seq_printf(m
, "file_writeback %llu\n",
5125 (u64
)stat
[MEM_CGROUP_STAT_WRITEBACK
] * PAGE_SIZE
);
5127 for (i
= 0; i
< NR_LRU_LISTS
; i
++) {
5128 struct mem_cgroup
*mi
;
5129 unsigned long val
= 0;
5131 for_each_mem_cgroup_tree(mi
, memcg
)
5132 val
+= mem_cgroup_nr_lru_pages(mi
, BIT(i
));
5133 seq_printf(m
, "%s %llu\n",
5134 mem_cgroup_lru_names
[i
], (u64
)val
* PAGE_SIZE
);
5137 seq_printf(m
, "slab_reclaimable %llu\n",
5138 (u64
)stat
[MEMCG_SLAB_RECLAIMABLE
] * PAGE_SIZE
);
5139 seq_printf(m
, "slab_unreclaimable %llu\n",
5140 (u64
)stat
[MEMCG_SLAB_UNRECLAIMABLE
] * PAGE_SIZE
);
5142 /* Accumulated memory events */
5144 seq_printf(m
, "pgfault %lu\n",
5145 events
[MEM_CGROUP_EVENTS_PGFAULT
]);
5146 seq_printf(m
, "pgmajfault %lu\n",
5147 events
[MEM_CGROUP_EVENTS_PGMAJFAULT
]);
5152 static struct cftype memory_files
[] = {
5155 .flags
= CFTYPE_NOT_ON_ROOT
,
5156 .read_u64
= memory_current_read
,
5160 .flags
= CFTYPE_NOT_ON_ROOT
,
5161 .seq_show
= memory_low_show
,
5162 .write
= memory_low_write
,
5166 .flags
= CFTYPE_NOT_ON_ROOT
,
5167 .seq_show
= memory_high_show
,
5168 .write
= memory_high_write
,
5172 .flags
= CFTYPE_NOT_ON_ROOT
,
5173 .seq_show
= memory_max_show
,
5174 .write
= memory_max_write
,
5178 .flags
= CFTYPE_NOT_ON_ROOT
,
5179 .file_offset
= offsetof(struct mem_cgroup
, events_file
),
5180 .seq_show
= memory_events_show
,
5184 .flags
= CFTYPE_NOT_ON_ROOT
,
5185 .seq_show
= memory_stat_show
,
5190 struct cgroup_subsys memory_cgrp_subsys
= {
5191 .css_alloc
= mem_cgroup_css_alloc
,
5192 .css_online
= mem_cgroup_css_online
,
5193 .css_offline
= mem_cgroup_css_offline
,
5194 .css_released
= mem_cgroup_css_released
,
5195 .css_free
= mem_cgroup_css_free
,
5196 .css_reset
= mem_cgroup_css_reset
,
5197 .can_attach
= mem_cgroup_can_attach
,
5198 .cancel_attach
= mem_cgroup_cancel_attach
,
5199 .post_attach
= mem_cgroup_move_task
,
5200 .bind
= mem_cgroup_bind
,
5201 .dfl_cftypes
= memory_files
,
5202 .legacy_cftypes
= mem_cgroup_legacy_files
,
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5214 bool mem_cgroup_low(struct mem_cgroup
*root
, struct mem_cgroup
*memcg
)
5216 if (mem_cgroup_disabled())
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5225 if (memcg
== root_mem_cgroup
)
5228 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5231 while (memcg
!= root
) {
5232 memcg
= parent_mem_cgroup(memcg
);
5234 if (memcg
== root_mem_cgroup
)
5237 if (page_counter_read(&memcg
->memory
) >= memcg
->low
)
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5260 int mem_cgroup_try_charge(struct page
*page
, struct mm_struct
*mm
,
5261 gfp_t gfp_mask
, struct mem_cgroup
**memcgp
,
5264 struct mem_cgroup
*memcg
= NULL
;
5265 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5268 if (mem_cgroup_disabled())
5271 if (PageSwapCache(page
)) {
5273 * Every swap fault against a single page tries to charge the
5274 * page, bail as early as possible. shmem_unuse() encounters
5275 * already charged pages, too. The USED bit is protected by
5276 * the page lock, which serializes swap cache removal, which
5277 * in turn serializes uncharging.
