Linux 4.6-rc6
[cris-mirror.git] / mm / memcontrol.c
blobfe787f5c41bd1332eeca88e85a3f0bf483bb552b
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
71 #include <asm/uaccess.h>
73 #include <trace/events/vmscan.h>
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
157 * cgroup_event represents events which userspace want to receive.
159 struct mem_cgroup_event {
161 * memcg which the event belongs to.
163 struct mem_cgroup *memcg;
165 * eventfd to signal userspace about the event.
167 struct eventfd_ctx *eventfd;
169 * Each of these stored in a list by the cgroup.
171 struct list_head list;
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
199 /* Stuffs for move charges at task migration. */
201 * Types of charges to be moved.
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
269 return (memcg == root_mem_cgroup);
272 #ifndef CONFIG_SLOB
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
290 void memcg_get_cache_ids(void)
292 down_read(&memcg_cache_ids_sem);
295 void memcg_put_cache_ids(void)
297 up_read(&memcg_cache_ids_sem);
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
324 #endif /* !CONFIG_SLOB */
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
348 struct mem_cgroup *memcg;
350 memcg = page->mem_cgroup;
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
355 return &memcg->css;
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
371 ino_t page_cgroup_ino(struct page *page)
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
418 if (mz->on_tree)
419 return;
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
454 unsigned long flags;
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
470 return excess;
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
479 mctz = soft_limit_tree_from_page(page);
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
491 if (excess || mz->on_tree) {
492 unsigned long flags;
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
529 retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545 done:
546 return mz;
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
552 struct mem_cgroup_per_zone *mz;
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
561 * Return page count for single (non recursive) @memcg.
563 * Implementation Note: reading percpu statistics for memcg.
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
584 long val = 0;
585 int cpu;
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
594 if (val < 0)
595 val = 0;
596 return val;
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
602 unsigned long val = 0;
603 int cpu;
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
645 unsigned long nr = 0;
646 int zid;
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
661 return nr;
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
667 unsigned long nr = 0;
668 int nid;
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
678 unsigned long val, next;
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
700 return false;
704 * Check events in order.
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
738 if (unlikely(!p))
739 return NULL;
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
743 EXPORT_SYMBOL(mem_cgroup_from_task);
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
747 struct mem_cgroup *memcg = NULL;
749 rcu_read_lock();
750 do {
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
794 if (mem_cgroup_disabled())
795 return NULL;
797 if (!root)
798 root = root_mem_cgroup;
800 if (prev && !reclaim)
801 pos = prev;
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
809 rcu_read_lock();
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
832 (void)cmpxchg(&iter->position, pos, NULL);
836 if (pos)
837 css = &pos->css;
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
848 if (!prev)
849 continue;
850 break;
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
858 memcg = mem_cgroup_from_css(css);
860 if (css == &root->css)
861 break;
863 if (css_tryget(css))
864 break;
866 memcg = NULL;
869 if (reclaim) {
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
875 (void)cmpxchg(&iter->position, pos, memcg);
877 if (pos)
878 css_put(&pos->css);
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
892 return memcg;
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
999 memcg = page->mem_cgroup;
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
1029 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
1032 struct mem_cgroup_per_zone *mz;
1033 unsigned long *lru_size;
1035 if (mem_cgroup_disabled())
1036 return;
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
1044 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1046 struct mem_cgroup *task_memcg;
1047 struct task_struct *p;
1048 bool ret;
1050 p = find_lock_task_mm(task);
1051 if (p) {
1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
1053 task_unlock(p);
1054 } else {
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1060 rcu_read_lock();
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
1063 rcu_read_unlock();
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
1067 return ret;
1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1072 * @memcg: the memory cgroup
1074 * Returns the maximum amount of memory @mem can be charged with, in
1075 * pages.
1077 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
1083 count = page_counter_read(&memcg->memory);
1084 limit = READ_ONCE(memcg->memory.limit);
1085 if (count < limit)
1086 margin = limit - count;
1088 if (do_memsw_account()) {
1089 count = page_counter_read(&memcg->memsw);
1090 limit = READ_ONCE(memcg->memsw.limit);
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1095 return margin;
1099 * A routine for checking "mem" is under move_account() or not.
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1140 return false;
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1157 rcu_read_lock();
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1170 rcu_read_unlock();
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1198 pr_cont("\n");
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1208 int num = 0;
1209 struct mem_cgroup *iter;
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1217 * Return the memory (and swap, if configured) limit for a memcg.
1219 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1221 unsigned long limit;
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1233 return limit;
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .gfp_mask = gfp_mask,
1243 .order = order,
1245 struct mem_cgroup *iter;
1246 unsigned long chosen_points = 0;
1247 unsigned long totalpages;
1248 unsigned int points = 0;
1249 struct task_struct *chosen = NULL;
1251 mutex_lock(&oom_lock);
1254 * If current has a pending SIGKILL or is exiting, then automatically
1255 * select it. The goal is to allow it to allocate so that it may
1256 * quickly exit and free its memory.
1258 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1259 mark_oom_victim(current);
1260 goto unlock;
1263 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1264 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1269 css_task_iter_start(&iter->css, &it);
1270 while ((task = css_task_iter_next(&it))) {
1271 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1272 case OOM_SCAN_SELECT:
1273 if (chosen)
1274 put_task_struct(chosen);
1275 chosen = task;
1276 chosen_points = ULONG_MAX;
1277 get_task_struct(chosen);
1278 /* fall through */
1279 case OOM_SCAN_CONTINUE:
1280 continue;
1281 case OOM_SCAN_ABORT:
1282 css_task_iter_end(&it);
1283 mem_cgroup_iter_break(memcg, iter);
1284 if (chosen)
1285 put_task_struct(chosen);
1286 goto unlock;
1287 case OOM_SCAN_OK:
1288 break;
1290 points = oom_badness(task, memcg, NULL, totalpages);
1291 if (!points || points < chosen_points)
1292 continue;
1293 /* Prefer thread group leaders for display purposes */
1294 if (points == chosen_points &&
1295 thread_group_leader(chosen))
1296 continue;
1298 if (chosen)
1299 put_task_struct(chosen);
1300 chosen = task;
1301 chosen_points = points;
1302 get_task_struct(chosen);
1304 css_task_iter_end(&it);
1307 if (chosen) {
1308 points = chosen_points * 1000 / totalpages;
1309 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1310 "Memory cgroup out of memory");
1312 unlock:
1313 mutex_unlock(&oom_lock);
1314 return chosen;
1317 #if MAX_NUMNODES > 1
1320 * test_mem_cgroup_node_reclaimable
1321 * @memcg: the target memcg
1322 * @nid: the node ID to be checked.
1323 * @noswap : specify true here if the user wants flle only information.
1325 * This function returns whether the specified memcg contains any
1326 * reclaimable pages on a node. Returns true if there are any reclaimable
1327 * pages in the node.
1329 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1330 int nid, bool noswap)
1332 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1333 return true;
1334 if (noswap || !total_swap_pages)
1335 return false;
1336 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1337 return true;
1338 return false;
1343 * Always updating the nodemask is not very good - even if we have an empty
1344 * list or the wrong list here, we can start from some node and traverse all
1345 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1348 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1350 int nid;
1352 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1353 * pagein/pageout changes since the last update.
1355 if (!atomic_read(&memcg->numainfo_events))
1356 return;
1357 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1358 return;
1360 /* make a nodemask where this memcg uses memory from */
1361 memcg->scan_nodes = node_states[N_MEMORY];
1363 for_each_node_mask(nid, node_states[N_MEMORY]) {
1365 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1366 node_clear(nid, memcg->scan_nodes);
1369 atomic_set(&memcg->numainfo_events, 0);
1370 atomic_set(&memcg->numainfo_updating, 0);
1374 * Selecting a node where we start reclaim from. Because what we need is just
1375 * reducing usage counter, start from anywhere is O,K. Considering
1376 * memory reclaim from current node, there are pros. and cons.
1378 * Freeing memory from current node means freeing memory from a node which
1379 * we'll use or we've used. So, it may make LRU bad. And if several threads
1380 * hit limits, it will see a contention on a node. But freeing from remote
1381 * node means more costs for memory reclaim because of memory latency.
1383 * Now, we use round-robin. Better algorithm is welcomed.
1385 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1387 int node;
1389 mem_cgroup_may_update_nodemask(memcg);
1390 node = memcg->last_scanned_node;
1392 node = next_node(node, memcg->scan_nodes);
1393 if (node == MAX_NUMNODES)
1394 node = first_node(memcg->scan_nodes);
1396 * We call this when we hit limit, not when pages are added to LRU.
1397 * No LRU may hold pages because all pages are UNEVICTABLE or
1398 * memcg is too small and all pages are not on LRU. In that case,
1399 * we use curret node.
1401 if (unlikely(node == MAX_NUMNODES))
1402 node = numa_node_id();
1404 memcg->last_scanned_node = node;
1405 return node;
1407 #else
1408 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1410 return 0;
1412 #endif
1414 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1415 struct zone *zone,
1416 gfp_t gfp_mask,
1417 unsigned long *total_scanned)
1419 struct mem_cgroup *victim = NULL;
1420 int total = 0;
1421 int loop = 0;
1422 unsigned long excess;
1423 unsigned long nr_scanned;
1424 struct mem_cgroup_reclaim_cookie reclaim = {
1425 .zone = zone,
1426 .priority = 0,
1429 excess = soft_limit_excess(root_memcg);
1431 while (1) {
1432 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1433 if (!victim) {
1434 loop++;
1435 if (loop >= 2) {
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1441 if (!total)
1442 break;
1444 * We want to do more targeted reclaim.
1445 * excess >> 2 is not to excessive so as to
1446 * reclaim too much, nor too less that we keep
1447 * coming back to reclaim from this cgroup
1449 if (total >= (excess >> 2) ||
1450 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1451 break;
1453 continue;
1455 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1456 zone, &nr_scanned);
1457 *total_scanned += nr_scanned;
1458 if (!soft_limit_excess(root_memcg))
1459 break;
1461 mem_cgroup_iter_break(root_memcg, victim);
1462 return total;
1465 #ifdef CONFIG_LOCKDEP
1466 static struct lockdep_map memcg_oom_lock_dep_map = {
1467 .name = "memcg_oom_lock",
1469 #endif
1471 static DEFINE_SPINLOCK(memcg_oom_lock);
1474 * Check OOM-Killer is already running under our hierarchy.
1475 * If someone is running, return false.
1477 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1479 struct mem_cgroup *iter, *failed = NULL;
1481 spin_lock(&memcg_oom_lock);
1483 for_each_mem_cgroup_tree(iter, memcg) {
1484 if (iter->oom_lock) {
1486 * this subtree of our hierarchy is already locked
1487 * so we cannot give a lock.
1489 failed = iter;
1490 mem_cgroup_iter_break(memcg, iter);
1491 break;
1492 } else
1493 iter->oom_lock = true;
1496 if (failed) {
1498 * OK, we failed to lock the whole subtree so we have
1499 * to clean up what we set up to the failing subtree
1501 for_each_mem_cgroup_tree(iter, memcg) {
1502 if (iter == failed) {
1503 mem_cgroup_iter_break(memcg, iter);
1504 break;
1506 iter->oom_lock = false;
1508 } else
1509 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1511 spin_unlock(&memcg_oom_lock);
1513 return !failed;
1516 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1518 struct mem_cgroup *iter;
1520 spin_lock(&memcg_oom_lock);
1521 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1522 for_each_mem_cgroup_tree(iter, memcg)
1523 iter->oom_lock = false;
1524 spin_unlock(&memcg_oom_lock);
1527 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1529 struct mem_cgroup *iter;
1531 spin_lock(&memcg_oom_lock);
1532 for_each_mem_cgroup_tree(iter, memcg)
1533 iter->under_oom++;
1534 spin_unlock(&memcg_oom_lock);
1537 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1539 struct mem_cgroup *iter;
1542 * When a new child is created while the hierarchy is under oom,
1543 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1545 spin_lock(&memcg_oom_lock);
1546 for_each_mem_cgroup_tree(iter, memcg)
1547 if (iter->under_oom > 0)
1548 iter->under_oom--;
1549 spin_unlock(&memcg_oom_lock);
1552 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1554 struct oom_wait_info {
1555 struct mem_cgroup *memcg;
1556 wait_queue_t wait;
1559 static int memcg_oom_wake_function(wait_queue_t *wait,
1560 unsigned mode, int sync, void *arg)
1562 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1563 struct mem_cgroup *oom_wait_memcg;
1564 struct oom_wait_info *oom_wait_info;
1566 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1567 oom_wait_memcg = oom_wait_info->memcg;
1569 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1570 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1571 return 0;
1572 return autoremove_wake_function(wait, mode, sync, arg);
1575 static void memcg_oom_recover(struct mem_cgroup *memcg)
1578 * For the following lockless ->under_oom test, the only required
1579 * guarantee is that it must see the state asserted by an OOM when
1580 * this function is called as a result of userland actions
1581 * triggered by the notification of the OOM. This is trivially
1582 * achieved by invoking mem_cgroup_mark_under_oom() before
1583 * triggering notification.
1585 if (memcg && memcg->under_oom)
1586 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1589 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1591 if (!current->memcg_may_oom)
1592 return;
1594 * We are in the middle of the charge context here, so we
1595 * don't want to block when potentially sitting on a callstack
1596 * that holds all kinds of filesystem and mm locks.
1598 * Also, the caller may handle a failed allocation gracefully
1599 * (like optional page cache readahead) and so an OOM killer
1600 * invocation might not even be necessary.
1602 * That's why we don't do anything here except remember the
1603 * OOM context and then deal with it at the end of the page
1604 * fault when the stack is unwound, the locks are released,
1605 * and when we know whether the fault was overall successful.
1607 css_get(&memcg->css);
1608 current->memcg_in_oom = memcg;
1609 current->memcg_oom_gfp_mask = mask;
1610 current->memcg_oom_order = order;
1614 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1615 * @handle: actually kill/wait or just clean up the OOM state
1617 * This has to be called at the end of a page fault if the memcg OOM
1618 * handler was enabled.
1620 * Memcg supports userspace OOM handling where failed allocations must
1621 * sleep on a waitqueue until the userspace task resolves the
1622 * situation. Sleeping directly in the charge context with all kinds
1623 * of locks held is not a good idea, instead we remember an OOM state
1624 * in the task and mem_cgroup_oom_synchronize() has to be called at
1625 * the end of the page fault to complete the OOM handling.
1627 * Returns %true if an ongoing memcg OOM situation was detected and
1628 * completed, %false otherwise.
