2 * mm/truncate.c - code for taking down pages from address_spaces
4 * Copyright (C) 2002, Linus Torvalds
6 * 10Sep2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
23 #include <linux/cleancache.h>
24 #include <linux/rmap.h>
27 static void clear_exceptional_entry(struct address_space
*mapping
,
28 pgoff_t index
, void *entry
)
30 struct radix_tree_node
*node
;
33 /* Handled by shmem itself */
34 if (shmem_mapping(mapping
))
37 spin_lock_irq(&mapping
->tree_lock
);
39 if (dax_mapping(mapping
)) {
40 if (radix_tree_delete_item(&mapping
->page_tree
, index
, entry
))
41 mapping
->nrexceptional
--;
44 * Regular page slots are stabilized by the page lock even
45 * without the tree itself locked. These unlocked entries
46 * need verification under the tree lock.
48 if (!__radix_tree_lookup(&mapping
->page_tree
, index
, &node
,
53 radix_tree_replace_slot(slot
, NULL
);
54 mapping
->nrexceptional
--;
57 workingset_node_shadows_dec(node
);
59 * Don't track node without shadow entries.
61 * Avoid acquiring the list_lru lock if already untracked.
62 * The list_empty() test is safe as node->private_list is
63 * protected by mapping->tree_lock.
65 if (!workingset_node_shadows(node
) &&
66 !list_empty(&node
->private_list
))
67 list_lru_del(&workingset_shadow_nodes
,
69 __radix_tree_delete_node(&mapping
->page_tree
, node
);
72 spin_unlock_irq(&mapping
->tree_lock
);
76 * do_invalidatepage - invalidate part or all of a page
77 * @page: the page which is affected
78 * @offset: start of the range to invalidate
79 * @length: length of the range to invalidate
81 * do_invalidatepage() is called when all or part of the page has become
82 * invalidated by a truncate operation.
84 * do_invalidatepage() does not have to release all buffers, but it must
85 * ensure that no dirty buffer is left outside @offset and that no I/O
86 * is underway against any of the blocks which are outside the truncation
87 * point. Because the caller is about to free (and possibly reuse) those
90 void do_invalidatepage(struct page
*page
, unsigned int offset
,
93 void (*invalidatepage
)(struct page
*, unsigned int, unsigned int);
95 invalidatepage
= page
->mapping
->a_ops
->invalidatepage
;
98 invalidatepage
= block_invalidatepage
;
101 (*invalidatepage
)(page
, offset
, length
);
105 * If truncate cannot remove the fs-private metadata from the page, the page
106 * becomes orphaned. It will be left on the LRU and may even be mapped into
107 * user pagetables if we're racing with filemap_fault().
109 * We need to bale out if page->mapping is no longer equal to the original
110 * mapping. This happens a) when the VM reclaimed the page while we waited on
111 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
112 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
115 truncate_complete_page(struct address_space
*mapping
, struct page
*page
)
117 if (page
->mapping
!= mapping
)
120 if (page_has_private(page
))
121 do_invalidatepage(page
, 0, PAGE_SIZE
);
124 * Some filesystems seem to re-dirty the page even after
125 * the VM has canceled the dirty bit (eg ext3 journaling).
126 * Hence dirty accounting check is placed after invalidation.
128 cancel_dirty_page(page
);
129 ClearPageMappedToDisk(page
);
130 delete_from_page_cache(page
);
135 * This is for invalidate_mapping_pages(). That function can be called at
136 * any time, and is not supposed to throw away dirty pages. But pages can
137 * be marked dirty at any time too, so use remove_mapping which safely
138 * discards clean, unused pages.
140 * Returns non-zero if the page was successfully invalidated.
143 invalidate_complete_page(struct address_space
*mapping
, struct page
*page
)
147 if (page
->mapping
!= mapping
)
150 if (page_has_private(page
) && !try_to_release_page(page
, 0))
153 ret
= remove_mapping(mapping
, page
);
158 int truncate_inode_page(struct address_space
*mapping
, struct page
*page
)
160 if (page_mapped(page
)) {
161 unmap_mapping_range(mapping
,
162 (loff_t
)page
->index
<< PAGE_SHIFT
,
165 return truncate_complete_page(mapping
, page
);
169 * Used to get rid of pages on hardware memory corruption.
171 int generic_error_remove_page(struct address_space
*mapping
, struct page
*page
)
176 * Only punch for normal data pages for now.
