blk: rq_data_dir() should not return a boolean
[cris-mirror.git] / arch / arm64 / kvm / sys_regs.c
blobb41607d270ac83ebd1413a185753bf0b9e2af7f0
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
23 #include <linux/kvm_host.h>
24 #include <linux/mm.h>
25 #include <linux/uaccess.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <asm/debug-monitors.h>
30 #include <asm/esr.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_coproc.h>
33 #include <asm/kvm_emulate.h>
34 #include <asm/kvm_host.h>
35 #include <asm/kvm_mmu.h>
37 #include <trace/events/kvm.h>
39 #include "sys_regs.h"
41 #include "trace.h"
44 * All of this file is extremly similar to the ARM coproc.c, but the
45 * types are different. My gut feeling is that it should be pretty
46 * easy to merge, but that would be an ABI breakage -- again. VFP
47 * would also need to be abstracted.
49 * For AArch32, we only take care of what is being trapped. Anything
50 * that has to do with init and userspace access has to go via the
51 * 64bit interface.
54 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
55 static u32 cache_levels;
57 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
58 #define CSSELR_MAX 12
60 /* Which cache CCSIDR represents depends on CSSELR value. */
61 static u32 get_ccsidr(u32 csselr)
63 u32 ccsidr;
65 /* Make sure noone else changes CSSELR during this! */
66 local_irq_disable();
67 /* Put value into CSSELR */
68 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
69 isb();
70 /* Read result out of CCSIDR */
71 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
72 local_irq_enable();
74 return ccsidr;
78 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
80 static bool access_dcsw(struct kvm_vcpu *vcpu,
81 const struct sys_reg_params *p,
82 const struct sys_reg_desc *r)
84 if (!p->is_write)
85 return read_from_write_only(vcpu, p);
87 kvm_set_way_flush(vcpu);
88 return true;
92 * Generic accessor for VM registers. Only called as long as HCR_TVM
93 * is set. If the guest enables the MMU, we stop trapping the VM
94 * sys_regs and leave it in complete control of the caches.
96 static bool access_vm_reg(struct kvm_vcpu *vcpu,
97 const struct sys_reg_params *p,
98 const struct sys_reg_desc *r)
100 unsigned long val;
101 bool was_enabled = vcpu_has_cache_enabled(vcpu);
103 BUG_ON(!p->is_write);
105 val = *vcpu_reg(vcpu, p->Rt);
106 if (!p->is_aarch32) {
107 vcpu_sys_reg(vcpu, r->reg) = val;
108 } else {
109 if (!p->is_32bit)
110 vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
111 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
114 kvm_toggle_cache(vcpu, was_enabled);
115 return true;
119 * Trap handler for the GICv3 SGI generation system register.
120 * Forward the request to the VGIC emulation.
121 * The cp15_64 code makes sure this automatically works
122 * for both AArch64 and AArch32 accesses.
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125 const struct sys_reg_params *p,
126 const struct sys_reg_desc *r)
128 u64 val;
130 if (!p->is_write)
131 return read_from_write_only(vcpu, p);
133 val = *vcpu_reg(vcpu, p->Rt);
134 vgic_v3_dispatch_sgi(vcpu, val);
136 return true;
139 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
140 const struct sys_reg_params *p,
141 const struct sys_reg_desc *r)
143 if (p->is_write)
144 return ignore_write(vcpu, p);
145 else
146 return read_zero(vcpu, p);
149 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
150 const struct sys_reg_params *p,
151 const struct sys_reg_desc *r)
153 if (p->is_write) {
154 return ignore_write(vcpu, p);
155 } else {
156 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
157 return true;
161 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
162 const struct sys_reg_params *p,
163 const struct sys_reg_desc *r)
165 if (p->is_write) {
166 return ignore_write(vcpu, p);
167 } else {
168 u32 val;
169 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
170 *vcpu_reg(vcpu, p->Rt) = val;
171 return true;
176 * We want to avoid world-switching all the DBG registers all the
177 * time:
179 * - If we've touched any debug register, it is likely that we're
180 * going to touch more of them. It then makes sense to disable the
181 * traps and start doing the save/restore dance
182 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
183 * then mandatory to save/restore the registers, as the guest
184 * depends on them.
186 * For this, we use a DIRTY bit, indicating the guest has modified the
187 * debug registers, used as follow:
189 * On guest entry:
190 * - If the dirty bit is set (because we're coming back from trapping),
191 * disable the traps, save host registers, restore guest registers.
192 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
193 * set the dirty bit, disable the traps, save host registers,
194 * restore guest registers.