1630 bool mem_cgroup_oom_synchronize(bool handle)
1632 struct mem_cgroup *memcg = current->memcg_in_oom;
1633 struct oom_wait_info owait;
1634 bool locked;
1636 /* OOM is global, do not handle */
1637 if (!memcg)
1638 return false;
1640 if (!handle || oom_killer_disabled)
1641 goto cleanup;
1643 owait.memcg = memcg;
1644 owait.wait.flags = 0;
1645 owait.wait.func = memcg_oom_wake_function;
1646 owait.wait.private = current;
1647 INIT_LIST_HEAD(&owait.wait.task_list);
1649 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1650 mem_cgroup_mark_under_oom(memcg);
1652 locked = mem_cgroup_oom_trylock(memcg);
1654 if (locked)
1655 mem_cgroup_oom_notify(memcg);
1657 if (locked && !memcg->oom_kill_disable) {
1658 mem_cgroup_unmark_under_oom(memcg);
1659 finish_wait(&memcg_oom_waitq, &owait.wait);
1660 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1661 current->memcg_oom_order);
1662 } else {
1663 schedule();
1664 mem_cgroup_unmark_under_oom(memcg);
1665 finish_wait(&memcg_oom_waitq, &owait.wait);
1668 if (locked) {
1669 mem_cgroup_oom_unlock(memcg);
1671 * There is no guarantee that an OOM-lock contender
1672 * sees the wakeups triggered by the OOM kill
1673 * uncharges. Wake any sleepers explicitely.
1675 memcg_oom_recover(memcg);
1677 cleanup:
1678 current->memcg_in_oom = NULL;
1679 css_put(&memcg->css);
1680 return true;
1684 * lock_page_memcg - lock a page->mem_cgroup binding
1685 * @page: the page
1687 * This function protects unlocked LRU pages from being moved to
1688 * another cgroup and stabilizes their page->mem_cgroup binding.
1690 void lock_page_memcg(struct page *page)
1692 struct mem_cgroup *memcg;
1693 unsigned long flags;
1696 * The RCU lock is held throughout the transaction. The fast
1697 * path can get away without acquiring the memcg->move_lock
1698 * because page moving starts with an RCU grace period.
1700 rcu_read_lock();
1702 if (mem_cgroup_disabled())
1703 return;
1704 again:
1705 memcg = page->mem_cgroup;
1706 if (unlikely(!memcg))
1707 return;
1709 if (atomic_read(&memcg->moving_account) <= 0)
1710 return;
1712 spin_lock_irqsave(&memcg->move_lock, flags);
1713 if (memcg != page->mem_cgroup) {
1714 spin_unlock_irqrestore(&memcg->move_lock, flags);
1715 goto again;
1719 * When charge migration first begins, we can have locked and
1720 * unlocked page stat updates happening concurrently. Track
1721 * the task who has the lock for unlock_page_memcg().
1723 memcg->move_lock_task = current;
1724 memcg->move_lock_flags = flags;
1726 return;
1728 EXPORT_SYMBOL(lock_page_memcg);
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1734 void unlock_page_memcg(struct page *page)
1736 struct mem_cgroup *memcg = page->mem_cgroup;
1738 if (memcg && memcg->move_lock_task == current) {
1739 unsigned long flags = memcg->move_lock_flags;
1741 memcg->move_lock_task = NULL;
1742 memcg->move_lock_flags = 0;
1744 spin_unlock_irqrestore(&memcg->move_lock, flags);
1747 rcu_read_unlock();
1749 EXPORT_SYMBOL(unlock_page_memcg);
1752 * size of first charge trial. "32" comes from vmscan.c's magic value.
1753 * TODO: maybe necessary to use big numbers in big irons.
1755 #define CHARGE_BATCH 32U
1756 struct memcg_stock_pcp {
1757 struct mem_cgroup *cached; /* this never be root cgroup */
1758 unsigned int nr_pages;
1759 struct work_struct work;
1760 unsigned long flags;
1761 #define FLUSHING_CACHED_CHARGE 0
1763 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1764 static DEFINE_MUTEX(percpu_charge_mutex);
1767 * consume_stock: Try to consume stocked charge on this cpu.
1768 * @memcg: memcg to consume from.
1769 * @nr_pages: how many pages to charge.
1771 * The charges will only happen if @memcg matches the current cpu's memcg
1772 * stock, and at least @nr_pages are available in that stock. Failure to
1773 * service an allocation will refill the stock.
1775 * returns true if successful, false otherwise.
1777 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1779 struct memcg_stock_pcp *stock;
1780 bool ret = false;
1782 if (nr_pages > CHARGE_BATCH)
1783 return ret;
1785 stock = &get_cpu_var(memcg_stock);
1786 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1787 stock->nr_pages -= nr_pages;
1788 ret = true;
1790 put_cpu_var(memcg_stock);
1791 return ret;
1795 * Returns stocks cached in percpu and reset cached information.
1797 static void drain_stock(struct memcg_stock_pcp *stock)
1799 struct mem_cgroup *old = stock->cached;
1801 if (stock->nr_pages) {
1802 page_counter_uncharge(&old->memory, stock->nr_pages);
1803 if (do_memsw_account())
1804 page_counter_uncharge(&old->memsw, stock->nr_pages);
1805 css_put_many(&old->css, stock->nr_pages);
1806 stock->nr_pages = 0;
1808 stock->cached = NULL;
1812 * This must be called under preempt disabled or must be called by
1813 * a thread which is pinned to local cpu.
1815 static void drain_local_stock(struct work_struct *dummy)
1817 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1818 drain_stock(stock);
1819 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1823 * Cache charges(val) to local per_cpu area.
1824 * This will be consumed by consume_stock() function, later.
1826 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1828 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1830 if (stock->cached != memcg) { /* reset if necessary */
1831 drain_stock(stock);
1832 stock->cached = memcg;
1834 stock->nr_pages += nr_pages;
1835 put_cpu_var(memcg_stock);
1839 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1840 * of the hierarchy under it.
1842 static void drain_all_stock(struct mem_cgroup *root_memcg)
1844 int cpu, curcpu;
1846 /* If someone's already draining, avoid adding running more workers. */
1847 if (!mutex_trylock(&percpu_charge_mutex))
1848 return;
1849 /* Notify other cpus that system-wide "drain" is running */
1850 get_online_cpus();
1851 curcpu = get_cpu();
1852 for_each_online_cpu(cpu) {
1853 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1854 struct mem_cgroup *memcg;
1856 memcg = stock->cached;
1857 if (!memcg || !stock->nr_pages)
1858 continue;
1859 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1860 continue;
1861 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1862 if (cpu == curcpu)
1863 drain_local_stock(&stock->work);
1864 else
1865 schedule_work_on(cpu, &stock->work);
1868 put_cpu();
1869 put_online_cpus();
1870 mutex_unlock(&percpu_charge_mutex);
1873 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1874 unsigned long action,
1875 void *hcpu)
1877 int cpu = (unsigned long)hcpu;
1878 struct memcg_stock_pcp *stock;
1880 if (action == CPU_ONLINE)
1881 return NOTIFY_OK;
1883 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1884 return NOTIFY_OK;
1886 stock = &per_cpu(memcg_stock, cpu);
1887 drain_stock(stock);
1888 return NOTIFY_OK;
1891 static void reclaim_high(struct mem_cgroup *memcg,
1892 unsigned int nr_pages,
1893 gfp_t gfp_mask)
1895 do {
1896 if (page_counter_read(&memcg->memory) <= memcg->high)
1897 continue;
1898 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1899 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1900 } while ((memcg = parent_mem_cgroup(memcg)));
1903 static void high_work_func(struct work_struct *work)
1905 struct mem_cgroup *memcg;
1907 memcg = container_of(work, struct mem_cgroup, high_work);
1908 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1912 * Scheduled by try_charge() to be executed from the userland return path
1913 * and reclaims memory over the high limit.
1915 void mem_cgroup_handle_over_high(void)
1917 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1918 struct mem_cgroup *memcg;
1920 if (likely(!nr_pages))
1921 return;
1923 memcg = get_mem_cgroup_from_mm(current->mm);
1924 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1925 css_put(&memcg->css);
1926 current->memcg_nr_pages_over_high = 0;
1929 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1930 unsigned int nr_pages)
1932 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1933 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1934 struct mem_cgroup *mem_over_limit;
1935 struct page_counter *counter;
1936 unsigned long nr_reclaimed;
1937 bool may_swap = true;
1938 bool drained = false;
1940 if (mem_cgroup_is_root(memcg))
1941 return 0;
1942 retry:
1943 if (consume_stock(memcg, nr_pages))
1944 return 0;
1946 if (!do_memsw_account() ||
1947 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1948 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1949 goto done_restock;
1950 if (do_memsw_account())
1951 page_counter_uncharge(&memcg->memsw, batch);
1952 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1953 } else {
1954 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1955 may_swap = false;
1958 if (batch > nr_pages) {
1959 batch = nr_pages;
1960 goto retry;
1964 * Unlike in global OOM situations, memcg is not in a physical
1965 * memory shortage. Allow dying and OOM-killed tasks to
1966 * bypass the last charges so that they can exit quickly and
1967 * free their memory.
1969 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1970 fatal_signal_pending(current) ||
1971 current->flags & PF_EXITING))
1972 goto force;
1974 if (unlikely(task_in_memcg_oom(current)))
1975 goto nomem;
1977 if (!gfpflags_allow_blocking(gfp_mask))
1978 goto nomem;
1980 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1982 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1983 gfp_mask, may_swap);
1985 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1986 goto retry;
1988 if (!drained) {
1989 drain_all_stock(mem_over_limit);
1990 drained = true;
1991 goto retry;
1994 if (gfp_mask & __GFP_NORETRY)
1995 goto nomem;
1997 * Even though the limit is exceeded at this point, reclaim
1998 * may have been able to free some pages. Retry the charge
1999 * before killing the task.
2001 * Only for regular pages, though: huge pages are rather
2002 * unlikely to succeed so close to the limit, and we fall back
2003 * to regular pages anyway in case of failure.
2005 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2006 goto retry;
2008 * At task move, charge accounts can be doubly counted. So, it's
2009 * better to wait until the end of task_move if something is going on.
2011 if (mem_cgroup_wait_acct_move(mem_over_limit))
2012 goto retry;
2014 if (nr_retries--)
2015 goto retry;
2017 if (gfp_mask & __GFP_NOFAIL)
2018 goto force;
2020 if (fatal_signal_pending(current))
2021 goto force;
2023 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2025 mem_cgroup_oom(mem_over_limit, gfp_mask,
2026 get_order(nr_pages * PAGE_SIZE));
2027 nomem:
2028 if (!(gfp_mask & __GFP_NOFAIL))
2029 return -ENOMEM;
2030 force:
2032 * The allocation either can't fail or will lead to more memory
2033 * being freed very soon. Allow memory usage go over the limit
2034 * temporarily by force charging it.
2036 page_counter_charge(&memcg->memory, nr_pages);
2037 if (do_memsw_account())
2038 page_counter_charge(&memcg->memsw, nr_pages);
2039 css_get_many(&memcg->css, nr_pages);
2041 return 0;
2043 done_restock:
2044 css_get_many(&memcg->css, batch);
2045 if (batch > nr_pages)
2046 refill_stock(memcg, batch - nr_pages);
2049 * If the hierarchy is above the normal consumption range, schedule
2050 * reclaim on returning to userland. We can perform reclaim here
2051 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2052 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2053 * not recorded as it most likely matches current's and won't
2054 * change in the meantime. As high limit is checked again before
2055 * reclaim, the cost of mismatch is negligible.
2057 do {
2058 if (page_counter_read(&memcg->memory) > memcg->high) {
2059 /* Don't bother a random interrupted task */
2060 if (in_interrupt()) {
2061 schedule_work(&memcg->high_work);
2062 break;
2064 current->memcg_nr_pages_over_high += batch;
2065 set_notify_resume(current);
2066 break;
2068 } while ((memcg = parent_mem_cgroup(memcg)));
2070 return 0;
2073 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2075 if (mem_cgroup_is_root(memcg))
2076 return;
2078 page_counter_uncharge(&memcg->memory, nr_pages);
2079 if (do_memsw_account())
2080 page_counter_uncharge(&memcg->memsw, nr_pages);
2082 css_put_many(&memcg->css, nr_pages);
2085 static void lock_page_lru(struct page *page, int *isolated)
2087 struct zone *zone = page_zone(page);
2089 spin_lock_irq(&zone->lru_lock);
2090 if (PageLRU(page)) {
2091 struct lruvec *lruvec;
2093 lruvec = mem_cgroup_page_lruvec(page, zone);
2094 ClearPageLRU(page);
2095 del_page_from_lru_list(page, lruvec, page_lru(page));
2096 *isolated = 1;
2097 } else
2098 *isolated = 0;
2101 static void unlock_page_lru(struct page *page, int isolated)
2103 struct zone *zone = page_zone(page);
2105 if (isolated) {
2106 struct lruvec *lruvec;
2108 lruvec = mem_cgroup_page_lruvec(page, zone);
2109 VM_BUG_ON_PAGE(PageLRU(page), page);
2110 SetPageLRU(page);
2111 add_page_to_lru_list(page, lruvec, page_lru(page));
2113 spin_unlock_irq(&zone->lru_lock);
2116 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2117 bool lrucare)
2119 int isolated;
2121 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2124 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2125 * may already be on some other mem_cgroup's LRU. Take care of it.
2127 if (lrucare)
2128 lock_page_lru(page, &isolated);
2131 * Nobody should be changing or seriously looking at
2132 * page->mem_cgroup at this point:
2134 * - the page is uncharged
2136 * - the page is off-LRU
2138 * - an anonymous fault has exclusive page access, except for
2139 * a locked page table
2141 * - a page cache insertion, a swapin fault, or a migration
2142 * have the page locked
2144 page->mem_cgroup = memcg;
2146 if (lrucare)
2147 unlock_page_lru(page, isolated);
2150 #ifndef CONFIG_SLOB
2151 static int memcg_alloc_cache_id(void)
2153 int id, size;
2154 int err;
2156 id = ida_simple_get(&memcg_cache_ida,
2157 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2158 if (id < 0)
2159 return id;
2161 if (id < memcg_nr_cache_ids)
2162 return id;
2165 * There's no space for the new id in memcg_caches arrays,
2166 * so we have to grow them.