5279 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5280 if (page
->mem_cgroup
)
5283 if (do_swap_account
) {
5284 swp_entry_t ent
= { .val
= page_private(page
), };
5285 unsigned short id
= lookup_swap_cgroup_id(ent
);
5288 memcg
= mem_cgroup_from_id(id
);
5289 if (memcg
&& !css_tryget_online(&memcg
->css
))
5296 memcg
= get_mem_cgroup_from_mm(mm
);
5298 ret
= try_charge(memcg
, gfp_mask
, nr_pages
);
5300 css_put(&memcg
->css
);
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up. This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration. If it might be, use @lrucare.
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5322 void mem_cgroup_commit_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5323 bool lrucare
, bool compound
)
5325 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5327 VM_BUG_ON_PAGE(!page
->mapping
, page
);
5328 VM_BUG_ON_PAGE(PageLRU(page
) && !lrucare
, page
);
5330 if (mem_cgroup_disabled())
5333 * Swap faults will attempt to charge the same page multiple
5334 * times. But reuse_swap_page() might have removed the page
5335 * from swapcache already, so we can't check PageSwapCache().
5340 commit_charge(page
, memcg
, lrucare
);
5342 local_irq_disable();
5343 mem_cgroup_charge_statistics(memcg
, page
, compound
, nr_pages
);
5344 memcg_check_events(memcg
, page
);
5347 if (do_memsw_account() && PageSwapCache(page
)) {
5348 swp_entry_t entry
= { .val
= page_private(page
) };
5350 * The swap entry might not get freed for a long time,
5351 * let's not wait for it. The page already received a
5352 * memory+swap charge, drop the swap entry duplicate.
5354 mem_cgroup_uncharge_swap(entry
);
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5365 void mem_cgroup_cancel_charge(struct page
*page
, struct mem_cgroup
*memcg
,
5368 unsigned int nr_pages
= compound
? hpage_nr_pages(page
) : 1;
5370 if (mem_cgroup_disabled())
5373 * Swap faults will attempt to charge the same page multiple
5374 * times. But reuse_swap_page() might have removed the page
5375 * from swapcache already, so we can't check PageSwapCache().
5380 cancel_charge(memcg
, nr_pages
);
5383 static void uncharge_batch(struct mem_cgroup
*memcg
, unsigned long pgpgout
,
5384 unsigned long nr_anon
, unsigned long nr_file
,
5385 unsigned long nr_huge
, struct page
*dummy_page
)
5387 unsigned long nr_pages
= nr_anon
+ nr_file
;
5388 unsigned long flags
;
5390 if (!mem_cgroup_is_root(memcg
)) {
5391 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5392 if (do_memsw_account())
5393 page_counter_uncharge(&memcg
->memsw
, nr_pages
);
5394 memcg_oom_recover(memcg
);
5397 local_irq_save(flags
);
5398 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_anon
);
5399 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_file
);
5400 __this_cpu_sub(memcg
->stat
->count
[MEM_CGROUP_STAT_RSS_HUGE
], nr_huge
);
5401 __this_cpu_add(memcg
->stat
->events
[MEM_CGROUP_EVENTS_PGPGOUT
], pgpgout
);
5402 __this_cpu_add(memcg
->stat
->nr_page_events
, nr_pages
);
5403 memcg_check_events(memcg
, dummy_page
);
5404 local_irq_restore(flags
);
5406 if (!mem_cgroup_is_root(memcg
))
5407 css_put_many(&memcg
->css
, nr_pages
);
5410 static void uncharge_list(struct list_head
*page_list
)
5412 struct mem_cgroup
*memcg
= NULL
;
5413 unsigned long nr_anon
= 0;
5414 unsigned long nr_file
= 0;
5415 unsigned long nr_huge
= 0;
5416 unsigned long pgpgout
= 0;
5417 struct list_head
*next
;
5421 * Note that the list can be a single page->lru; hence the
5422 * do-while loop instead of a simple list_for_each_entry().
5424 next
= page_list
->next
;
5426 unsigned int nr_pages
= 1;
5428 page
= list_entry(next
, struct page
, lru
);
5429 next
= page
->lru
.next
;
5431 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5432 VM_BUG_ON_PAGE(page_count(page
), page
);
5434 if (!page
->mem_cgroup
)
5438 * Nobody should be changing or seriously looking at
5439 * page->mem_cgroup at this point, we have fully
5440 * exclusive access to the page.