195 * - Otherwise, enable the traps
197 * On guest exit:
198 * - If the dirty bit is set, save guest registers, restore host
199 * registers and clear the dirty bit. This ensure that the host can
200 * now use the debug registers.
202 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
203 const struct sys_reg_params *p,
204 const struct sys_reg_desc *r)
206 if (p->is_write) {
207 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
208 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
209 } else {
210 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
213 trace_trap_reg(__func__, r->reg, p->is_write, *vcpu_reg(vcpu, p->Rt));
215 return true;
219 * reg_to_dbg/dbg_to_reg
221 * A 32 bit write to a debug register leave top bits alone
222 * A 32 bit read from a debug register only returns the bottom bits
224 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
225 * hyp.S code switches between host and guest values in future.
227 static inline void reg_to_dbg(struct kvm_vcpu *vcpu,
228 const struct sys_reg_params *p,
229 u64 *dbg_reg)
231 u64 val = *vcpu_reg(vcpu, p->Rt);
233 if (p->is_32bit) {
234 val &= 0xffffffffUL;
235 val |= ((*dbg_reg >> 32) << 32);
238 *dbg_reg = val;
239 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
242 static inline void dbg_to_reg(struct kvm_vcpu *vcpu,
243 const struct sys_reg_params *p,
244 u64 *dbg_reg)
246 u64 val = *dbg_reg;
248 if (p->is_32bit)
249 val &= 0xffffffffUL;
251 *vcpu_reg(vcpu, p->Rt) = val;
254 static inline bool trap_bvr(struct kvm_vcpu *vcpu,
255 const struct sys_reg_params *p,
256 const struct sys_reg_desc *rd)
258 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
260 if (p->is_write)
261 reg_to_dbg(vcpu, p, dbg_reg);
262 else
263 dbg_to_reg(vcpu, p, dbg_reg);
265 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
267 return true;
270 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
271 const struct kvm_one_reg *reg, void __user *uaddr)
273 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
275 if (copy_from_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
276 return -EFAULT;
277 return 0;
280 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
281 const struct kvm_one_reg *reg, void __user *uaddr)
283 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
285 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
286 return -EFAULT;
287 return 0;
290 static inline void reset_bvr(struct kvm_vcpu *vcpu,
291 const struct sys_reg_desc *rd)
293 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
296 static inline bool trap_bcr(struct kvm_vcpu *vcpu,
297 const struct sys_reg_params *p,
298 const struct sys_reg_desc *rd)
300 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
302 if (p->is_write)
303 reg_to_dbg(vcpu, p, dbg_reg);
304 else
305 dbg_to_reg(vcpu, p, dbg_reg);
307 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
309 return true;
312 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
313 const struct kvm_one_reg *reg, void __user *uaddr)
315 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
317 if (copy_from_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
318 return -EFAULT;
320 return 0;
323 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
324 const struct kvm_one_reg *reg, void __user *uaddr)
326 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
328 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
329 return -EFAULT;
330 return 0;
333 static inline void reset_bcr(struct kvm_vcpu *vcpu,
334 const struct sys_reg_desc *rd)
336 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
339 static inline bool trap_wvr(struct kvm_vcpu *vcpu,
340 const struct sys_reg_params *p,
341 const struct sys_reg_desc *rd)
343 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
345 if (p->is_write)
346 reg_to_dbg(vcpu, p, dbg_reg);
347 else
348 dbg_to_reg(vcpu, p, dbg_reg);
350 trace_trap_reg(__func__, rd->reg, p->is_write,
351 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
353 return true;
356 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
357 const struct kvm_one_reg *reg, void __user *uaddr)
359 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
361 if (copy_from_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
362 return -EFAULT;
363 return 0;
366 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
367 const struct kvm_one_reg *reg, void __user *uaddr)
369 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
371 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
372 return -EFAULT;
373 return 0;
376 static inline void reset_wvr(struct kvm_vcpu *vcpu,
377 const struct sys_reg_desc *rd)
379 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
382 static inline bool trap_wcr(struct kvm_vcpu *vcpu,
383 const struct sys_reg_params *p,
384 const struct sys_reg_desc *rd)
386 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
388 if (p->is_write)
389 reg_to_dbg(vcpu, p, dbg_reg);
390 else
391 dbg_to_reg(vcpu, p, dbg_reg);
393 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
395 return true;
398 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
399 const struct kvm_one_reg *reg, void __user *uaddr)
401 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
403 if (copy_from_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
404 return -EFAULT;
405 return 0;
408 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
409 const struct kvm_one_reg *reg, void __user *uaddr)
411 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
413 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
414 return -EFAULT;
415 return 0;
418 static inline void reset_wcr(struct kvm_vcpu *vcpu,
419 const struct sys_reg_desc *rd)
421 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
424 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
426 u64 amair;
428 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
429 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
434 u64 mpidr;
437 * Map the vcpu_id into the first three affinity level fields of
438 * the MPIDR. We limit the number of VCPUs in level 0 due to a
439 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440 * of the GICv3 to be able to address each CPU directly when
441 * sending IPIs.