2168 down_write(&memcg_cache_ids_sem);
2170 size = 2 * (id + 1);
2171 if (size < MEMCG_CACHES_MIN_SIZE)
2172 size = MEMCG_CACHES_MIN_SIZE;
2173 else if (size > MEMCG_CACHES_MAX_SIZE)
2174 size = MEMCG_CACHES_MAX_SIZE;
2176 err = memcg_update_all_caches(size);
2177 if (!err)
2178 err = memcg_update_all_list_lrus(size);
2179 if (!err)
2180 memcg_nr_cache_ids = size;
2182 up_write(&memcg_cache_ids_sem);
2184 if (err) {
2185 ida_simple_remove(&memcg_cache_ida, id);
2186 return err;
2188 return id;
2191 static void memcg_free_cache_id(int id)
2193 ida_simple_remove(&memcg_cache_ida, id);
2196 struct memcg_kmem_cache_create_work {
2197 struct mem_cgroup *memcg;
2198 struct kmem_cache *cachep;
2199 struct work_struct work;
2202 static void memcg_kmem_cache_create_func(struct work_struct *w)
2204 struct memcg_kmem_cache_create_work *cw =
2205 container_of(w, struct memcg_kmem_cache_create_work, work);
2206 struct mem_cgroup *memcg = cw->memcg;
2207 struct kmem_cache *cachep = cw->cachep;
2209 memcg_create_kmem_cache(memcg, cachep);
2211 css_put(&memcg->css);
2212 kfree(cw);
2216 * Enqueue the creation of a per-memcg kmem_cache.
2218 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2219 struct kmem_cache *cachep)
2221 struct memcg_kmem_cache_create_work *cw;
2223 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2224 if (!cw)
2225 return;
2227 css_get(&memcg->css);
2229 cw->memcg = memcg;
2230 cw->cachep = cachep;
2231 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2233 schedule_work(&cw->work);
2236 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2237 struct kmem_cache *cachep)
2240 * We need to stop accounting when we kmalloc, because if the
2241 * corresponding kmalloc cache is not yet created, the first allocation
2242 * in __memcg_schedule_kmem_cache_create will recurse.
2244 * However, it is better to enclose the whole function. Depending on
2245 * the debugging options enabled, INIT_WORK(), for instance, can
2246 * trigger an allocation. This too, will make us recurse. Because at
2247 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2248 * the safest choice is to do it like this, wrapping the whole function.
2250 current->memcg_kmem_skip_account = 1;
2251 __memcg_schedule_kmem_cache_create(memcg, cachep);
2252 current->memcg_kmem_skip_account = 0;
2256 * Return the kmem_cache we're supposed to use for a slab allocation.
2257 * We try to use the current memcg's version of the cache.
2259 * If the cache does not exist yet, if we are the first user of it,
2260 * we either create it immediately, if possible, or create it asynchronously
2261 * in a workqueue.
2262 * In the latter case, we will let the current allocation go through with
2263 * the original cache.
2265 * Can't be called in interrupt context or from kernel threads.
2266 * This function needs to be called with rcu_read_lock() held.
2268 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2270 struct mem_cgroup *memcg;
2271 struct kmem_cache *memcg_cachep;
2272 int kmemcg_id;
2274 VM_BUG_ON(!is_root_cache(cachep));
2276 if (cachep->flags & SLAB_ACCOUNT)
2277 gfp |= __GFP_ACCOUNT;
2279 if (!(gfp & __GFP_ACCOUNT))
2280 return cachep;
2282 if (current->memcg_kmem_skip_account)
2283 return cachep;
2285 memcg = get_mem_cgroup_from_mm(current->mm);
2286 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2287 if (kmemcg_id < 0)
2288 goto out;
2290 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2291 if (likely(memcg_cachep))
2292 return memcg_cachep;
2295 * If we are in a safe context (can wait, and not in interrupt
2296 * context), we could be be predictable and return right away.
2297 * This would guarantee that the allocation being performed
2298 * already belongs in the new cache.
2300 * However, there are some clashes that can arrive from locking.
2301 * For instance, because we acquire the slab_mutex while doing
2302 * memcg_create_kmem_cache, this means no further allocation
2303 * could happen with the slab_mutex held. So it's better to
2304 * defer everything.
2306 memcg_schedule_kmem_cache_create(memcg, cachep);
2307 out:
2308 css_put(&memcg->css);
2309 return cachep;
2312 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2314 if (!is_root_cache(cachep))
2315 css_put(&cachep->memcg_params.memcg->css);
2318 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
2323 int ret;
2325 ret = try_charge(memcg, gfp, nr_pages);
2326 if (ret)
2327 return ret;
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
2335 page->mem_cgroup = memcg;
2337 return 0;
2340 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2345 memcg = get_mem_cgroup_from_mm(current->mm);
2346 if (!mem_cgroup_is_root(memcg))
2347 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2348 css_put(&memcg->css);
2349 return ret;
2352 void __memcg_kmem_uncharge(struct page *page, int order)
2354 struct mem_cgroup *memcg = page->mem_cgroup;
2355 unsigned int nr_pages = 1 << order;
2357 if (!memcg)
2358 return;
2360 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2362 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2363 page_counter_uncharge(&memcg->kmem, nr_pages);
2365 page_counter_uncharge(&memcg->memory, nr_pages);
2366 if (do_memsw_account())
2367 page_counter_uncharge(&memcg->memsw, nr_pages);
2369 page->mem_cgroup = NULL;
2370 css_put_many(&memcg->css, nr_pages);
2372 #endif /* !CONFIG_SLOB */
2374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2377 * Because tail pages are not marked as "used", set it. We're under
2378 * zone->lru_lock and migration entries setup in all page mappings.
2380 void mem_cgroup_split_huge_fixup(struct page *head)
2382 int i;
2384 if (mem_cgroup_disabled())
2385 return;
2387 for (i = 1; i < HPAGE_PMD_NR; i++)
2388 head[i].mem_cgroup = head->mem_cgroup;
2390 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2391 HPAGE_PMD_NR);
2393 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2395 #ifdef CONFIG_MEMCG_SWAP
2396 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2397 bool charge)
2399 int val = (charge) ? 1 : -1;
2400 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2404 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2405 * @entry: swap entry to be moved
2406 * @from: mem_cgroup which the entry is moved from
2407 * @to: mem_cgroup which the entry is moved to
2409 * It succeeds only when the swap_cgroup's record for this entry is the same
2410 * as the mem_cgroup's id of @from.
2412 * Returns 0 on success, -EINVAL on failure.
2414 * The caller must have charged to @to, IOW, called page_counter_charge() about
2415 * both res and memsw, and called css_get().
2417 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2418 struct mem_cgroup *from, struct mem_cgroup *to)
2420 unsigned short old_id, new_id;
2422 old_id = mem_cgroup_id(from);
2423 new_id = mem_cgroup_id(to);
2425 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2426 mem_cgroup_swap_statistics(from, false);
2427 mem_cgroup_swap_statistics(to, true);
2428 return 0;
2430 return -EINVAL;
2432 #else
2433 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2436 return -EINVAL;
2438 #endif
2440 static DEFINE_MUTEX(memcg_limit_mutex);
2442 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2443 unsigned long limit)
2445 unsigned long curusage;
2446 unsigned long oldusage;
2447 bool enlarge = false;
2448 int retry_count;
2449 int ret;
2452 * For keeping hierarchical_reclaim simple, how long we should retry
2453 * is depends on callers. We set our retry-count to be function
2454 * of # of children which we should visit in this loop.
2456 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2457 mem_cgroup_count_children(memcg);
2459 oldusage = page_counter_read(&memcg->memory);
2461 do {
2462 if (signal_pending(current)) {
2463 ret = -EINTR;
2464 break;
2467 mutex_lock(&memcg_limit_mutex);
2468 if (limit > memcg->memsw.limit) {
2469 mutex_unlock(&memcg_limit_mutex);
2470 ret = -EINVAL;
2471 break;
2473 if (limit > memcg->memory.limit)
2474 enlarge = true;
2475 ret = page_counter_limit(&memcg->memory, limit);
2476 mutex_unlock(&memcg_limit_mutex);
2478 if (!ret)
2479 break;
2481 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2483 curusage = page_counter_read(&memcg->memory);
2484 /* Usage is reduced ? */
2485 if (curusage >= oldusage)
2486 retry_count--;
2487 else
2488 oldusage = curusage;
2489 } while (retry_count);
2491 if (!ret && enlarge)
2492 memcg_oom_recover(memcg);
2494 return ret;
2497 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2498 unsigned long limit)
2500 unsigned long curusage;
2501 unsigned long oldusage;
2502 bool enlarge = false;
2503 int retry_count;
2504 int ret;
2506 /* see mem_cgroup_resize_res_limit */
2507 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2508 mem_cgroup_count_children(memcg);
2510 oldusage = page_counter_read(&memcg->memsw);
2512 do {
2513 if (signal_pending(current)) {
2514 ret = -EINTR;
2515 break;
2518 mutex_lock(&memcg_limit_mutex);
2519 if (limit < memcg->memory.limit) {
2520 mutex_unlock(&memcg_limit_mutex);
2521 ret = -EINVAL;
2522 break;
2524 if (limit > memcg->memsw.limit)
2525 enlarge = true;
2526 ret = page_counter_limit(&memcg->memsw, limit);
2527 mutex_unlock(&memcg_limit_mutex);
2529 if (!ret)
2530 break;
2532 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2534 curusage = page_counter_read(&memcg->memsw);
2535 /* Usage is reduced ? */
2536 if (curusage >= oldusage)
2537 retry_count--;
2538 else
2539 oldusage = curusage;
2540 } while (retry_count);
2542 if (!ret && enlarge)
2543 memcg_oom_recover(memcg);
2545 return ret;
2548 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2549 gfp_t gfp_mask,
2550 unsigned long *total_scanned)
2552 unsigned long nr_reclaimed = 0;
2553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2554 unsigned long reclaimed;
2555 int loop = 0;
2556 struct mem_cgroup_tree_per_zone *mctz;
2557 unsigned long excess;
2558 unsigned long nr_scanned;
2560 if (order > 0)
2561 return 0;
2563 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2565 * This loop can run a while, specially if mem_cgroup's continuously
2566 * keep exceeding their soft limit and putting the system under
2567 * pressure
2569 do {
2570 if (next_mz)
2571 mz = next_mz;
2572 else
2573 mz = mem_cgroup_largest_soft_limit_node(mctz);
2574 if (!mz)
2575 break;
2577 nr_scanned = 0;
2578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2579 gfp_mask, &nr_scanned);
2580 nr_reclaimed += reclaimed;
2581 *total_scanned += nr_scanned;
2582 spin_lock_irq(&mctz->lock);
2583 __mem_cgroup_remove_exceeded(mz, mctz);
2586 * If we failed to reclaim anything from this memory cgroup
2587 * it is time to move on to the next cgroup
2589 next_mz = NULL;
2590 if (!reclaimed)
2591 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2593 excess = soft_limit_excess(mz->memcg);
2595 * One school of thought says that we should not add
2596 * back the node to the tree if reclaim returns 0.
2597 * But our reclaim could return 0, simply because due
2598 * to priority we are exposing a smaller subset of
2599 * memory to reclaim from. Consider this as a longer
2600 * term TODO.
2602 /* If excess == 0, no tree ops */
2603 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2604 spin_unlock_irq(&mctz->lock);
2605 css_put(&mz->memcg->css);
2606 loop++;
2608 * Could not reclaim anything and there are no more
2609 * mem cgroups to try or we seem to be looping without
2610 * reclaiming anything.
2612 if (!nr_reclaimed &&
2613 (next_mz == NULL ||
2614 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2615 break;
2616 } while (!nr_reclaimed);
2617 if (next_mz)
2618 css_put(&next_mz->memcg->css);
2619 return nr_reclaimed;
2623 * Test whether @memcg has children, dead or alive. Note that this
2624 * function doesn't care whether @memcg has use_hierarchy enabled and
2625 * returns %true if there are child csses according to the cgroup
2626 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2628 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2630 bool ret;
2632 rcu_read_lock();
2633 ret = css_next_child(NULL, &memcg->css);
2634 rcu_read_unlock();
2635 return ret;
2639 * Reclaims as many pages from the given memcg as possible and moves
2640 * the rest to the parent.
2642 * Caller is responsible for holding css reference for memcg.
2644 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
2650 /* try to free all pages in this cgroup */
2651 while (nr_retries && page_counter_read(&memcg->memory)) {
2652 int progress;
2654 if (signal_pending(current))
2655 return -EINTR;
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
2659 if (!progress) {
2660 nr_retries--;
2661 /* maybe some writeback is necessary */
2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
2667 return 0;
2670 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
2681 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
2684 return mem_cgroup_from_css(css)->use_hierarchy;
2687 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
2690 int retval = 0;
2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2694 if (memcg->use_hierarchy == val)
2695 return 0;
2698 * If parent's use_hierarchy is set, we can't make any modifications
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2706 (val == 1 || val == 0)) {
2707 if (!memcg_has_children(memcg))
2708 memcg->use_hierarchy = val;
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
2714 return retval;
2717 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2719 struct mem_cgroup *iter;
2720 int i;
2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2730 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2732 struct mem_cgroup *iter;
2733 int i;
2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2743 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2745 unsigned long val = 0;
2747 if (mem_cgroup_is_root(memcg)) {
2748 struct mem_cgroup *iter;
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2759 } else {
2760 if (!swap)
2761 val = page_counter_read(&memcg->memory);
2762 else
2763 val = page_counter_read(&memcg->memsw);
2765 return val;
2768 enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2776 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2777 struct cftype *cft)
2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2780 struct page_counter *counter;
2782 switch (MEMFILE_TYPE(cft->private)) {
2783 case _MEM:
2784 counter = &memcg->memory;
2785 break;
2786 case _MEMSWAP:
2787 counter = &memcg->memsw;
2788 break;
2789 case _KMEM:
2790 counter = &memcg->kmem;
2791 break;
2792 case _TCP:
2793 counter = &memcg->tcpmem;
2794 break;
2795 default:
2796 BUG();
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2803 if (counter == &memcg->memsw)
2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2819 #ifndef CONFIG_SLOB
2820 static int memcg_online_kmem(struct mem_cgroup *memcg)
2822 int memcg_id;
2824 if (cgroup_memory_nokmem)
2825 return 0;
2827 BUG_ON(memcg->kmemcg_id >= 0);
2828 BUG_ON(memcg->kmem_state);
2830 memcg_id = memcg_alloc_cache_id();
2831 if (memcg_id < 0)
2832 return memcg_id;
2834 static_branch_inc(&memcg_kmem_enabled_key);
2836 * A memory cgroup is considered kmem-online as soon as it gets
2837 * kmemcg_id. Setting the id after enabling static branching will
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2841 memcg->kmemcg_id = memcg_id;
2842 memcg->kmem_state = KMEM_ONLINE;
2844 return 0;
2847 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2861 memcg->kmem_state = KMEM_ALLOCATED;
2863 memcg_deactivate_kmem_caches(memcg);
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2889 memcg_free_cache_id(kmemcg_id);
2892 static void memcg_free_kmem(struct mem_cgroup *memcg)
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2904 #else
2905 static int memcg_online_kmem(struct mem_cgroup *memcg)
2907 return 0;
2909 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2912 static void memcg_free_kmem(struct mem_cgroup *memcg)
2915 #endif /* !CONFIG_SLOB */
2917 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2918 unsigned long limit)
2920 int ret;
2922 mutex_lock(&memcg_limit_mutex);
2923 ret = page_counter_limit(&memcg->kmem, limit);
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
2928 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2930 int ret;
2932 mutex_lock(&memcg_limit_mutex);
2934 ret = page_counter_limit(&memcg->tcpmem, limit);
2935 if (ret)
2936 goto out;
2938 if (!memcg->tcpmem_active) {
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2942 * function is the last one to run. See sock_update_memcg() for
2943 * details, and note that we don't mark any socket as belonging
2944 * to this memcg until that flag is up.