177 * Handling other types like directories would need more auditing.
179 if (!S_ISREG(mapping
->host
->i_mode
))
181 return truncate_inode_page(mapping
, page
);
183 EXPORT_SYMBOL(generic_error_remove_page
);
186 * Safely invalidate one page from its pagecache mapping.
187 * It only drops clean, unused pages. The page must be locked.
189 * Returns 1 if the page is successfully invalidated, otherwise 0.
191 int invalidate_inode_page(struct page
*page
)
193 struct address_space
*mapping
= page_mapping(page
);
196 if (PageDirty(page
) || PageWriteback(page
))
198 if (page_mapped(page
))
200 return invalidate_complete_page(mapping
, page
);
204 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
205 * @mapping: mapping to truncate
206 * @lstart: offset from which to truncate
207 * @lend: offset to which to truncate (inclusive)
209 * Truncate the page cache, removing the pages that are between
210 * specified offsets (and zeroing out partial pages
211 * if lstart or lend + 1 is not page aligned).
213 * Truncate takes two passes - the first pass is nonblocking. It will not
214 * block on page locks and it will not block on writeback. The second pass
215 * will wait. This is to prevent as much IO as possible in the affected region.
216 * The first pass will remove most pages, so the search cost of the second pass
219 * We pass down the cache-hot hint to the page freeing code. Even if the
220 * mapping is large, it is probably the case that the final pages are the most
221 * recently touched, and freeing happens in ascending file offset order.
223 * Note that since ->invalidatepage() accepts range to invalidate
224 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
225 * page aligned properly.
227 void truncate_inode_pages_range(struct address_space
*mapping
,
228 loff_t lstart
, loff_t lend
)
230 pgoff_t start
; /* inclusive */
231 pgoff_t end
; /* exclusive */
232 unsigned int partial_start
; /* inclusive */
233 unsigned int partial_end
; /* exclusive */
235 pgoff_t indices
[PAGEVEC_SIZE
];
239 cleancache_invalidate_inode(mapping
);
240 if (mapping
->nrpages
== 0 && mapping
->nrexceptional
== 0)
243 /* Offsets within partial pages */
244 partial_start
= lstart
& (PAGE_SIZE
- 1);
245 partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
248 * 'start' and 'end' always covers the range of pages to be fully
249 * truncated. Partial pages are covered with 'partial_start' at the
250 * start of the range and 'partial_end' at the end of the range.
251 * Note that 'end' is exclusive while 'lend' is inclusive.
253 start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
256 * lend == -1 indicates end-of-file so we have to set 'end'
257 * to the highest possible pgoff_t and since the type is
258 * unsigned we're using -1.
262 end
= (lend
+ 1) >> PAGE_SHIFT
;
264 pagevec_init(&pvec
, 0);
266 while (index
< end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
267 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
269 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
270 struct page
*page
= pvec
.pages
[i
];
272 /* We rely upon deletion not changing page->index */
277 if (radix_tree_exceptional_entry(page
)) {
278 clear_exceptional_entry(mapping
, index
, page
);
282 if (!trylock_page(page
))
284 WARN_ON(page
->index
!= index
);
285 if (PageWriteback(page
)) {
289 truncate_inode_page(mapping
, page
);
292 pagevec_remove_exceptionals(&pvec
);
293 pagevec_release(&pvec
);
299 struct page
*page
= find_lock_page(mapping
, start
- 1);
301 unsigned int top
= PAGE_SIZE
;
303 /* Truncation within a single page */
307 wait_on_page_writeback(page
);
308 zero_user_segment(page
, partial_start
, top
);
309 cleancache_invalidate_page(mapping
, page
);
310 if (page_has_private(page
))
311 do_invalidatepage(page
, partial_start
,
312 top
- partial_start
);
318 struct page
*page
= find_lock_page(mapping
, end
);
320 wait_on_page_writeback(page
);
321 zero_user_segment(page
, 0, partial_end
);
322 cleancache_invalidate_page(mapping
, page
);
323 if (page_has_private(page
))
324 do_invalidatepage(page
, 0,
331 * If the truncation happened within a single page no pages
332 * will be released, just zeroed, so we can bail out now.