5443 if (memcg
!= page
->mem_cgroup
) {
5445 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5447 pgpgout
= nr_anon
= nr_file
= nr_huge
= 0;
5449 memcg
= page
->mem_cgroup
;
5452 if (PageTransHuge(page
)) {
5453 nr_pages
<<= compound_order(page
);
5454 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
5455 nr_huge
+= nr_pages
;
5459 nr_anon
+= nr_pages
;
5461 nr_file
+= nr_pages
;
5463 page
->mem_cgroup
= NULL
;
5466 } while (next
!= page_list
);
5469 uncharge_batch(memcg
, pgpgout
, nr_anon
, nr_file
,
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5480 void mem_cgroup_uncharge(struct page
*page
)
5482 if (mem_cgroup_disabled())
5485 /* Don't touch page->lru of any random page, pre-check: */
5486 if (!page
->mem_cgroup
)
5489 INIT_LIST_HEAD(&page
->lru
);
5490 uncharge_list(&page
->lru
);
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5500 void mem_cgroup_uncharge_list(struct list_head
*page_list
)
5502 if (mem_cgroup_disabled())
5505 if (!list_empty(page_list
))
5506 uncharge_list(page_list
);
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5517 * Both pages must be locked, @newpage->mapping must be set up.
5519 void mem_cgroup_migrate(struct page
*oldpage
, struct page
*newpage
)
5521 struct mem_cgroup
*memcg
;
5522 unsigned int nr_pages
;
5525 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
5526 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
5527 VM_BUG_ON_PAGE(PageAnon(oldpage
) != PageAnon(newpage
), newpage
);
5528 VM_BUG_ON_PAGE(PageTransHuge(oldpage
) != PageTransHuge(newpage
),
5531 if (mem_cgroup_disabled())
5534 /* Page cache replacement: new page already charged? */
5535 if (newpage
->mem_cgroup
)
5538 /* Swapcache readahead pages can get replaced before being charged */
5539 memcg
= oldpage
->mem_cgroup
;
5543 /* Force-charge the new page. The old one will be freed soon */
5544 compound
= PageTransHuge(newpage
);
5545 nr_pages
= compound
? hpage_nr_pages(newpage
) : 1;
5547 page_counter_charge(&memcg
->memory
, nr_pages
);
5548 if (do_memsw_account())
5549 page_counter_charge(&memcg
->memsw
, nr_pages
);
5550 css_get_many(&memcg
->css
, nr_pages
);
5552 commit_charge(newpage
, memcg
, false);
5554 local_irq_disable();
5555 mem_cgroup_charge_statistics(memcg
, newpage
, compound
, nr_pages
);
5556 memcg_check_events(memcg
, newpage
);
5560 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key
);
5561 EXPORT_SYMBOL(memcg_sockets_enabled_key
);
5563 void sock_update_memcg(struct sock
*sk
)
5565 struct mem_cgroup
*memcg
;
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5576 BUG_ON(mem_cgroup_is_root(sk
->sk_memcg
));
5577 css_get(&sk
->sk_memcg
->css
);
5582 memcg
= mem_cgroup_from_task(current
);
5583 if (memcg
== root_mem_cgroup
)
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) && !memcg
->tcpmem_active
)
5587 if (css_tryget_online(&memcg
->css
))
5588 sk
->sk_memcg
= memcg
;
5592 EXPORT_SYMBOL(sock_update_memcg
);
5594 void sock_release_memcg(struct sock
*sk
)
5596 WARN_ON(!sk
->sk_memcg
);
5597 css_put(&sk
->sk_memcg
->css
);
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5608 bool mem_cgroup_charge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5610 gfp_t gfp_mask
= GFP_KERNEL
;
5612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5613 struct page_counter
*fail
;
5615 if (page_counter_try_charge(&memcg
->tcpmem
, nr_pages
, &fail
)) {
5616 memcg
->tcpmem_pressure
= 0;
5619 page_counter_charge(&memcg
->tcpmem
, nr_pages
);
5620 memcg
->tcpmem_pressure
= 1;
5624 /* Don't block in the packet receive path */
5626 gfp_mask
= GFP_NOWAIT
;
5628 this_cpu_add(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5630 if (try_charge(memcg
, gfp_mask
, nr_pages
) == 0)
5633 try_charge(memcg
, gfp_mask
|__GFP_NOFAIL
, nr_pages
);
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5642 void mem_cgroup_uncharge_skmem(struct mem_cgroup
*memcg
, unsigned int nr_pages
)
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
)) {
5645 page_counter_uncharge(&memcg
->tcpmem
, nr_pages
);
5649 this_cpu_sub(memcg
->stat
->count
[MEMCG_SOCK
], nr_pages
);
5651 page_counter_uncharge(&memcg
->memory
, nr_pages
);
5652 css_put_many(&memcg
->css
, nr_pages
);
5655 static int __init
cgroup_memory(char *s
)
5659 while ((token
= strsep(&s
, ",")) != NULL
) {
5662 if (!strcmp(token
, "nosocket"))
5663 cgroup_memory_nosocket
= true;
5664 if (!strcmp(token
, "nokmem"))
5665 cgroup_memory_nokmem
= true;
5669 __setup("cgroup.memory=", cgroup_memory
);
5672 * subsys_initcall() for memory controller.