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2951 * We never race with the readers in sock_update_memcg(),
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2955 static_branch_inc(&memcg_sockets_enabled_key);
2956 memcg->tcpmem_active = true;
2958 out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2964 * The user of this function is...
2965 * RES_LIMIT.
2967 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2971 unsigned long nr_pages;
2972 int ret;
2974 buf = strstrip(buf);
2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
2976 if (ret)
2977 return ret;
2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2980 case RES_LIMIT:
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2988 break;
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2991 break;
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3005 return ret ?: nbytes;
3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 case _TCP:
3025 counter = &memcg->tcpmem;
3026 break;
3027 default:
3028 BUG();
3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3032 case RES_MAX_USAGE:
3033 page_counter_reset_watermark(counter);
3034 break;
3035 case RES_FAILCNT:
3036 counter->failcnt = 0;
3037 break;
3038 default:
3039 BUG();
3042 return nbytes;
3045 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3046 struct cftype *cft)
3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3051 #ifdef CONFIG_MMU
3052 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3053 struct cftype *cft, u64 val)
3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3057 if (val & ~MOVE_MASK)
3058 return -EINVAL;
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
3066 memcg->move_charge_at_immigrate = val;
3067 return 0;
3069 #else
3070 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3071 struct cftype *cft, u64 val)
3073 return -ENOSYS;
3075 #endif
3077 #ifdef CONFIG_NUMA
3078 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3091 const struct numa_stat *stat;
3092 int nid;
3093 unsigned long nr;
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3104 seq_putc(m, '\n');
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3121 seq_putc(m, '\n');
3124 return 0;
3126 #endif /* CONFIG_NUMA */
3128 static int memcg_stat_show(struct seq_file *m, void *v)
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3131 unsigned long memory, memsw;
3132 struct mem_cgroup *mi;
3133 unsigned int i;
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3143 continue;
3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3156 /* Hierarchical information */
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
3164 if (do_memsw_account())
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3169 unsigned long long val = 0;
3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3172 continue;
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3195 #ifdef CONFIG_DEBUG_VM
3197 int nid, zid;
3198 struct mem_cgroup_per_zone *mz;
3199 struct zone_reclaim_stat *rstat;
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3203 for_each_online_node(nid)
3204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3205 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3206 rstat = &mz->lruvec.reclaim_stat;
3208 recent_rotated[0] += rstat->recent_rotated[0];
3209 recent_rotated[1] += rstat->recent_rotated[1];
3210 recent_scanned[0] += rstat->recent_scanned[0];
3211 recent_scanned[1] += rstat->recent_scanned[1];
3213 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3214 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3215 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3216 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3218 #endif
3220 return 0;
3223 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3224 struct cftype *cft)
3226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3228 return mem_cgroup_swappiness(memcg);
3231 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3232 struct cftype *cft, u64 val)
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3236 if (val > 100)
3237 return -EINVAL;
3239 if (css->parent)
3240 memcg->swappiness = val;
3241 else
3242 vm_swappiness = val;
3244 return 0;
3247 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3249 struct mem_cgroup_threshold_ary *t;
3250 unsigned long usage;
3251 int i;
3253 rcu_read_lock();
3254 if (!swap)
3255 t = rcu_dereference(memcg->thresholds.primary);
3256 else
3257 t = rcu_dereference(memcg->memsw_thresholds.primary);
3259 if (!t)
3260 goto unlock;
3262 usage = mem_cgroup_usage(memcg, swap);
3265 * current_threshold points to threshold just below or equal to usage.
3266 * If it's not true, a threshold was crossed after last
3267 * call of __mem_cgroup_threshold().
3269 i = t->current_threshold;
3272 * Iterate backward over array of thresholds starting from
3273 * current_threshold and check if a threshold is crossed.
3274 * If none of thresholds below usage is crossed, we read
3275 * only one element of the array here.
3277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3278 eventfd_signal(t->entries[i].eventfd, 1);
3280 /* i = current_threshold + 1 */
3281 i++;
3284 * Iterate forward over array of thresholds starting from
3285 * current_threshold+1 and check if a threshold is crossed.
3286 * If none of thresholds above usage is crossed, we read
3287 * only one element of the array here.
3289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3290 eventfd_signal(t->entries[i].eventfd, 1);
3292 /* Update current_threshold */
3293 t->current_threshold = i - 1;
3294 unlock:
3295 rcu_read_unlock();
3298 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3300 while (memcg) {
3301 __mem_cgroup_threshold(memcg, false);
3302 if (do_memsw_account())
3303 __mem_cgroup_threshold(memcg, true);
3305 memcg = parent_mem_cgroup(memcg);
3309 static int compare_thresholds(const void *a, const void *b)
3311 const struct mem_cgroup_threshold *_a = a;
3312 const struct mem_cgroup_threshold *_b = b;
3314 if (_a->threshold > _b->threshold)
3315 return 1;
3317 if (_a->threshold < _b->threshold)
3318 return -1;
3320 return 0;
3323 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3325 struct mem_cgroup_eventfd_list *ev;
3327 spin_lock(&memcg_oom_lock);
3329 list_for_each_entry(ev, &memcg->oom_notify, list)
3330 eventfd_signal(ev->eventfd, 1);
3332 spin_unlock(&memcg_oom_lock);
3333 return 0;
3336 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3338 struct mem_cgroup *iter;
3340 for_each_mem_cgroup_tree(iter, memcg)
3341 mem_cgroup_oom_notify_cb(iter);
3344 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3345 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3347 struct mem_cgroup_thresholds *thresholds;
3348 struct mem_cgroup_threshold_ary *new;
3349 unsigned long threshold;
3350 unsigned long usage;
3351 int i, size, ret;
3353 ret = page_counter_memparse(args, "-1", &threshold);
3354 if (ret)
3355 return ret;
3357 mutex_lock(&memcg->thresholds_lock);
3359 if (type == _MEM) {
3360 thresholds = &memcg->thresholds;
3361 usage = mem_cgroup_usage(memcg, false);
3362 } else if (type == _MEMSWAP) {
3363 thresholds = &memcg->memsw_thresholds;
3364 usage = mem_cgroup_usage(memcg, true);
3365 } else
3366 BUG();
3368 /* Check if a threshold crossed before adding a new one */
3369 if (thresholds->primary)
3370 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3372 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3374 /* Allocate memory for new array of thresholds */
3375 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3376 GFP_KERNEL);
3377 if (!new) {
3378 ret = -ENOMEM;
3379 goto unlock;
3381 new->size = size;
3383 /* Copy thresholds (if any) to new array */
3384 if (thresholds->primary) {
3385 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3386 sizeof(struct mem_cgroup_threshold));
3389 /* Add new threshold */
3390 new->entries[size - 1].eventfd = eventfd;
3391 new->entries[size - 1].threshold = threshold;
3393 /* Sort thresholds. Registering of new threshold isn't time-critical */
3394 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3395 compare_thresholds, NULL);
3397 /* Find current threshold */
3398 new->current_threshold = -1;
3399 for (i = 0; i < size; i++) {
3400 if (new->entries[i].threshold <= usage) {
3402 * new->current_threshold will not be used until
3403 * rcu_assign_pointer(), so it's safe to increment
3404 * it here.
3406 ++new->current_threshold;
3407 } else
3408 break;
3411 /* Free old spare buffer and save old primary buffer as spare */
3412 kfree(thresholds->spare);
3413 thresholds->spare = thresholds->primary;
3415 rcu_assign_pointer(thresholds->primary, new);
3417 /* To be sure that nobody uses thresholds */
3418 synchronize_rcu();
3420 unlock:
3421 mutex_unlock(&memcg->thresholds_lock);
3423 return ret;
3426 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3427 struct eventfd_ctx *eventfd, const char *args)
3429 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3432 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3433 struct eventfd_ctx *eventfd, const char *args)
3435 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3438 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3439 struct eventfd_ctx *eventfd, enum res_type type)
3441 struct mem_cgroup_thresholds *thresholds;
3442 struct mem_cgroup_threshold_ary *new;
3443 unsigned long usage;
3444 int i, j, size;
3446 mutex_lock(&memcg->thresholds_lock);
3448 if (type == _MEM) {
3449 thresholds = &memcg->thresholds;
3450 usage = mem_cgroup_usage(memcg, false);
3451 } else if (type == _MEMSWAP) {
3452 thresholds = &memcg->memsw_thresholds;
3453 usage = mem_cgroup_usage(memcg, true);
3454 } else
3455 BUG();
3457 if (!thresholds->primary)
3458 goto unlock;
3460 /* Check if a threshold crossed before removing */
3461 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3463 /* Calculate new number of threshold */
3464 size = 0;
3465 for (i = 0; i < thresholds->primary->size; i++) {
3466 if (thresholds->primary->entries[i].eventfd != eventfd)
3467 size++;
3470 new = thresholds->spare;
3472 /* Set thresholds array to NULL if we don't have thresholds */
3473 if (!size) {
3474 kfree(new);
3475 new = NULL;
3476 goto swap_buffers;
3479 new->size = size;
3481 /* Copy thresholds and find current threshold */
3482 new->current_threshold = -1;
3483 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3484 if (thresholds->primary->entries[i].eventfd == eventfd)
3485 continue;
3487 new->entries[j] = thresholds->primary->entries[i];
3488 if (new->entries[j].threshold <= usage) {
3490 * new->current_threshold will not be used
3491 * until rcu_assign_pointer(), so it's safe to increment
3492 * it here.
3494 ++new->current_threshold;
3496 j++;
3499 swap_buffers:
3500 /* Swap primary and spare array */
3501 thresholds->spare = thresholds->primary;
3503 rcu_assign_pointer(thresholds->primary, new);
3505 /* To be sure that nobody uses thresholds */
3506 synchronize_rcu();
3508 /* If all events are unregistered, free the spare array */
3509 if (!new) {
3510 kfree(thresholds->spare);
3511 thresholds->spare = NULL;
3513 unlock:
3514 mutex_unlock(&memcg->thresholds_lock);
3517 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3518 struct eventfd_ctx *eventfd)
3520 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3523 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3524 struct eventfd_ctx *eventfd)
3526 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3529 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3530 struct eventfd_ctx *eventfd, const char *args)
3532 struct mem_cgroup_eventfd_list *event;
3534 event = kmalloc(sizeof(*event), GFP_KERNEL);
3535 if (!event)
3536 return -ENOMEM;
3538 spin_lock(&memcg_oom_lock);
3540 event->eventfd = eventfd;
3541 list_add(&event->list, &memcg->oom_notify);
3543 /* already in OOM ? */
3544 if (memcg->under_oom)
3545 eventfd_signal(eventfd, 1);
3546 spin_unlock(&memcg_oom_lock);
3548 return 0;
3551 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3552 struct eventfd_ctx *eventfd)
3554 struct mem_cgroup_eventfd_list *ev, *tmp;
3556 spin_lock(&memcg_oom_lock);
3558 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3559 if (ev->eventfd == eventfd) {
3560 list_del(&ev->list);
3561 kfree(ev);
3565 spin_unlock(&memcg_oom_lock);
3568 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3570 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3572 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3573 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3574 return 0;
3577 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3578 struct cftype *cft, u64 val)
3580 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582 /* cannot set to root cgroup and only 0 and 1 are allowed */
3583 if (!css->parent || !((val == 0) || (val == 1)))
3584 return -EINVAL;
3586 memcg->oom_kill_disable = val;
3587 if (!val)
3588 memcg_oom_recover(memcg);
3590 return 0;
3593 #ifdef CONFIG_CGROUP_WRITEBACK
3595 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3597 return &memcg->cgwb_list;
3600 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3602 return wb_domain_init(&memcg->cgwb_domain, gfp);
3605 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3607 wb_domain_exit(&memcg->cgwb_domain);
3610 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3612 wb_domain_size_changed(&memcg->cgwb_domain);
3615 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3617 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3619 if (!memcg->css.parent)
3620 return NULL;
3622 return &memcg->cgwb_domain;
3626 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3627 * @wb: bdi_writeback in question
3628 * @pfilepages: out parameter for number of file pages
3629 * @pheadroom: out parameter for number of allocatable pages according to memcg
3630 * @pdirty: out parameter for number of dirty pages
3631 * @pwriteback: out parameter for number of pages under writeback
3633 * Determine the numbers of file, headroom, dirty, and writeback pages in
3634 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3635 * is a bit more involved.
3637 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3638 * headroom is calculated as the lowest headroom of itself and the
3639 * ancestors. Note that this doesn't consider the actual amount of
3640 * available memory in the system. The caller should further cap
3641 * *@pheadroom accordingly.
3643 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3644 unsigned long *pheadroom, unsigned long *pdirty,
3645 unsigned long *pwriteback)
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3648 struct mem_cgroup *parent;
3650 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3652 /* this should eventually include NR_UNSTABLE_NFS */
3653 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3654 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3655 (1 << LRU_ACTIVE_FILE));
3656 *pheadroom = PAGE_COUNTER_MAX;
3658 while ((parent = parent_mem_cgroup(memcg))) {
3659 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3660 unsigned long used = page_counter_read(&memcg->memory);
3662 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3663 memcg = parent;
3667 #else /* CONFIG_CGROUP_WRITEBACK */
3669 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3671 return 0;
3674 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3678 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3682 #endif /* CONFIG_CGROUP_WRITEBACK */
3685 * DO NOT USE IN NEW FILES.
3687 * "cgroup.event_control" implementation.
3689 * This is way over-engineered. It tries to support fully configurable
3690 * events for each user. Such level of flexibility is completely
3691 * unnecessary especially in the light of the planned unified hierarchy.
3693 * Please deprecate this and replace with something simpler if at all
3694 * possible.