340 if (!pagevec_lookup_entries(&pvec
, mapping
, index
,
341 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
), indices
)) {
342 /* If all gone from start onwards, we're done */
345 /* Otherwise restart to make sure all gone */
349 if (index
== start
&& indices
[0] >= end
) {
350 /* All gone out of hole to be punched, we're done */
351 pagevec_remove_exceptionals(&pvec
);
352 pagevec_release(&pvec
);
355 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
356 struct page
*page
= pvec
.pages
[i
];
358 /* We rely upon deletion not changing page->index */
361 /* Restart punch to make sure all gone */
366 if (radix_tree_exceptional_entry(page
)) {
367 clear_exceptional_entry(mapping
, index
, page
);
372 WARN_ON(page
->index
!= index
);
373 wait_on_page_writeback(page
);
374 truncate_inode_page(mapping
, page
);
377 pagevec_remove_exceptionals(&pvec
);
378 pagevec_release(&pvec
);
381 cleancache_invalidate_inode(mapping
);
383 EXPORT_SYMBOL(truncate_inode_pages_range
);
386 * truncate_inode_pages - truncate *all* the pages from an offset
387 * @mapping: mapping to truncate
388 * @lstart: offset from which to truncate
390 * Called under (and serialised by) inode->i_mutex.
392 * Note: When this function returns, there can be a page in the process of
393 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
394 * mapping->nrpages can be non-zero when this function returns even after
395 * truncation of the whole mapping.
397 void truncate_inode_pages(struct address_space
*mapping
, loff_t lstart
)
399 truncate_inode_pages_range(mapping
, lstart
, (loff_t
)-1);
401 EXPORT_SYMBOL(truncate_inode_pages
);
404 * truncate_inode_pages_final - truncate *all* pages before inode dies
405 * @mapping: mapping to truncate
407 * Called under (and serialized by) inode->i_mutex.
409 * Filesystems have to use this in the .evict_inode path to inform the
410 * VM that this is the final truncate and the inode is going away.
412 void truncate_inode_pages_final(struct address_space
*mapping
)
414 unsigned long nrexceptional
;
415 unsigned long nrpages
;
418 * Page reclaim can not participate in regular inode lifetime
419 * management (can't call iput()) and thus can race with the
420 * inode teardown. Tell it when the address space is exiting,
421 * so that it does not install eviction information after the
422 * final truncate has begun.
424 mapping_set_exiting(mapping
);
427 * When reclaim installs eviction entries, it increases
428 * nrexceptional first, then decreases nrpages. Make sure we see
429 * this in the right order or we might miss an entry.
431 nrpages
= mapping
->nrpages
;
433 nrexceptional
= mapping
->nrexceptional
;
435 if (nrpages
|| nrexceptional
) {
437 * As truncation uses a lockless tree lookup, cycle
438 * the tree lock to make sure any ongoing tree
439 * modification that does not see AS_EXITING is
440 * completed before starting the final truncate.
442 spin_lock_irq(&mapping
->tree_lock
);
443 spin_unlock_irq(&mapping
->tree_lock
);
445 truncate_inode_pages(mapping
, 0);
448 EXPORT_SYMBOL(truncate_inode_pages_final
);
451 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
452 * @mapping: the address_space which holds the pages to invalidate
453 * @start: the offset 'from' which to invalidate
454 * @end: the offset 'to' which to invalidate (inclusive)
456 * This function only removes the unlocked pages, if you want to
457 * remove all the pages of one inode, you must call truncate_inode_pages.
459 * invalidate_mapping_pages() will not block on IO activity. It will not
460 * invalidate pages which are dirty, locked, under writeback or mapped into
463 unsigned long invalidate_mapping_pages(struct address_space
*mapping
,
464 pgoff_t start
, pgoff_t end
)
466 pgoff_t indices
[PAGEVEC_SIZE
];
468 pgoff_t index
= start
;
470 unsigned long count
= 0;
473 pagevec_init(&pvec
, 0);
474 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
475 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
477 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
478 struct page
*page
= pvec
.pages
[i
];
480 /* We rely upon deletion not changing page->index */
485 if (radix_tree_exceptional_entry(page
)) {
486 clear_exceptional_entry(mapping
, index
, page
);
490 if (!trylock_page(page
))
492 WARN_ON(page
->index
!= index
);
493 ret
= invalidate_inode_page(page
);
496 * Invalidation is a hint that the page is no longer
497 * of interest and try to speed up its reclaim.