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5679 static int __init
mem_cgroup_init(void)
5683 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
5685 for_each_possible_cpu(cpu
)
5686 INIT_WORK(&per_cpu_ptr(&memcg_stock
, cpu
)->work
,
5689 for_each_node(node
) {
5690 struct mem_cgroup_tree_per_node
*rtpn
;
5693 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
,
5694 node_online(node
) ? node
: NUMA_NO_NODE
);
5696 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
5697 struct mem_cgroup_tree_per_zone
*rtpz
;
5699 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
5700 rtpz
->rb_root
= RB_ROOT
;
5701 spin_lock_init(&rtpz
->lock
);
5703 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
5708 subsys_initcall(mem_cgroup_init
);
5710 #ifdef CONFIG_MEMCG_SWAP
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5716 * Transfer the memsw charge of @page to @entry.
5718 void mem_cgroup_swapout(struct page
*page
, swp_entry_t entry
)
5720 struct mem_cgroup
*memcg
;
5721 unsigned short oldid
;
5723 VM_BUG_ON_PAGE(PageLRU(page
), page
);
5724 VM_BUG_ON_PAGE(page_count(page
), page
);
5726 if (!do_memsw_account())
5729 memcg
= page
->mem_cgroup
;
5731 /* Readahead page, never charged */
5735 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5736 VM_BUG_ON_PAGE(oldid
, page
);
5737 mem_cgroup_swap_statistics(memcg
, true);
5739 page
->mem_cgroup
= NULL
;
5741 if (!mem_cgroup_is_root(memcg
))
5742 page_counter_uncharge(&memcg
->memory
, 1);
5745 * Interrupts should be disabled here because the caller holds the
5746 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 * important here to have the interrupts disabled because it is the
5748 * only synchronisation we have for udpating the per-CPU variables.
5750 VM_BUG_ON(!irqs_disabled());
5751 mem_cgroup_charge_statistics(memcg
, page
, false, -1);
5752 memcg_check_events(memcg
, page
);
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5760 * Try to charge @entry to the memcg that @page belongs to.
5762 * Returns 0 on success, -ENOMEM on failure.
5764 int mem_cgroup_try_charge_swap(struct page
*page
, swp_entry_t entry
)
5766 struct mem_cgroup
*memcg
;
5767 struct page_counter
*counter
;
5768 unsigned short oldid
;
5770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys
) || !do_swap_account
)
5773 memcg
= page
->mem_cgroup
;
5775 /* Readahead page, never charged */
5779 if (!mem_cgroup_is_root(memcg
) &&
5780 !page_counter_try_charge(&memcg
->swap
, 1, &counter
))
5783 oldid
= swap_cgroup_record(entry
, mem_cgroup_id(memcg
));
5784 VM_BUG_ON_PAGE(oldid
, page
);
5785 mem_cgroup_swap_statistics(memcg
, true);
5787 css_get(&memcg
->css
);
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5795 * Drop the swap charge associated with @entry.
