2 * Copyright (C) 2014 Broadcom Corporation
3 * Copyright 2014 Linaro Limited
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation version 2.
9 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
10 * kind, whether express or implied; without even the implied warranty
11 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/init.h>
16 #include <linux/errno.h>
19 #include <linux/sched.h>
22 #include <asm/smp_plat.h>
23 #include <asm/smp_scu.h>
25 /* Size of mapped Cortex A9 SCU address space */
26 #define CORTEX_A9_SCU_SIZE 0x58
28 #define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
29 #define BOOT_ADDR_CPUID_MASK 0x3
31 /* Name of device node property defining secondary boot register location */
32 #define OF_SECONDARY_BOOT "secondary-boot-reg"
34 /* I/O address of register used to coordinate secondary core startup */
35 static u32 secondary_boot
;
38 * Enable the Cortex A9 Snoop Control Unit
40 * By the time this is called we already know there are multiple
41 * cores present. We assume we're running on a Cortex A9 processor,
42 * so any trouble getting the base address register or getting the
43 * SCU base is a problem.
45 * Return 0 if successful or an error code otherwise.
47 static int __init
scu_a9_enable(void)
49 unsigned long config_base
;
50 void __iomem
*scu_base
;
52 if (!scu_a9_has_base()) {
53 pr_err("no configuration base address register!\n");
57 /* Config base address register value is zero for uniprocessor */
58 config_base
= scu_a9_get_base();
60 pr_err("hardware reports only one core\n");
64 scu_base
= ioremap((phys_addr_t
)config_base
, CORTEX_A9_SCU_SIZE
);
66 pr_err("failed to remap config base (%lu/%u) for SCU\n",
67 config_base
, CORTEX_A9_SCU_SIZE
);
73 iounmap(scu_base
); /* That's the last we'll need of this */
78 static void __init
bcm_smp_prepare_cpus(unsigned int max_cpus
)
80 static cpumask_t only_cpu_0
= { CPU_BITS_CPU0
};
81 struct device_node
*node
;
84 BUG_ON(secondary_boot
); /* We're called only once */
87 * This function is only called via smp_ops->smp_prepare_cpu().
88 * That only happens if a "/cpus" device tree node exists
89 * and has an "enable-method" property that selects the SMP
90 * operations defined herein.
92 node
= of_find_node_by_path("/cpus");
96 * Our secondary enable method requires a "secondary-boot-reg"
97 * property to specify a register address used to request the
98 * ROM code boot a secondary code. If we have any trouble
99 * getting this we fall back to uniprocessor mode.
101 if (of_property_read_u32(node
, OF_SECONDARY_BOOT
, &secondary_boot
)) {
102 pr_err("%s: missing/invalid " OF_SECONDARY_BOOT
" property\n",
104 ret
= -ENOENT
; /* Arrange to disable SMP */
109 * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
110 * returned, the SoC reported a uniprocessor configuration.
111 * We bail on any other error.
113 ret
= scu_a9_enable();
117 /* Update the CPU present map to reflect uniprocessor mode */
118 BUG_ON(ret
!= -ENOENT
);
119 pr_warn("disabling SMP\n");
120 init_cpu_present(&only_cpu_0
);
125 * The ROM code has the secondary cores looping, waiting for an event.
126 * When an event occurs each core examines the bottom two bits of the
127 * secondary boot register. When a core finds those bits contain its
128 * own core id, it performs initialization, including computing its boot
129 * address by clearing the boot register value's bottom two bits. The
130 * core signals that it is beginning its execution by writing its boot
131 * address back to the secondary boot register, and finally jumps to
134 * So to start a core executing we need to:
135 * - Encode the (hardware) CPU id with the bottom bits of the secondary
137 * - Write that value into the secondary boot register.
138 * - Generate an event to wake up the secondary CPU(s).
139 * - Wait for the secondary boot register to be re-written, which
140 * indicates the secondary core has started.
142 static int bcm_boot_secondary(unsigned int cpu
, struct task_struct
*idle
)
144 void __iomem
*boot_reg
;
145 phys_addr_t boot_func
;
149 bool timeout
= false;
151 cpu_id
= cpu_logical_map(cpu
);
152 if (cpu_id
& ~BOOT_ADDR_CPUID_MASK
) {
153 pr_err("bad cpu id (%u > %u)\n", cpu_id
, BOOT_ADDR_CPUID_MASK
);
157 if (!secondary_boot
) {
158 pr_err("required secondary boot register not specified\n");
162 boot_reg
= ioremap_nocache((phys_addr_t
)secondary_boot
, sizeof(u32
));
164 pr_err("unable to map boot register for cpu %u\n", cpu_id
);
169 * Secondary cores will start in secondary_startup(),
170 * defined in "arch/arm/kernel/head.S"
172 boot_func
= virt_to_phys(secondary_startup
);
173 BUG_ON(boot_func
& BOOT_ADDR_CPUID_MASK
);
174 BUG_ON(boot_func
> (phys_addr_t
)U32_MAX
);
176 /* The core to start is encoded in the low bits */
177 boot_val
= (u32
)boot_func
| cpu_id
;
178 writel_relaxed(boot_val
, boot_reg
);
182 /* The low bits will be cleared once the core has started */
183 start_clock
= local_clock();
184 while (!timeout
&& readl_relaxed(boot_reg
) == boot_val
)
185 timeout
= local_clock() - start_clock
> SECONDARY_TIMEOUT_NS
;
192 pr_err("timeout waiting for cpu %u to start\n", cpu_id
);
197 static struct smp_operations bcm_smp_ops __initdata
= {
198 .smp_prepare_cpus
= bcm_smp_prepare_cpus
,
199 .smp_boot_secondary
= bcm_boot_secondary
,
201 CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx
, "brcm,bcm11351-cpu-method",