500 deactivate_file_page(page
);
503 pagevec_remove_exceptionals(&pvec
);
504 pagevec_release(&pvec
);
510 EXPORT_SYMBOL(invalidate_mapping_pages
);
513 * This is like invalidate_complete_page(), except it ignores the page's
514 * refcount. We do this because invalidate_inode_pages2() needs stronger
515 * invalidation guarantees, and cannot afford to leave pages behind because
516 * shrink_page_list() has a temp ref on them, or because they're transiently
517 * sitting in the lru_cache_add() pagevecs.
520 invalidate_complete_page2(struct address_space
*mapping
, struct page
*page
)
524 if (page
->mapping
!= mapping
)
527 if (page_has_private(page
) && !try_to_release_page(page
, GFP_KERNEL
))
530 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
534 BUG_ON(page_has_private(page
));
535 __delete_from_page_cache(page
, NULL
);
536 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
538 if (mapping
->a_ops
->freepage
)
539 mapping
->a_ops
->freepage(page
);
541 put_page(page
); /* pagecache ref */
544 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
548 static int do_launder_page(struct address_space
*mapping
, struct page
*page
)
550 if (!PageDirty(page
))
552 if (page
->mapping
!= mapping
|| mapping
->a_ops
->launder_page
== NULL
)
554 return mapping
->a_ops
->launder_page(page
);
558 * invalidate_inode_pages2_range - remove range of pages from an address_space
559 * @mapping: the address_space
560 * @start: the page offset 'from' which to invalidate
561 * @end: the page offset 'to' which to invalidate (inclusive)
563 * Any pages which are found to be mapped into pagetables are unmapped prior to
566 * Returns -EBUSY if any pages could not be invalidated.
568 int invalidate_inode_pages2_range(struct address_space
*mapping
,
569 pgoff_t start
, pgoff_t end
)
571 pgoff_t indices
[PAGEVEC_SIZE
];
577 int did_range_unmap
= 0;
579 cleancache_invalidate_inode(mapping
);
580 pagevec_init(&pvec
, 0);
582 while (index
<= end
&& pagevec_lookup_entries(&pvec
, mapping
, index
,
583 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
- 1) + 1,
585 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
586 struct page
*page
= pvec
.pages
[i
];
588 /* We rely upon deletion not changing page->index */
593 if (radix_tree_exceptional_entry(page
)) {
594 clear_exceptional_entry(mapping
, index
, page
);
599 WARN_ON(page
->index
!= index
);
600 if (page
->mapping
!= mapping
) {
604 wait_on_page_writeback(page
);
605 if (page_mapped(page
)) {
606 if (!did_range_unmap
) {
608 * Zap the rest of the file in one hit.
610 unmap_mapping_range(mapping
,
611 (loff_t
)index
<< PAGE_SHIFT
,
612 (loff_t
)(1 + end
- index
)
620 unmap_mapping_range(mapping
,
621 (loff_t
)index
<< PAGE_SHIFT
,
625 BUG_ON(page_mapped(page
));
626 ret2
= do_launder_page(mapping
, page
);
628 if (!invalidate_complete_page2(mapping
, page
))
635 pagevec_remove_exceptionals(&pvec
);
636 pagevec_release(&pvec
);
640 cleancache_invalidate_inode(mapping
);
643 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range
);
646 * invalidate_inode_pages2 - remove all pages from an address_space
647 * @mapping: the address_space
649 * Any pages which are found to be mapped into pagetables are unmapped prior to
652 * Returns -EBUSY if any pages could not be invalidated.
654 int invalidate_inode_pages2(struct address_space
*mapping
)
656 return invalidate_inode_pages2_range(mapping
, 0, -1);
658 EXPORT_SYMBOL_GPL(invalidate_inode_pages2
);
661 * truncate_pagecache - unmap and remove pagecache that has been truncated
663 * @newsize: new file size
665 * inode's new i_size must already be written before truncate_pagecache
668 * This function should typically be called before the filesystem
669 * releases resources associated with the freed range (eg. deallocates
670 * blocks). This way, pagecache will always stay logically coherent
671 * with on-disk format, and the filesystem would not have to deal with
672 * situations such as writepage being called for a page that has already
673 * had its underlying blocks deallocated.
675 void truncate_pagecache(struct inode
*inode
, loff_t newsize
)
677 struct address_space
*mapping
= inode
->i_mapping
;
678 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
681 * unmap_mapping_range is called twice, first simply for
682 * efficiency so that truncate_inode_pages does fewer
683 * single-page unmaps. However after this first call, and
684 * before truncate_inode_pages finishes, it is possible for
685 * private pages to be COWed, which remain after
686 * truncate_inode_pages finishes, hence the second
687 * unmap_mapping_range call must be made for correctness.