443 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
449 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
450 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
451 /* DBGBVRn_EL1 */ \
452 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
453 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
454 /* DBGBCRn_EL1 */ \
455 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
456 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
457 /* DBGWVRn_EL1 */ \
458 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
459 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
460 /* DBGWCRn_EL1 */ \
461 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
462 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
465 * Architected system registers.
466 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
468 * We could trap ID_DFR0 and tell the guest we don't support performance
469 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
470 * NAKed, so it will read the PMCR anyway.
472 * Therefore we tell the guest we have 0 counters. Unfortunately, we
473 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
474 * all PM registers, which doesn't crash the guest kernel at least.
476 * Debug handling: We do trap most, if not all debug related system
477 * registers. The implementation is good enough to ensure that a guest
478 * can use these with minimal performance degradation. The drawback is
479 * that we don't implement any of the external debug, none of the
480 * OSlock protocol. This should be revisited if we ever encounter a
481 * more demanding guest...
483 static const struct sys_reg_desc sys_reg_descs[] = {
484 /* DC ISW */
485 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
486 access_dcsw },
487 /* DC CSW */
488 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
489 access_dcsw },
490 /* DC CISW */
491 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
492 access_dcsw },
494 DBG_BCR_BVR_WCR_WVR_EL1(0),
495 DBG_BCR_BVR_WCR_WVR_EL1(1),
496 /* MDCCINT_EL1 */
497 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
498 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
499 /* MDSCR_EL1 */
500 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
501 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
502 DBG_BCR_BVR_WCR_WVR_EL1(2),
503 DBG_BCR_BVR_WCR_WVR_EL1(3),
504 DBG_BCR_BVR_WCR_WVR_EL1(4),
505 DBG_BCR_BVR_WCR_WVR_EL1(5),
506 DBG_BCR_BVR_WCR_WVR_EL1(6),
507 DBG_BCR_BVR_WCR_WVR_EL1(7),
508 DBG_BCR_BVR_WCR_WVR_EL1(8),
509 DBG_BCR_BVR_WCR_WVR_EL1(9),
510 DBG_BCR_BVR_WCR_WVR_EL1(10),
511 DBG_BCR_BVR_WCR_WVR_EL1(11),
512 DBG_BCR_BVR_WCR_WVR_EL1(12),
513 DBG_BCR_BVR_WCR_WVR_EL1(13),
514 DBG_BCR_BVR_WCR_WVR_EL1(14),
515 DBG_BCR_BVR_WCR_WVR_EL1(15),
517 /* MDRAR_EL1 */
518 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
519 trap_raz_wi },
520 /* OSLAR_EL1 */
521 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
522 trap_raz_wi },
523 /* OSLSR_EL1 */
524 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
525 trap_oslsr_el1 },
526 /* OSDLR_EL1 */
527 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
528 trap_raz_wi },
529 /* DBGPRCR_EL1 */
530 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
531 trap_raz_wi },
532 /* DBGCLAIMSET_EL1 */
533 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
534 trap_raz_wi },
535 /* DBGCLAIMCLR_EL1 */
536 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
537 trap_raz_wi },
538 /* DBGAUTHSTATUS_EL1 */
539 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
540 trap_dbgauthstatus_el1 },
542 /* TEECR32_EL1 */
543 { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
544 NULL, reset_val, TEECR32_EL1, 0 },
545 /* TEEHBR32_EL1 */
546 { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
547 NULL, reset_val, TEEHBR32_EL1, 0 },
549 /* MDCCSR_EL1 */
550 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
551 trap_raz_wi },
552 /* DBGDTR_EL0 */
553 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
554 trap_raz_wi },
555 /* DBGDTR[TR]X_EL0 */
556 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
557 trap_raz_wi },
559 /* DBGVCR32_EL2 */
560 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
561 NULL, reset_val, DBGVCR32_EL2, 0 },
563 /* MPIDR_EL1 */
564 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
565 NULL, reset_mpidr, MPIDR_EL1 },
566 /* SCTLR_EL1 */
567 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
568 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
569 /* CPACR_EL1 */
570 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
571 NULL, reset_val, CPACR_EL1, 0 },
572 /* TTBR0_EL1 */
573 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
574 access_vm_reg, reset_unknown, TTBR0_EL1 },
575 /* TTBR1_EL1 */
576 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
577 access_vm_reg, reset_unknown, TTBR1_EL1 },
578 /* TCR_EL1 */
579 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
580 access_vm_reg, reset_val, TCR_EL1, 0 },
582 /* AFSR0_EL1 */
583 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