3698 * Unregister event and free resources.
3700 * Gets called from workqueue.
3702 static void memcg_event_remove(struct work_struct *work)
3704 struct mem_cgroup_event *event =
3705 container_of(work, struct mem_cgroup_event, remove);
3706 struct mem_cgroup *memcg = event->memcg;
3708 remove_wait_queue(event->wqh, &event->wait);
3710 event->unregister_event(memcg, event->eventfd);
3712 /* Notify userspace the event is going away. */
3713 eventfd_signal(event->eventfd, 1);
3715 eventfd_ctx_put(event->eventfd);
3716 kfree(event);
3717 css_put(&memcg->css);
3721 * Gets called on POLLHUP on eventfd when user closes it.
3723 * Called with wqh->lock held and interrupts disabled.
3725 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3726 int sync, void *key)
3728 struct mem_cgroup_event *event =
3729 container_of(wait, struct mem_cgroup_event, wait);
3730 struct mem_cgroup *memcg = event->memcg;
3731 unsigned long flags = (unsigned long)key;
3733 if (flags & POLLHUP) {
3735 * If the event has been detached at cgroup removal, we
3736 * can simply return knowing the other side will cleanup
3737 * for us.
3739 * We can't race against event freeing since the other
3740 * side will require wqh->lock via remove_wait_queue(),
3741 * which we hold.
3743 spin_lock(&memcg->event_list_lock);
3744 if (!list_empty(&event->list)) {
3745 list_del_init(&event->list);
3747 * We are in atomic context, but cgroup_event_remove()
3748 * may sleep, so we have to call it in workqueue.
3750 schedule_work(&event->remove);
3752 spin_unlock(&memcg->event_list_lock);
3755 return 0;
3758 static void memcg_event_ptable_queue_proc(struct file *file,
3759 wait_queue_head_t *wqh, poll_table *pt)
3761 struct mem_cgroup_event *event =
3762 container_of(pt, struct mem_cgroup_event, pt);
3764 event->wqh = wqh;
3765 add_wait_queue(wqh, &event->wait);
3769 * DO NOT USE IN NEW FILES.
3771 * Parse input and register new cgroup event handler.
3773 * Input must be in format '<event_fd> <control_fd> <args>'.
3774 * Interpretation of args is defined by control file implementation.
3776 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3777 char *buf, size_t nbytes, loff_t off)
3779 struct cgroup_subsys_state *css = of_css(of);
3780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3781 struct mem_cgroup_event *event;
3782 struct cgroup_subsys_state *cfile_css;
3783 unsigned int efd, cfd;
3784 struct fd efile;
3785 struct fd cfile;
3786 const char *name;
3787 char *endp;
3788 int ret;
3790 buf = strstrip(buf);
3792 efd = simple_strtoul(buf, &endp, 10);
3793 if (*endp != ' ')
3794 return -EINVAL;
3795 buf = endp + 1;
3797 cfd = simple_strtoul(buf, &endp, 10);
3798 if ((*endp != ' ') && (*endp != '\0'))
3799 return -EINVAL;
3800 buf = endp + 1;
3802 event = kzalloc(sizeof(*event), GFP_KERNEL);
3803 if (!event)
3804 return -ENOMEM;
3806 event->memcg = memcg;
3807 INIT_LIST_HEAD(&event->list);
3808 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3809 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3810 INIT_WORK(&event->remove, memcg_event_remove);
3812 efile = fdget(efd);
3813 if (!efile.file) {
3814 ret = -EBADF;
3815 goto out_kfree;
3818 event->eventfd = eventfd_ctx_fileget(efile.file);
3819 if (IS_ERR(event->eventfd)) {
3820 ret = PTR_ERR(event->eventfd);
3821 goto out_put_efile;
3824 cfile = fdget(cfd);
3825 if (!cfile.file) {
3826 ret = -EBADF;
3827 goto out_put_eventfd;
3830 /* the process need read permission on control file */
3831 /* AV: shouldn't we check that it's been opened for read instead? */
3832 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3833 if (ret < 0)
3834 goto out_put_cfile;
3837 * Determine the event callbacks and set them in @event. This used
3838 * to be done via struct cftype but cgroup core no longer knows
3839 * about these events. The following is crude but the whole thing
3840 * is for compatibility anyway.
3842 * DO NOT ADD NEW FILES.
3844 name = cfile.file->f_path.dentry->d_name.name;
3846 if (!strcmp(name, "memory.usage_in_bytes")) {
3847 event->register_event = mem_cgroup_usage_register_event;
3848 event->unregister_event = mem_cgroup_usage_unregister_event;
3849 } else if (!strcmp(name, "memory.oom_control")) {
3850 event->register_event = mem_cgroup_oom_register_event;
3851 event->unregister_event = mem_cgroup_oom_unregister_event;
3852 } else if (!strcmp(name, "memory.pressure_level")) {
3853 event->register_event = vmpressure_register_event;
3854 event->unregister_event = vmpressure_unregister_event;
3855 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3856 event->register_event = memsw_cgroup_usage_register_event;
3857 event->unregister_event = memsw_cgroup_usage_unregister_event;
3858 } else {
3859 ret = -EINVAL;
3860 goto out_put_cfile;
3864 * Verify @cfile should belong to @css. Also, remaining events are
3865 * automatically removed on cgroup destruction but the removal is
3866 * asynchronous, so take an extra ref on @css.
3868 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3869 &memory_cgrp_subsys);
3870 ret = -EINVAL;
3871 if (IS_ERR(cfile_css))
3872 goto out_put_cfile;
3873 if (cfile_css != css) {
3874 css_put(cfile_css);
3875 goto out_put_cfile;
3878 ret = event->register_event(memcg, event->eventfd, buf);
3879 if (ret)
3880 goto out_put_css;
3882 efile.file->f_op->poll(efile.file, &event->pt);
3884 spin_lock(&memcg->event_list_lock);
3885 list_add(&event->list, &memcg->event_list);
3886 spin_unlock(&memcg->event_list_lock);
3888 fdput(cfile);
3889 fdput(efile);
3891 return nbytes;
3893 out_put_css:
3894 css_put(css);
3895 out_put_cfile:
3896 fdput(cfile);
3897 out_put_eventfd:
3898 eventfd_ctx_put(event->eventfd);
3899 out_put_efile:
3900 fdput(efile);
3901 out_kfree:
3902 kfree(event);
3904 return ret;
3907 static struct cftype mem_cgroup_legacy_files[] = {
3909 .name = "usage_in_bytes",
3910 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3911 .read_u64 = mem_cgroup_read_u64,
3914 .name = "max_usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3916 .write = mem_cgroup_reset,
3917 .read_u64 = mem_cgroup_read_u64,
3920 .name = "limit_in_bytes",
3921 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3922 .write = mem_cgroup_write,
3923 .read_u64 = mem_cgroup_read_u64,
3926 .name = "soft_limit_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3928 .write = mem_cgroup_write,
3929 .read_u64 = mem_cgroup_read_u64,
3932 .name = "failcnt",
3933 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3934 .write = mem_cgroup_reset,
3935 .read_u64 = mem_cgroup_read_u64,
3938 .name = "stat",
3939 .seq_show = memcg_stat_show,
3942 .name = "force_empty",
3943 .write = mem_cgroup_force_empty_write,
3946 .name = "use_hierarchy",
3947 .write_u64 = mem_cgroup_hierarchy_write,
3948 .read_u64 = mem_cgroup_hierarchy_read,
3951 .name = "cgroup.event_control", /* XXX: for compat */
3952 .write = memcg_write_event_control,
3953 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3956 .name = "swappiness",
3957 .read_u64 = mem_cgroup_swappiness_read,
3958 .write_u64 = mem_cgroup_swappiness_write,
3961 .name = "move_charge_at_immigrate",
3962 .read_u64 = mem_cgroup_move_charge_read,
3963 .write_u64 = mem_cgroup_move_charge_write,
3966 .name = "oom_control",
3967 .seq_show = mem_cgroup_oom_control_read,
3968 .write_u64 = mem_cgroup_oom_control_write,
3969 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 .name = "pressure_level",
3974 #ifdef CONFIG_NUMA
3976 .name = "numa_stat",
3977 .seq_show = memcg_numa_stat_show,
3979 #endif
3981 .name = "kmem.limit_in_bytes",
3982 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3983 .write = mem_cgroup_write,
3984 .read_u64 = mem_cgroup_read_u64,
3987 .name = "kmem.usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3992 .name = "kmem.failcnt",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3998 .name = "kmem.max_usage_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4000 .write = mem_cgroup_reset,
4001 .read_u64 = mem_cgroup_read_u64,
4003 #ifdef CONFIG_SLABINFO
4005 .name = "kmem.slabinfo",
4006 .seq_start = slab_start,
4007 .seq_next = slab_next,
4008 .seq_stop = slab_stop,
4009 .seq_show = memcg_slab_show,
4011 #endif
4013 .name = "kmem.tcp.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4015 .write = mem_cgroup_write,
4016 .read_u64 = mem_cgroup_read_u64,
4019 .name = "kmem.tcp.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4021 .read_u64 = mem_cgroup_read_u64,
4024 .name = "kmem.tcp.failcnt",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4026 .write = mem_cgroup_reset,
4027 .read_u64 = mem_cgroup_read_u64,
4030 .name = "kmem.tcp.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4032 .write = mem_cgroup_reset,
4033 .read_u64 = mem_cgroup_read_u64,
4035 { }, /* terminate */
4038 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4040 struct mem_cgroup_per_node *pn;
4041 struct mem_cgroup_per_zone *mz;
4042 int zone, tmp = node;
4044 * This routine is called against possible nodes.
4045 * But it's BUG to call kmalloc() against offline node.
4047 * TODO: this routine can waste much memory for nodes which will
4048 * never be onlined. It's better to use memory hotplug callback
4049 * function.
4051 if (!node_state(node, N_NORMAL_MEMORY))
4052 tmp = -1;
4053 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4054 if (!pn)
4055 return 1;
4057 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4058 mz = &pn->zoneinfo[zone];
4059 lruvec_init(&mz->lruvec);
4060 mz->usage_in_excess = 0;
4061 mz->on_tree = false;
4062 mz->memcg = memcg;
4064 memcg->nodeinfo[node] = pn;
4065 return 0;
4068 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4070 kfree(memcg->nodeinfo[node]);
4073 static void mem_cgroup_free(struct mem_cgroup *memcg)
4075 int node;
4077 memcg_wb_domain_exit(memcg);
4078 for_each_node(node)
4079 free_mem_cgroup_per_zone_info(memcg, node);
4080 free_percpu(memcg->stat);
4081 kfree(memcg);
4084 static struct mem_cgroup *mem_cgroup_alloc(void)
4086 struct mem_cgroup *memcg;
4087 size_t size;
4088 int node;
4090 size = sizeof(struct mem_cgroup);
4091 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4093 memcg = kzalloc(size, GFP_KERNEL);
4094 if (!memcg)
4095 return NULL;
4097 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4098 if (!memcg->stat)
4099 goto fail;
4101 for_each_node(node)
4102 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4103 goto fail;
4105 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4106 goto fail;
4108 INIT_WORK(&memcg->high_work, high_work_func);
4109 memcg->last_scanned_node = MAX_NUMNODES;
4110 INIT_LIST_HEAD(&memcg->oom_notify);
4111 mutex_init(&memcg->thresholds_lock);
4112 spin_lock_init(&memcg->move_lock);
4113 vmpressure_init(&memcg->vmpressure);
4114 INIT_LIST_HEAD(&memcg->event_list);
4115 spin_lock_init(&memcg->event_list_lock);
4116 memcg->socket_pressure = jiffies;
4117 #ifndef CONFIG_SLOB
4118 memcg->kmemcg_id = -1;
4119 #endif
4120 #ifdef CONFIG_CGROUP_WRITEBACK
4121 INIT_LIST_HEAD(&memcg->cgwb_list);
4122 #endif
4123 return memcg;
4124 fail:
4125 mem_cgroup_free(memcg);
4126 return NULL;
4129 static struct cgroup_subsys_state * __ref
4130 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4132 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4133 struct mem_cgroup *memcg;
4134 long error = -ENOMEM;
4136 memcg = mem_cgroup_alloc();
4137 if (!memcg)
4138 return ERR_PTR(error);
4140 memcg->high = PAGE_COUNTER_MAX;
4141 memcg->soft_limit = PAGE_COUNTER_MAX;
4142 if (parent) {
4143 memcg->swappiness = mem_cgroup_swappiness(parent);
4144 memcg->oom_kill_disable = parent->oom_kill_disable;
4146 if (parent && parent->use_hierarchy) {
4147 memcg->use_hierarchy = true;
4148 page_counter_init(&memcg->memory, &parent->memory);
4149 page_counter_init(&memcg->swap, &parent->swap);
4150 page_counter_init(&memcg->memsw, &parent->memsw);
4151 page_counter_init(&memcg->kmem, &parent->kmem);
4152 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4153 } else {
4154 page_counter_init(&memcg->memory, NULL);
4155 page_counter_init(&memcg->swap, NULL);
4156 page_counter_init(&memcg->memsw, NULL);
4157 page_counter_init(&memcg->kmem, NULL);
4158 page_counter_init(&memcg->tcpmem, NULL);
4160 * Deeper hierachy with use_hierarchy == false doesn't make
4161 * much sense so let cgroup subsystem know about this
4162 * unfortunate state in our controller.
4164 if (parent != root_mem_cgroup)
4165 memory_cgrp_subsys.broken_hierarchy = true;
4168 /* The following stuff does not apply to the root */
4169 if (!parent) {
4170 root_mem_cgroup = memcg;
4171 return &memcg->css;
4174 error = memcg_online_kmem(memcg);
4175 if (error)
4176 goto fail;
4178 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4179 static_branch_inc(&memcg_sockets_enabled_key);
4181 return &memcg->css;
4182 fail:
4183 mem_cgroup_free(memcg);
4184 return NULL;
4187 static int
4188 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4190 if (css->id > MEM_CGROUP_ID_MAX)
4191 return -ENOSPC;
4193 return 0;
4196 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4198 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4199 struct mem_cgroup_event *event, *tmp;
4202 * Unregister events and notify userspace.
4203 * Notify userspace about cgroup removing only after rmdir of cgroup
4204 * directory to avoid race between userspace and kernelspace.