5797 void mem_cgroup_uncharge_swap(swp_entry_t entry
)
5799 struct mem_cgroup
*memcg
;
5802 if (!do_swap_account
)
5805 id
= swap_cgroup_record(entry
, 0);
5807 memcg
= mem_cgroup_from_id(id
);
5809 if (!mem_cgroup_is_root(memcg
)) {
5810 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5811 page_counter_uncharge(&memcg
->swap
, 1);
5813 page_counter_uncharge(&memcg
->memsw
, 1);
5815 mem_cgroup_swap_statistics(memcg
, false);
5816 css_put(&memcg
->css
);
5821 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup
*memcg
)
5823 long nr_swap_pages
= get_nr_swap_pages();
5825 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5826 return nr_swap_pages
;
5827 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5828 nr_swap_pages
= min_t(long, nr_swap_pages
,
5829 READ_ONCE(memcg
->swap
.limit
) -
5830 page_counter_read(&memcg
->swap
));
5831 return nr_swap_pages
;
5834 bool mem_cgroup_swap_full(struct page
*page
)
5836 struct mem_cgroup
*memcg
;
5838 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
5842 if (!do_swap_account
|| !cgroup_subsys_on_dfl(memory_cgrp_subsys
))
5845 memcg
= page
->mem_cgroup
;
5849 for (; memcg
!= root_mem_cgroup
; memcg
= parent_mem_cgroup(memcg
))
5850 if (page_counter_read(&memcg
->swap
) * 2 >= memcg
->swap
.limit
)
5856 /* for remember boot option*/
5857 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5858 static int really_do_swap_account __initdata
= 1;
5860 static int really_do_swap_account __initdata
;
5863 static int __init
enable_swap_account(char *s
)
5865 if (!strcmp(s
, "1"))
5866 really_do_swap_account
= 1;
5867 else if (!strcmp(s
, "0"))
5868 really_do_swap_account
= 0;
5871 __setup("swapaccount=", enable_swap_account
);
5873 static u64
swap_current_read(struct cgroup_subsys_state
*css
,
5876 struct mem_cgroup
*memcg
= mem_cgroup_from_css(css
);
5878 return (u64
)page_counter_read(&memcg
->swap
) * PAGE_SIZE
;
5881 static int swap_max_show(struct seq_file
*m
, void *v
)
5883 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
5884 unsigned long max
= READ_ONCE(memcg
->swap
.limit
);
5886 if (max
== PAGE_COUNTER_MAX
)
5887 seq_puts(m
, "max\n");
5889 seq_printf(m
, "%llu\n", (u64
)max
* PAGE_SIZE
);
5894 static ssize_t
swap_max_write(struct kernfs_open_file
*of
,
5895 char *buf
, size_t nbytes
, loff_t off
)
5897 struct mem_cgroup
*memcg
= mem_cgroup_from_css(of_css(of
));
5901 buf
= strstrip(buf
);
5902 err
= page_counter_memparse(buf
, "max", &max
);
5906 mutex_lock(&memcg_limit_mutex
);
5907 err
= page_counter_limit(&memcg
->swap
, max
);
5908 mutex_unlock(&memcg_limit_mutex
);
5915 static struct cftype swap_files
[] = {
5917 .name
= "swap.current",
5918 .flags
= CFTYPE_NOT_ON_ROOT
,
5919 .read_u64
= swap_current_read
,
5923 .flags
= CFTYPE_NOT_ON_ROOT
,
5924 .seq_show
= swap_max_show
,
5925 .write
= swap_max_write
,
5930 static struct cftype memsw_cgroup_files
[] = {
5932 .name
= "memsw.usage_in_bytes",
5933 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
5934 .read_u64
= mem_cgroup_read_u64
,
5937 .name
= "memsw.max_usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
5939 .write
= mem_cgroup_reset
,
5940 .read_u64
= mem_cgroup_read_u64
,
5943 .name
= "memsw.limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
5945 .write
= mem_cgroup_write
,
5946 .read_u64
= mem_cgroup_read_u64
,
5949 .name
= "memsw.failcnt",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
5951 .write
= mem_cgroup_reset
,
5952 .read_u64
= mem_cgroup_read_u64
,
5954 { }, /* terminate */
5957 static int __init
mem_cgroup_swap_init(void)
5959 if (!mem_cgroup_disabled() && really_do_swap_account
) {
5960 do_swap_account
= 1;
5961 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys
,
5963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys
,
5964 memsw_cgroup_files
));
5968 subsys_initcall(mem_cgroup_swap_init
);
5970 #endif /* CONFIG_MEMCG_SWAP */