689 unmap_mapping_range(mapping
, holebegin
, 0, 1);
690 truncate_inode_pages(mapping
, newsize
);
691 unmap_mapping_range(mapping
, holebegin
, 0, 1);
693 EXPORT_SYMBOL(truncate_pagecache
);
696 * truncate_setsize - update inode and pagecache for a new file size
698 * @newsize: new file size
700 * truncate_setsize updates i_size and performs pagecache truncation (if
701 * necessary) to @newsize. It will be typically be called from the filesystem's
702 * setattr function when ATTR_SIZE is passed in.
704 * Must be called with a lock serializing truncates and writes (generally
705 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
706 * specific block truncation has been performed.
708 void truncate_setsize(struct inode
*inode
, loff_t newsize
)
710 loff_t oldsize
= inode
->i_size
;
712 i_size_write(inode
, newsize
);
713 if (newsize
> oldsize
)
714 pagecache_isize_extended(inode
, oldsize
, newsize
);
715 truncate_pagecache(inode
, newsize
);
717 EXPORT_SYMBOL(truncate_setsize
);
720 * pagecache_isize_extended - update pagecache after extension of i_size
721 * @inode: inode for which i_size was extended
722 * @from: original inode size
723 * @to: new inode size
725 * Handle extension of inode size either caused by extending truncate or by
726 * write starting after current i_size. We mark the page straddling current
727 * i_size RO so that page_mkwrite() is called on the nearest write access to
728 * the page. This way filesystem can be sure that page_mkwrite() is called on
729 * the page before user writes to the page via mmap after the i_size has been
732 * The function must be called after i_size is updated so that page fault
733 * coming after we unlock the page will already see the new i_size.
734 * The function must be called while we still hold i_mutex - this not only
735 * makes sure i_size is stable but also that userspace cannot observe new
736 * i_size value before we are prepared to store mmap writes at new inode size.
738 void pagecache_isize_extended(struct inode
*inode
, loff_t from
, loff_t to
)
740 int bsize
= 1 << inode
->i_blkbits
;
745 WARN_ON(to
> inode
->i_size
);
747 if (from
>= to
|| bsize
== PAGE_SIZE
)
749 /* Page straddling @from will not have any hole block created? */
750 rounded_from
= round_up(from
, bsize
);
751 if (to
<= rounded_from
|| !(rounded_from
& (PAGE_SIZE
- 1)))
754 index
= from
>> PAGE_SHIFT
;
755 page
= find_lock_page(inode
->i_mapping
, index
);
756 /* Page not cached? Nothing to do */
760 * See clear_page_dirty_for_io() for details why set_page_dirty()
763 if (page_mkclean(page
))
764 set_page_dirty(page
);
768 EXPORT_SYMBOL(pagecache_isize_extended
);
771 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
773 * @lstart: offset of beginning of hole
774 * @lend: offset of last byte of hole
776 * This function should typically be called before the filesystem
777 * releases resources associated with the freed range (eg. deallocates
778 * blocks). This way, pagecache will always stay logically coherent
779 * with on-disk format, and the filesystem would not have to deal with
780 * situations such as writepage being called for a page that has already
781 * had its underlying blocks deallocated.
783 void truncate_pagecache_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
785 struct address_space
*mapping
= inode
->i_mapping
;
786 loff_t unmap_start
= round_up(lstart
, PAGE_SIZE
);
787 loff_t unmap_end
= round_down(1 + lend
, PAGE_SIZE
) - 1;
789 * This rounding is currently just for example: unmap_mapping_range
790 * expands its hole outwards, whereas we want it to contract the hole
791 * inwards. However, existing callers of truncate_pagecache_range are
792 * doing their own page rounding first. Note that unmap_mapping_range
793 * allows holelen 0 for all, and we allow lend -1 for end of file.
797 * Unlike in truncate_pagecache, unmap_mapping_range is called only
798 * once (before truncating pagecache), and without "even_cows" flag:
799 * hole-punching should not remove private COWed pages from the hole.
801 if ((u64
)unmap_end
> (u64
)unmap_start
)
802 unmap_mapping_range(mapping
, unmap_start
,
803 1 + unmap_end
- unmap_start
, 0);
804 truncate_inode_pages_range(mapping
, lstart
, lend
);
806 EXPORT_SYMBOL(truncate_pagecache_range
);