4206 spin_lock(&memcg->event_list_lock);
4207 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4208 list_del_init(&event->list);
4209 schedule_work(&event->remove);
4211 spin_unlock(&memcg->event_list_lock);
4213 memcg_offline_kmem(memcg);
4214 wb_memcg_offline(memcg);
4217 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4219 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4221 invalidate_reclaim_iterators(memcg);
4224 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4229 static_branch_dec(&memcg_sockets_enabled_key);
4231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4232 static_branch_dec(&memcg_sockets_enabled_key);
4234 vmpressure_cleanup(&memcg->vmpressure);
4235 cancel_work_sync(&memcg->high_work);
4236 mem_cgroup_remove_from_trees(memcg);
4237 memcg_free_kmem(memcg);
4238 mem_cgroup_free(memcg);
4242 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4243 * @css: the target css
4245 * Reset the states of the mem_cgroup associated with @css. This is
4246 * invoked when the userland requests disabling on the default hierarchy
4247 * but the memcg is pinned through dependency. The memcg should stop
4248 * applying policies and should revert to the vanilla state as it may be
4249 * made visible again.
4251 * The current implementation only resets the essential configurations.
4252 * This needs to be expanded to cover all the visible parts.
4254 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4256 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4258 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4259 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4260 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4262 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4263 memcg->low = 0;
4264 memcg->high = PAGE_COUNTER_MAX;
4265 memcg->soft_limit = PAGE_COUNTER_MAX;
4266 memcg_wb_domain_size_changed(memcg);
4269 #ifdef CONFIG_MMU
4270 /* Handlers for move charge at task migration. */
4271 static int mem_cgroup_do_precharge(unsigned long count)
4273 int ret;
4275 /* Try a single bulk charge without reclaim first, kswapd may wake */
4276 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4277 if (!ret) {
4278 mc.precharge += count;
4279 return ret;
4282 /* Try charges one by one with reclaim */
4283 while (count--) {
4284 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4285 if (ret)
4286 return ret;
4287 mc.precharge++;
4288 cond_resched();
4290 return 0;
4294 * get_mctgt_type - get target type of moving charge
4295 * @vma: the vma the pte to be checked belongs
4296 * @addr: the address corresponding to the pte to be checked
4297 * @ptent: the pte to be checked
4298 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4300 * Returns
4301 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4302 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4303 * move charge. if @target is not NULL, the page is stored in target->page
4304 * with extra refcnt got(Callers should handle it).
4305 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4306 * target for charge migration. if @target is not NULL, the entry is stored
4307 * in target->ent.
4309 * Called with pte lock held.
4311 union mc_target {
4312 struct page *page;
4313 swp_entry_t ent;
4316 enum mc_target_type {
4317 MC_TARGET_NONE = 0,
4318 MC_TARGET_PAGE,
4319 MC_TARGET_SWAP,
4322 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4323 unsigned long addr, pte_t ptent)
4325 struct page *page = vm_normal_page(vma, addr, ptent);
4327 if (!page || !page_mapped(page))
4328 return NULL;
4329 if (PageAnon(page)) {
4330 if (!(mc.flags & MOVE_ANON))
4331 return NULL;
4332 } else {
4333 if (!(mc.flags & MOVE_FILE))
4334 return NULL;
4336 if (!get_page_unless_zero(page))
4337 return NULL;
4339 return page;
4342 #ifdef CONFIG_SWAP
4343 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4344 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4346 struct page *page = NULL;
4347 swp_entry_t ent = pte_to_swp_entry(ptent);
4349 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4350 return NULL;
4352 * Because lookup_swap_cache() updates some statistics counter,
4353 * we call find_get_page() with swapper_space directly.
4355 page = find_get_page(swap_address_space(ent), ent.val);
4356 if (do_memsw_account())
4357 entry->val = ent.val;
4359 return page;
4361 #else
4362 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4363 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4365 return NULL;
4367 #endif
4369 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4370 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4372 struct page *page = NULL;
4373 struct address_space *mapping;
4374 pgoff_t pgoff;
4376 if (!vma->vm_file) /* anonymous vma */
4377 return NULL;
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4381 mapping = vma->vm_file->f_mapping;
4382 pgoff = linear_page_index(vma, addr);
4384 /* page is moved even if it's not RSS of this task(page-faulted). */
4385 #ifdef CONFIG_SWAP
4386 /* shmem/tmpfs may report page out on swap: account for that too. */
4387 if (shmem_mapping(mapping)) {
4388 page = find_get_entry(mapping, pgoff);
4389 if (radix_tree_exceptional_entry(page)) {
4390 swp_entry_t swp = radix_to_swp_entry(page);
4391 if (do_memsw_account())
4392 *entry = swp;
4393 page = find_get_page(swap_address_space(swp), swp.val);
4395 } else
4396 page = find_get_page(mapping, pgoff);
4397 #else
4398 page = find_get_page(mapping, pgoff);
4399 #endif
4400 return page;
4404 * mem_cgroup_move_account - move account of the page
4405 * @page: the page
4406 * @nr_pages: number of regular pages (>1 for huge pages)
4407 * @from: mem_cgroup which the page is moved from.
4408 * @to: mem_cgroup which the page is moved to. @from != @to.
4410 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4412 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4413 * from old cgroup.
4415 static int mem_cgroup_move_account(struct page *page,
4416 bool compound,
4417 struct mem_cgroup *from,
4418 struct mem_cgroup *to)
4420 unsigned long flags;
4421 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4422 int ret;
4423 bool anon;
4425 VM_BUG_ON(from == to);
4426 VM_BUG_ON_PAGE(PageLRU(page), page);
4427 VM_BUG_ON(compound && !PageTransHuge(page));
4430 * Prevent mem_cgroup_migrate() from looking at
4431 * page->mem_cgroup of its source page while we change it.
4433 ret = -EBUSY;
4434 if (!trylock_page(page))
4435 goto out;
4437 ret = -EINVAL;
4438 if (page->mem_cgroup != from)
4439 goto out_unlock;
4441 anon = PageAnon(page);
4443 spin_lock_irqsave(&from->move_lock, flags);
4445 if (!anon && page_mapped(page)) {
4446 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4447 nr_pages);
4448 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4453 * move_lock grabbed above and caller set from->moving_account, so
4454 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4455 * So mapping should be stable for dirty pages.
4457 if (!anon && PageDirty(page)) {
4458 struct address_space *mapping = page_mapping(page);
4460 if (mapping_cap_account_dirty(mapping)) {
4461 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4462 nr_pages);
4463 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4468 if (PageWriteback(page)) {
4469 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4470 nr_pages);
4471 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4476 * It is safe to change page->mem_cgroup here because the page
4477 * is referenced, charged, and isolated - we can't race with
4478 * uncharging, charging, migration, or LRU putback.
4481 /* caller should have done css_get */
4482 page->mem_cgroup = to;
4483 spin_unlock_irqrestore(&from->move_lock, flags);
4485 ret = 0;
4487 local_irq_disable();
4488 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4489 memcg_check_events(to, page);
4490 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4491 memcg_check_events(from, page);
4492 local_irq_enable();
4493 out_unlock:
4494 unlock_page(page);
4495 out:
4496 return ret;
4499 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, union mc_target *target)
4502 struct page *page = NULL;
4503 enum mc_target_type ret = MC_TARGET_NONE;
4504 swp_entry_t ent = { .val = 0 };
4506 if (pte_present(ptent))
4507 page = mc_handle_present_pte(vma, addr, ptent);
4508 else if (is_swap_pte(ptent))
4509 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4510 else if (pte_none(ptent))
4511 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4513 if (!page && !ent.val)
4514 return ret;
4515 if (page) {
4517 * Do only loose check w/o serialization.
4518 * mem_cgroup_move_account() checks the page is valid or
4519 * not under LRU exclusion.
4521 if (page->mem_cgroup == mc.from) {
4522 ret = MC_TARGET_PAGE;
4523 if (target)
4524 target->page = page;
4526 if (!ret || !target)
4527 put_page(page);
4529 /* There is a swap entry and a page doesn't exist or isn't charged */
4530 if (ent.val && !ret &&
4531 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4532 ret = MC_TARGET_SWAP;
4533 if (target)
4534 target->ent = ent;
4536 return ret;
4539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4541 * We don't consider swapping or file mapped pages because THP does not
4542 * support them for now.
4543 * Caller should make sure that pmd_trans_huge(pmd) is true.
4545 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4546 unsigned long addr, pmd_t pmd, union mc_target *target)
4548 struct page *page = NULL;
4549 enum mc_target_type ret = MC_TARGET_NONE;
4551 page = pmd_page(pmd);
4552 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4553 if (!(mc.flags & MOVE_ANON))
4554 return ret;
4555 if (page->mem_cgroup == mc.from) {
4556 ret = MC_TARGET_PAGE;
4557 if (target) {
4558 get_page(page);
4559 target->page = page;
4562 return ret;
4564 #else
4565 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4566 unsigned long addr, pmd_t pmd, union mc_target *target)
4568 return MC_TARGET_NONE;
4570 #endif
4572 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4573 unsigned long addr, unsigned long end,
4574 struct mm_walk *walk)
4576 struct vm_area_struct *vma = walk->vma;
4577 pte_t *pte;
4578 spinlock_t *ptl;
4580 ptl = pmd_trans_huge_lock(pmd, vma);
4581 if (ptl) {
4582 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4583 mc.precharge += HPAGE_PMD_NR;
4584 spin_unlock(ptl);
4585 return 0;
4588 if (pmd_trans_unstable(pmd))
4589 return 0;
4590 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4591 for (; addr != end; pte++, addr += PAGE_SIZE)
4592 if (get_mctgt_type(vma, addr, *pte, NULL))
4593 mc.precharge++; /* increment precharge temporarily */
4594 pte_unmap_unlock(pte - 1, ptl);
4595 cond_resched();
4597 return 0;
4600 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4602 unsigned long precharge;
4604 struct mm_walk mem_cgroup_count_precharge_walk = {
4605 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4606 .mm = mm,
4608 down_read(&mm->mmap_sem);
4609 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4610 up_read(&mm->mmap_sem);
4612 precharge = mc.precharge;
4613 mc.precharge = 0;
4615 return precharge;
4618 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4620 unsigned long precharge = mem_cgroup_count_precharge(mm);
4622 VM_BUG_ON(mc.moving_task);
4623 mc.moving_task = current;
4624 return mem_cgroup_do_precharge(precharge);
4627 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4628 static void __mem_cgroup_clear_mc(void)
4630 struct mem_cgroup *from = mc.from;
4631 struct mem_cgroup *to = mc.to;
4633 /* we must uncharge all the leftover precharges from mc.to */
4634 if (mc.precharge) {
4635 cancel_charge(mc.to, mc.precharge);
4636 mc.precharge = 0;
4639 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4640 * we must uncharge here.
4642 if (mc.moved_charge) {
4643 cancel_charge(mc.from, mc.moved_charge);
4644 mc.moved_charge = 0;
4646 /* we must fixup refcnts and charges */
4647 if (mc.moved_swap) {
4648 /* uncharge swap account from the old cgroup */
4649 if (!mem_cgroup_is_root(mc.from))
4650 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4653 * we charged both to->memory and to->memsw, so we
4654 * should uncharge to->memory.
4656 if (!mem_cgroup_is_root(mc.to))
4657 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4659 css_put_many(&mc.from->css, mc.moved_swap);
4661 /* we've already done css_get(mc.to) */
4662 mc.moved_swap = 0;
4664 memcg_oom_recover(from);
4665 memcg_oom_recover(to);
4666 wake_up_all(&mc.waitq);
4669 static void mem_cgroup_clear_mc(void)
4671 struct mm_struct *mm = mc.mm;
4674 * we must clear moving_task before waking up waiters at the end of
4675 * task migration.
4677 mc.moving_task = NULL;
4678 __mem_cgroup_clear_mc();
4679 spin_lock(&mc.lock);
4680 mc.from = NULL;
4681 mc.to = NULL;
4682 mc.mm = NULL;
4683 spin_unlock(&mc.lock);
4685 mmput(mm);
4688 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4690 struct cgroup_subsys_state *css;
4691 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4692 struct mem_cgroup *from;
4693 struct task_struct *leader, *p;
4694 struct mm_struct *mm;
4695 unsigned long move_flags;
4696 int ret = 0;
4698 /* charge immigration isn't supported on the default hierarchy */
4699 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4700 return 0;
4703 * Multi-process migrations only happen on the default hierarchy
4704 * where charge immigration is not used. Perform charge
4705 * immigration if @tset contains a leader and whine if there are
4706 * multiple.
4708 p = NULL;
4709 cgroup_taskset_for_each_leader(leader, css, tset) {
4710 WARN_ON_ONCE(p);
4711 p = leader;
4712 memcg = mem_cgroup_from_css(css);
4714 if (!p)
4715 return 0;
4718 * We are now commited to this value whatever it is. Changes in this
4719 * tunable will only affect upcoming migrations, not the current one.
4720 * So we need to save it, and keep it going.
4722 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4723 if (!move_flags)
4724 return 0;
4726 from = mem_cgroup_from_task(p);
4728 VM_BUG_ON(from == memcg);
4730 mm = get_task_mm(p);
4731 if (!mm)
4732 return 0;
4733 /* We move charges only when we move a owner of the mm */
4734 if (mm->owner == p) {
4735 VM_BUG_ON(mc.from);
4736 VM_BUG_ON(mc.to);
4737 VM_BUG_ON(mc.precharge);
4738 VM_BUG_ON(mc.moved_charge);
4739 VM_BUG_ON(mc.moved_swap);
4741 spin_lock(&mc.lock);
4742 mc.mm = mm;
4743 mc.from = from;
4744 mc.to = memcg;
4745 mc.flags = move_flags;
4746 spin_unlock(&mc.lock);
4747 /* We set mc.moving_task later */
4749 ret = mem_cgroup_precharge_mc(mm);
4750 if (ret)
4751 mem_cgroup_clear_mc();
4752 } else {
4753 mmput(mm);
4755 return ret;
4758 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4760 if (mc.to)
4761 mem_cgroup_clear_mc();
4764 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4765 unsigned long addr, unsigned long end,
4766 struct mm_walk *walk)
4768 int ret = 0;
4769 struct vm_area_struct *vma = walk->vma;
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772 enum mc_target_type target_type;
4773 union mc_target target;
4774 struct page *page;
4776 ptl = pmd_trans_huge_lock(pmd, vma);
4777 if (ptl) {
4778 if (mc.precharge < HPAGE_PMD_NR) {
4779 spin_unlock(ptl);
4780 return 0;
4782 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4783 if (target_type == MC_TARGET_PAGE) {
4784 page = target.page;
4785 if (!isolate_lru_page(page)) {
4786 if (!mem_cgroup_move_account(page, true,
4787 mc.from, mc.to)) {
4788 mc.precharge -= HPAGE_PMD_NR;
4789 mc.moved_charge += HPAGE_PMD_NR;
4791 putback_lru_page(page);
4793 put_page(page);
4795 spin_unlock(ptl);
4796 return 0;
4799 if (pmd_trans_unstable(pmd))
4800 return 0;
4801 retry:
4802 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4803 for (; addr != end; addr += PAGE_SIZE) {
4804 pte_t ptent = *(pte++);
4805 swp_entry_t ent;
4807 if (!mc.precharge)
4808 break;
4810 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4811 case MC_TARGET_PAGE:
4812 page = target.page;
4814 * We can have a part of the split pmd here. Moving it
4815 * can be done but it would be too convoluted so simply
4816 * ignore such a partial THP and keep it in original
4817 * memcg. There should be somebody mapping the head.
4819 if (PageTransCompound(page))
4820 goto put;
4821 if (isolate_lru_page(page))
4822 goto put;
4823 if (!mem_cgroup_move_account(page, false,
4824 mc.from, mc.to)) {
4825 mc.precharge--;
4826 /* we uncharge from mc.from later. */
4827 mc.moved_charge++;
4829 putback_lru_page(page);
4830 put: /* get_mctgt_type() gets the page */
4831 put_page(page);
4832 break;
4833 case MC_TARGET_SWAP:
4834 ent = target.ent;
4835 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4836 mc.precharge--;
4837 /* we fixup refcnts and charges later. */
4838 mc.moved_swap++;
4840 break;
4841 default:
4842 break;
4845 pte_unmap_unlock(pte - 1, ptl);
4846 cond_resched();
4848 if (addr != end) {
4850 * We have consumed all precharges we got in can_attach().
4851 * We try charge one by one, but don't do any additional
4852 * charges to mc.to if we have failed in charge once in attach()
4853 * phase.
4855 ret = mem_cgroup_do_precharge(1);
4856 if (!ret)
4857 goto retry;
4860 return ret;
4863 static void mem_cgroup_move_charge(void)
4865 struct mm_walk mem_cgroup_move_charge_walk = {
4866 .pmd_entry = mem_cgroup_move_charge_pte_range,
4867 .mm = mc.mm,
4870 lru_add_drain_all();
4872 * Signal lock_page_memcg() to take the memcg's move_lock
4873 * while we're moving its pages to another memcg. Then wait
4874 * for already started RCU-only updates to finish.
4876 atomic_inc(&mc.from->moving_account);
4877 synchronize_rcu();
4878 retry:
4879 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4881 * Someone who are holding the mmap_sem might be waiting in
4882 * waitq. So we cancel all extra charges, wake up all waiters,
4883 * and retry. Because we cancel precharges, we might not be able
4884 * to move enough charges, but moving charge is a best-effort
4885 * feature anyway, so it wouldn't be a big problem.
4887 __mem_cgroup_clear_mc();
4888 cond_resched();
4889 goto retry;
4892 * When we have consumed all precharges and failed in doing
4893 * additional charge, the page walk just aborts.
4895 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4896 up_read(&mc.mm->mmap_sem);
4897 atomic_dec(&mc.from->moving_account);
4900 static void mem_cgroup_move_task(void)
4902 if (mc.to) {
4903 mem_cgroup_move_charge();
4904 mem_cgroup_clear_mc();
4907 #else /* !CONFIG_MMU */
4908 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4910 return 0;
4912 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4915 static void mem_cgroup_move_task(void)
4918 #endif
4921 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4922 * to verify whether we're attached to the default hierarchy on each mount
4923 * attempt.
4925 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4928 * use_hierarchy is forced on the default hierarchy. cgroup core
4929 * guarantees that @root doesn't have any children, so turning it
4930 * on for the root memcg is enough.
4932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4933 root_mem_cgroup->use_hierarchy = true;
4934 else
4935 root_mem_cgroup->use_hierarchy = false;
4938 static u64 memory_current_read(struct cgroup_subsys_state *css,
4939 struct cftype *cft)
4941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4943 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4946 static int memory_low_show(struct seq_file *m, void *v)
4948 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4949 unsigned long low = READ_ONCE(memcg->low);
4951 if (low == PAGE_COUNTER_MAX)
4952 seq_puts(m, "max\n");
4953 else
4954 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4956 return 0;
4959 static ssize_t memory_low_write(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
4962 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4963 unsigned long low;
4964 int err;
4966 buf = strstrip(buf);
4967 err = page_counter_memparse(buf, "max", &low);
4968 if (err)
4969 return err;
4971 memcg->low = low;
4973 return nbytes;
4976 static int memory_high_show(struct seq_file *m, void *v)
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4979 unsigned long high = READ_ONCE(memcg->high);
4981 if (high == PAGE_COUNTER_MAX)
4982 seq_puts(m, "max\n");
4983 else
4984 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4986 return 0;
4989 static ssize_t memory_high_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long nr_pages;
4994 unsigned long high;
4995 int err;
4997 buf = strstrip(buf);
4998 err = page_counter_memparse(buf, "max", &high);
4999 if (err)
5000 return err;
5002 memcg->high = high;
5004 nr_pages = page_counter_read(&memcg->memory);
5005 if (nr_pages > high)
5006 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5007 GFP_KERNEL, true);
5009 memcg_wb_domain_size_changed(memcg);
5010 return nbytes;
5013 static int memory_max_show(struct seq_file *m, void *v)
5015 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5016 unsigned long max = READ_ONCE(memcg->memory.limit);
5018 if (max == PAGE_COUNTER_MAX)
5019 seq_puts(m, "max\n");
5020 else
5021 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5023 return 0;
5026 static ssize_t memory_max_write(struct kernfs_open_file *of,
5027 char *buf, size_t nbytes, loff_t off)
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5030 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5031 bool drained = false;
5032 unsigned long max;
5033 int err;
5035 buf = strstrip(buf);
5036 err = page_counter_memparse(buf, "max", &max);
5037 if (err)
5038 return err;
5040 xchg(&memcg->memory.limit, max);
5042 for (;;) {
5043 unsigned long nr_pages = page_counter_read(&memcg->memory);
5045 if (nr_pages <= max)
5046 break;
5048 if (signal_pending(current)) {
5049 err = -EINTR;
5050 break;
5053 if (!drained) {
5054 drain_all_stock(memcg);
5055 drained = true;
5056 continue;
5059 if (nr_reclaims) {
5060 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5061 GFP_KERNEL, true))
5062 nr_reclaims--;
5063 continue;
5066 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5067 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5068 break;
5071 memcg_wb_domain_size_changed(memcg);
5072 return nbytes;
5075 static int memory_events_show(struct seq_file *m, void *v)
5077 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5079 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5080 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5081 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5082 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5084 return 0;
5087 static int memory_stat_show(struct seq_file *m, void *v)
5089 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5090 unsigned long stat[MEMCG_NR_STAT];
5091 unsigned long events[MEMCG_NR_EVENTS];
5092 int i;
5095 * Provide statistics on the state of the memory subsystem as
5096 * well as cumulative event counters that show past behavior.
5098 * This list is ordered following a combination of these gradients:
5099 * 1) generic big picture -> specifics and details
5100 * 2) reflecting userspace activity -> reflecting kernel heuristics
5102 * Current memory state:
5105 tree_stat(memcg, stat);
5106 tree_events(memcg, events);
5108 seq_printf(m, "anon %llu\n",
5109 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5110 seq_printf(m, "file %llu\n",
5111 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5112 seq_printf(m, "kernel_stack %llu\n",
5113 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5114 seq_printf(m, "slab %llu\n",
5115 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5116 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5117 seq_printf(m, "sock %llu\n",
5118 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5120 seq_printf(m, "file_mapped %llu\n",
5121 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5122 seq_printf(m, "file_dirty %llu\n",
5123 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5124 seq_printf(m, "file_writeback %llu\n",
5125 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5127 for (i = 0; i < NR_LRU_LISTS; i++) {
5128 struct mem_cgroup *mi;
5129 unsigned long val = 0;
5131 for_each_mem_cgroup_tree(mi, memcg)
5132 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5133 seq_printf(m, "%s %llu\n",
5134 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5137 seq_printf(m, "slab_reclaimable %llu\n",
5138 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5139 seq_printf(m, "slab_unreclaimable %llu\n",
5140 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5142 /* Accumulated memory events */
5144 seq_printf(m, "pgfault %lu\n",
5145 events[MEM_CGROUP_EVENTS_PGFAULT]);
5146 seq_printf(m, "pgmajfault %lu\n",
5147 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5149 return 0;
5152 static struct cftype memory_files[] = {
5154 .name = "current",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .read_u64 = memory_current_read,
5159 .name = "low",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_low_show,
5162 .write = memory_low_write,
5165 .name = "high",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_high_show,
5168 .write = memory_high_write,
5171 .name = "max",
5172 .flags = CFTYPE_NOT_ON_ROOT,
5173 .seq_show = memory_max_show,
5174 .write = memory_max_write,
5177 .name = "events",
5178 .flags = CFTYPE_NOT_ON_ROOT,
5179 .file_offset = offsetof(struct mem_cgroup, events_file),
5180 .seq_show = memory_events_show,
5183 .name = "stat",
5184 .flags = CFTYPE_NOT_ON_ROOT,
5185 .seq_show = memory_stat_show,
5187 { } /* terminate */
5190 struct cgroup_subsys memory_cgrp_subsys = {
5191 .css_alloc = mem_cgroup_css_alloc,
5192 .css_online = mem_cgroup_css_online,
5193 .css_offline = mem_cgroup_css_offline,
5194 .css_released = mem_cgroup_css_released,
5195 .css_free = mem_cgroup_css_free,
5196 .css_reset = mem_cgroup_css_reset,
5197 .can_attach = mem_cgroup_can_attach,
5198 .cancel_attach = mem_cgroup_cancel_attach,
5199 .post_attach = mem_cgroup_move_task,
5200 .bind = mem_cgroup_bind,
5201 .dfl_cftypes = memory_files,
5202 .legacy_cftypes = mem_cgroup_legacy_files,
5203 .early_init = 0,
5207 * mem_cgroup_low - check if memory consumption is below the normal range
5208 * @root: the highest ancestor to consider
5209 * @memcg: the memory cgroup to check
5211 * Returns %true if memory consumption of @memcg, and that of all
5212 * configurable ancestors up to @root, is below the normal range.
5214 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5216 if (mem_cgroup_disabled())
5217 return false;
5220 * The toplevel group doesn't have a configurable range, so
5221 * it's never low when looked at directly, and it is not
5222 * considered an ancestor when assessing the hierarchy.
5225 if (memcg == root_mem_cgroup)
5226 return false;
5228 if (page_counter_read(&memcg->memory) >= memcg->low)
5229 return false;
5231 while (memcg != root) {
5232 memcg = parent_mem_cgroup(memcg);
5234 if (memcg == root_mem_cgroup)
5235 break;
5237 if (page_counter_read(&memcg->memory) >= memcg->low)
5238 return false;
5240 return true;
5244 * mem_cgroup_try_charge - try charging a page
5245 * @page: page to charge
5246 * @mm: mm context of the victim
5247 * @gfp_mask: reclaim mode
5248 * @memcgp: charged memcg return
5250 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5251 * pages according to @gfp_mask if necessary.
5253 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5254 * Otherwise, an error code is returned.
5256 * After page->mapping has been set up, the caller must finalize the
5257 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5258 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5260 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5261 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5262 bool compound)
5264 struct mem_cgroup *memcg = NULL;
5265 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5266 int ret = 0;
5268 if (mem_cgroup_disabled())
5269 goto out;
5271 if (PageSwapCache(page)) {
5273 * Every swap fault against a single page tries to charge the
5274 * page, bail as early as possible. shmem_unuse() encounters
5275 * already charged pages, too. The USED bit is protected by
5276 * the page lock, which serializes swap cache removal, which
5277 * in turn serializes uncharging.
5279 VM_BUG_ON_PAGE(!PageLocked(page), page);
5280 if (page->mem_cgroup)
5281 goto out;
5283 if (do_swap_account) {
5284 swp_entry_t ent = { .val = page_private(page), };
5285 unsigned short id = lookup_swap_cgroup_id(ent);
5287 rcu_read_lock();
5288 memcg = mem_cgroup_from_id(id);
5289 if (memcg && !css_tryget_online(&memcg->css))
5290 memcg = NULL;
5291 rcu_read_unlock();
5295 if (!memcg)
5296 memcg = get_mem_cgroup_from_mm(mm);
5298 ret = try_charge(memcg, gfp_mask, nr_pages);
5300 css_put(&memcg->css);
5301 out:
5302 *memcgp = memcg;
5303 return ret;
5307 * mem_cgroup_commit_charge - commit a page charge
5308 * @page: page to charge
5309 * @memcg: memcg to charge the page to
5310 * @lrucare: page might be on LRU already
5312 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5313 * after page->mapping has been set up. This must happen atomically
5314 * as part of the page instantiation, i.e. under the page table lock
5315 * for anonymous pages, under the page lock for page and swap cache.
5317 * In addition, the page must not be on the LRU during the commit, to
5318 * prevent racing with task migration. If it might be, use @lrucare.
5320 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5322 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5323 bool lrucare, bool compound)
5325 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5327 VM_BUG_ON_PAGE(!page->mapping, page);
5328 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5330 if (mem_cgroup_disabled())
5331 return;
5333 * Swap faults will attempt to charge the same page multiple
5334 * times. But reuse_swap_page() might have removed the page
5335 * from swapcache already, so we can't check PageSwapCache().
5337 if (!memcg)
5338 return;
5340 commit_charge(page, memcg, lrucare);
5342 local_irq_disable();
5343 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5344 memcg_check_events(memcg, page);
5345 local_irq_enable();
5347 if (do_memsw_account() && PageSwapCache(page)) {
5348 swp_entry_t entry = { .val = page_private(page) };
5350 * The swap entry might not get freed for a long time,
5351 * let's not wait for it. The page already received a
5352 * memory+swap charge, drop the swap entry duplicate.
5354 mem_cgroup_uncharge_swap(entry);
5359 * mem_cgroup_cancel_charge - cancel a page charge
5360 * @page: page to charge
5361 * @memcg: memcg to charge the page to
5363 * Cancel a charge transaction started by mem_cgroup_try_charge().
5365 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5366 bool compound)
5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5370 if (mem_cgroup_disabled())
5371 return;
5373 * Swap faults will attempt to charge the same page multiple
5374 * times. But reuse_swap_page() might have removed the page
5375 * from swapcache already, so we can't check PageSwapCache().
5377 if (!memcg)
5378 return;
5380 cancel_charge(memcg, nr_pages);
5383 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5384 unsigned long nr_anon, unsigned long nr_file,
5385 unsigned long nr_huge, struct page *dummy_page)
5387 unsigned long nr_pages = nr_anon + nr_file;
5388 unsigned long flags;
5390 if (!mem_cgroup_is_root(memcg)) {
5391 page_counter_uncharge(&memcg->memory, nr_pages);
5392 if (do_memsw_account())
5393 page_counter_uncharge(&memcg->memsw, nr_pages);
5394 memcg_oom_recover(memcg);
5397 local_irq_save(flags);
5398 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5399 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5400 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5401 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5402 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5403 memcg_check_events(memcg, dummy_page);
5404 local_irq_restore(flags);
5406 if (!mem_cgroup_is_root(memcg))
5407 css_put_many(&memcg->css, nr_pages);
5410 static void uncharge_list(struct list_head *page_list)
5412 struct mem_cgroup *memcg = NULL;
5413 unsigned long nr_anon = 0;
5414 unsigned long nr_file = 0;
5415 unsigned long nr_huge = 0;
5416 unsigned long pgpgout = 0;
5417 struct list_head *next;
5418 struct page *page;
5421 * Note that the list can be a single page->lru; hence the
5422 * do-while loop instead of a simple list_for_each_entry().
5424 next = page_list->next;
5425 do {
5426 unsigned int nr_pages = 1;
5428 page = list_entry(next, struct page, lru);
5429 next = page->lru.next;
5431 VM_BUG_ON_PAGE(PageLRU(page), page);
5432 VM_BUG_ON_PAGE(page_count(page), page);
5434 if (!page->mem_cgroup)
5435 continue;
5438 * Nobody should be changing or seriously looking at
5439 * page->mem_cgroup at this point, we have fully
5440 * exclusive access to the page.
5443 if (memcg != page->mem_cgroup) {
5444 if (memcg) {
5445 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5446 nr_huge, page);
5447 pgpgout = nr_anon = nr_file = nr_huge = 0;
5449 memcg = page->mem_cgroup;
5452 if (PageTransHuge(page)) {
5453 nr_pages <<= compound_order(page);
5454 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5455 nr_huge += nr_pages;
5458 if (PageAnon(page))
5459 nr_anon += nr_pages;
5460 else
5461 nr_file += nr_pages;
5463 page->mem_cgroup = NULL;
5465 pgpgout++;
5466 } while (next != page_list);
5468 if (memcg)
5469 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5470 nr_huge, page);
5474 * mem_cgroup_uncharge - uncharge a page
5475 * @page: page to uncharge
5477 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5478 * mem_cgroup_commit_charge().
5480 void mem_cgroup_uncharge(struct page *page)
5482 if (mem_cgroup_disabled())
5483 return;
5485 /* Don't touch page->lru of any random page, pre-check: */
5486 if (!page->mem_cgroup)
5487 return;
5489 INIT_LIST_HEAD(&page->lru);
5490 uncharge_list(&page->lru);
5494 * mem_cgroup_uncharge_list - uncharge a list of page
5495 * @page_list: list of pages to uncharge
5497 * Uncharge a list of pages previously charged with
5498 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5500 void mem_cgroup_uncharge_list(struct list_head *page_list)
5502 if (mem_cgroup_disabled())
5503 return;
5505 if (!list_empty(page_list))
5506 uncharge_list(page_list);
5510 * mem_cgroup_migrate - charge a page's replacement
5511 * @oldpage: currently circulating page
5512 * @newpage: replacement page
5514 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5515 * be uncharged upon free.
5517 * Both pages must be locked, @newpage->mapping must be set up.
5519 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5521 struct mem_cgroup *memcg;
5522 unsigned int nr_pages;
5523 bool compound;
5525 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5526 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5527 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5528 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5529 newpage);
5531 if (mem_cgroup_disabled())
5532 return;
5534 /* Page cache replacement: new page already charged? */
5535 if (newpage->mem_cgroup)
5536 return;
5538 /* Swapcache readahead pages can get replaced before being charged */
5539 memcg = oldpage->mem_cgroup;
5540 if (!memcg)
5541 return;
5543 /* Force-charge the new page. The old one will be freed soon */
5544 compound = PageTransHuge(newpage);
5545 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5547 page_counter_charge(&memcg->memory, nr_pages);
5548 if (do_memsw_account())
5549 page_counter_charge(&memcg->memsw, nr_pages);
5550 css_get_many(&memcg->css, nr_pages);
5552 commit_charge(newpage, memcg, false);
5554 local_irq_disable();
5555 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5556 memcg_check_events(memcg, newpage);
5557 local_irq_enable();
5560 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5561 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5563 void sock_update_memcg(struct sock *sk)
5565 struct mem_cgroup *memcg;
5567 /* Socket cloning can throw us here with sk_cgrp already
5568 * filled. It won't however, necessarily happen from
5569 * process context. So the test for root memcg given
5570 * the current task's memcg won't help us in this case.
5572 * Respecting the original socket's memcg is a better
5573 * decision in this case.
5575 if (sk->sk_memcg) {
5576 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5577 css_get(&sk->sk_memcg->css);
5578 return;
5581 rcu_read_lock();
5582 memcg = mem_cgroup_from_task(current);
5583 if (memcg == root_mem_cgroup)
5584 goto out;
5585 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5586 goto out;
5587 if (css_tryget_online(&memcg->css))
5588 sk->sk_memcg = memcg;
5589 out:
5590 rcu_read_unlock();
5592 EXPORT_SYMBOL(sock_update_memcg);
5594 void sock_release_memcg(struct sock *sk)
5596 WARN_ON(!sk->sk_memcg);
5597 css_put(&sk->sk_memcg->css);
5601 * mem_cgroup_charge_skmem - charge socket memory
5602 * @memcg: memcg to charge
5603 * @nr_pages: number of pages to charge
5605 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5606 * @memcg's configured limit, %false if the charge had to be forced.
5608 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5610 gfp_t gfp_mask = GFP_KERNEL;
5612 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5613 struct page_counter *fail;
5615 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5616 memcg->tcpmem_pressure = 0;
5617 return true;
5619 page_counter_charge(&memcg->tcpmem, nr_pages);
5620 memcg->tcpmem_pressure = 1;
5621 return false;
5624 /* Don't block in the packet receive path */
5625 if (in_softirq())
5626 gfp_mask = GFP_NOWAIT;
5628 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5630 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5631 return true;
5633 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5634 return false;
5638 * mem_cgroup_uncharge_skmem - uncharge socket memory
5639 * @memcg - memcg to uncharge
5640 * @nr_pages - number of pages to uncharge
5642 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5644 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5645 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5646 return;
5649 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5651 page_counter_uncharge(&memcg->memory, nr_pages);
5652 css_put_many(&memcg->css, nr_pages);
5655 static int __init cgroup_memory(char *s)
5657 char *token;
5659 while ((token = strsep(&s, ",")) != NULL) {
5660 if (!*token)
5661 continue;
5662 if (!strcmp(token, "nosocket"))
5663 cgroup_memory_nosocket = true;
5664 if (!strcmp(token, "nokmem"))
5665 cgroup_memory_nokmem = true;
5667 return 0;
5669 __setup("cgroup.memory=", cgroup_memory);
5672 * subsys_initcall() for memory controller.
5674 * Some parts like hotcpu_notifier() have to be initialized from this context
5675 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5676 * everything that doesn't depend on a specific mem_cgroup structure should
5677 * be initialized from here.
5679 static int __init mem_cgroup_init(void)
5681 int cpu, node;
5683 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5685 for_each_possible_cpu(cpu)
5686 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5687 drain_local_stock);
5689 for_each_node(node) {
5690 struct mem_cgroup_tree_per_node *rtpn;
5691 int zone;
5693 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5694 node_online(node) ? node : NUMA_NO_NODE);
5696 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5697 struct mem_cgroup_tree_per_zone *rtpz;
5699 rtpz = &rtpn->rb_tree_per_zone[zone];
5700 rtpz->rb_root = RB_ROOT;
5701 spin_lock_init(&rtpz->lock);
5703 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5706 return 0;
5708 subsys_initcall(mem_cgroup_init);
5710 #ifdef CONFIG_MEMCG_SWAP
5712 * mem_cgroup_swapout - transfer a memsw charge to swap
5713 * @page: page whose memsw charge to transfer
5714 * @entry: swap entry to move the charge to
5716 * Transfer the memsw charge of @page to @entry.
5718 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5720 struct mem_cgroup *memcg;
5721 unsigned short oldid;
5723 VM_BUG_ON_PAGE(PageLRU(page), page);
5724 VM_BUG_ON_PAGE(page_count(page), page);
5726 if (!do_memsw_account())
5727 return;
5729 memcg = page->mem_cgroup;
5731 /* Readahead page, never charged */
5732 if (!memcg)
5733 return;
5735 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5736 VM_BUG_ON_PAGE(oldid, page);
5737 mem_cgroup_swap_statistics(memcg, true);
5739 page->mem_cgroup = NULL;
5741 if (!mem_cgroup_is_root(memcg))
5742 page_counter_uncharge(&memcg->memory, 1);
5745 * Interrupts should be disabled here because the caller holds the
5746 * mapping->tree_lock lock which is taken with interrupts-off. It is
5747 * important here to have the interrupts disabled because it is the
5748 * only synchronisation we have for udpating the per-CPU variables.
5750 VM_BUG_ON(!irqs_disabled());
5751 mem_cgroup_charge_statistics(memcg, page, false, -1);
5752 memcg_check_events(memcg, page);
5756 * mem_cgroup_try_charge_swap - try charging a swap entry
5757 * @page: page being added to swap
5758 * @entry: swap entry to charge
5760 * Try to charge @entry to the memcg that @page belongs to.
5762 * Returns 0 on success, -ENOMEM on failure.
5764 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5766 struct mem_cgroup *memcg;
5767 struct page_counter *counter;
5768 unsigned short oldid;
5770 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5771 return 0;
5773 memcg = page->mem_cgroup;
5775 /* Readahead page, never charged */
5776 if (!memcg)
5777 return 0;
5779 if (!mem_cgroup_is_root(memcg) &&
5780 !page_counter_try_charge(&memcg->swap, 1, &counter))
5781 return -ENOMEM;
5783 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5784 VM_BUG_ON_PAGE(oldid, page);
5785 mem_cgroup_swap_statistics(memcg, true);
5787 css_get(&memcg->css);
5788 return 0;
5792 * mem_cgroup_uncharge_swap - uncharge a swap entry
5793 * @entry: swap entry to uncharge
5795 * Drop the swap charge associated with @entry.
5797 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5799 struct mem_cgroup *memcg;
5800 unsigned short id;
5802 if (!do_swap_account)
5803 return;
5805 id = swap_cgroup_record(entry, 0);
5806 rcu_read_lock();
5807 memcg = mem_cgroup_from_id(id);
5808 if (memcg) {
5809 if (!mem_cgroup_is_root(memcg)) {
5810 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5811 page_counter_uncharge(&memcg->swap, 1);
5812 else
5813 page_counter_uncharge(&memcg->memsw, 1);
5815 mem_cgroup_swap_statistics(memcg, false);
5816 css_put(&memcg->css);
5818 rcu_read_unlock();
5821 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5823 long nr_swap_pages = get_nr_swap_pages();
5825 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5826 return nr_swap_pages;
5827 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5828 nr_swap_pages = min_t(long, nr_swap_pages,
5829 READ_ONCE(memcg->swap.limit) -
5830 page_counter_read(&memcg->swap));
5831 return nr_swap_pages;
5834 bool mem_cgroup_swap_full(struct page *page)
5836 struct mem_cgroup *memcg;
5838 VM_BUG_ON_PAGE(!PageLocked(page), page);
5840 if (vm_swap_full())
5841 return true;
5842 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5843 return false;
5845 memcg = page->mem_cgroup;
5846 if (!memcg)
5847 return false;
5849 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5850 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5851 return true;
5853 return false;
5856 /* for remember boot option*/
5857 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5858 static int really_do_swap_account __initdata = 1;
5859 #else
5860 static int really_do_swap_account __initdata;
5861 #endif
5863 static int __init enable_swap_account(char *s)
5865 if (!strcmp(s, "1"))
5866 really_do_swap_account = 1;
5867 else if (!strcmp(s, "0"))
5868 really_do_swap_account = 0;
5869 return 1;
5871 __setup("swapaccount=", enable_swap_account);
5873 static u64 swap_current_read(struct cgroup_subsys_state *css,
5874 struct cftype *cft)
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5878 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5881 static int swap_max_show(struct seq_file *m, void *v)
5883 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5884 unsigned long max = READ_ONCE(memcg->swap.limit);
5886 if (max == PAGE_COUNTER_MAX)
5887 seq_puts(m, "max\n");
5888 else
5889 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5891 return 0;
5894 static ssize_t swap_max_write(struct kernfs_open_file *of,
5895 char *buf, size_t nbytes, loff_t off)
5897 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5898 unsigned long max;
5899 int err;
5901 buf = strstrip(buf);
5902 err = page_counter_memparse(buf, "max", &max);
5903 if (err)
5904 return err;
5906 mutex_lock(&memcg_limit_mutex);
5907 err = page_counter_limit(&memcg->swap, max);
5908 mutex_unlock(&memcg_limit_mutex);
5909 if (err)
5910 return err;
5912 return nbytes;
5915 static struct cftype swap_files[] = {
5917 .name = "swap.current",
5918 .flags = CFTYPE_NOT_ON_ROOT,
5919 .read_u64 = swap_current_read,
5922 .name = "swap.max",
5923 .flags = CFTYPE_NOT_ON_ROOT,
5924 .seq_show = swap_max_show,
5925 .write = swap_max_write,
5927 { } /* terminate */
5930 static struct cftype memsw_cgroup_files[] = {
5932 .name = "memsw.usage_in_bytes",
5933 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5934 .read_u64 = mem_cgroup_read_u64,
5937 .name = "memsw.max_usage_in_bytes",
5938 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5939 .write = mem_cgroup_reset,
5940 .read_u64 = mem_cgroup_read_u64,
5943 .name = "memsw.limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5945 .write = mem_cgroup_write,
5946 .read_u64 = mem_cgroup_read_u64,
5949 .name = "memsw.failcnt",
5950 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5951 .write = mem_cgroup_reset,
5952 .read_u64 = mem_cgroup_read_u64,
5954 { }, /* terminate */
5957 static int __init mem_cgroup_swap_init(void)
5959 if (!mem_cgroup_disabled() && really_do_swap_account) {
5960 do_swap_account = 1;
5961 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5962 swap_files));
5963 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5964 memsw_cgroup_files));
5966 return 0;
5968 subsys_initcall(mem_cgroup_swap_init);
5970 #endif /* CONFIG_MEMCG_SWAP */