584 access_vm_reg, reset_unknown, AFSR0_EL1 },
585 /* AFSR1_EL1 */
586 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
587 access_vm_reg, reset_unknown, AFSR1_EL1 },
588 /* ESR_EL1 */
589 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
590 access_vm_reg, reset_unknown, ESR_EL1 },
591 /* FAR_EL1 */
592 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
593 access_vm_reg, reset_unknown, FAR_EL1 },
594 /* PAR_EL1 */
595 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
596 NULL, reset_unknown, PAR_EL1 },
598 /* PMINTENSET_EL1 */
599 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
600 trap_raz_wi },
601 /* PMINTENCLR_EL1 */
602 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
603 trap_raz_wi },
605 /* MAIR_EL1 */
606 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
607 access_vm_reg, reset_unknown, MAIR_EL1 },
608 /* AMAIR_EL1 */
609 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
610 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
612 /* VBAR_EL1 */
613 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
614 NULL, reset_val, VBAR_EL1, 0 },
616 /* ICC_SGI1R_EL1 */
617 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
618 access_gic_sgi },
619 /* ICC_SRE_EL1 */
620 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
621 trap_raz_wi },
623 /* CONTEXTIDR_EL1 */
624 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
625 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
626 /* TPIDR_EL1 */
627 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
628 NULL, reset_unknown, TPIDR_EL1 },
630 /* CNTKCTL_EL1 */
631 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
632 NULL, reset_val, CNTKCTL_EL1, 0},
634 /* CSSELR_EL1 */
635 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
636 NULL, reset_unknown, CSSELR_EL1 },
638 /* PMCR_EL0 */
639 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
640 trap_raz_wi },
641 /* PMCNTENSET_EL0 */
642 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
643 trap_raz_wi },
644 /* PMCNTENCLR_EL0 */
645 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
646 trap_raz_wi },
647 /* PMOVSCLR_EL0 */
648 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
649 trap_raz_wi },
650 /* PMSWINC_EL0 */
651 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
652 trap_raz_wi },
653 /* PMSELR_EL0 */
654 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
655 trap_raz_wi },
656 /* PMCEID0_EL0 */
657 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
658 trap_raz_wi },
659 /* PMCEID1_EL0 */
660 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
661 trap_raz_wi },
662 /* PMCCNTR_EL0 */
663 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
664 trap_raz_wi },
665 /* PMXEVTYPER_EL0 */
666 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
667 trap_raz_wi },
668 /* PMXEVCNTR_EL0 */
669 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
670 trap_raz_wi },
671 /* PMUSERENR_EL0 */
672 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
673 trap_raz_wi },
674 /* PMOVSSET_EL0 */
675 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
676 trap_raz_wi },
678 /* TPIDR_EL0 */
679 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
680 NULL, reset_unknown, TPIDR_EL0 },
681 /* TPIDRRO_EL0 */
682 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
683 NULL, reset_unknown, TPIDRRO_EL0 },
685 /* DACR32_EL2 */
686 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
687 NULL, reset_unknown, DACR32_EL2 },
688 /* IFSR32_EL2 */
689 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
690 NULL, reset_unknown, IFSR32_EL2 },
691 /* FPEXC32_EL2 */
692 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
693 NULL, reset_val, FPEXC32_EL2, 0x70 },
696 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
697 const struct sys_reg_params *p,
698 const struct sys_reg_desc *r)
700 if (p->is_write) {
701 return ignore_write(vcpu, p);
702 } else {
703 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
704 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
705 u32 el3 = !!((pfr >> 12) & 0xf);
707 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
708 (((dfr >> 12) & 0xf) << 24) |
709 (((dfr >> 28) & 0xf) << 20) |
710 (6 << 16) | (el3 << 14) | (el3 << 12));
711 return true;
715 static bool trap_debug32(struct kvm_vcpu *vcpu,
716 const struct sys_reg_params *p,
717 const struct sys_reg_desc *r)
719 if (p->is_write) {
720 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
721 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
722 } else {
723 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
726 return true;
729 /* AArch32 debug register mappings
731 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
732 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
734 * All control registers and watchpoint value registers are mapped to
735 * the lower 32 bits of their AArch64 equivalents. We share the trap
736 * handlers with the above AArch64 code which checks what mode the
737 * system is in.
740 static inline bool trap_xvr(struct kvm_vcpu *vcpu,
741 const struct sys_reg_params *p,
742 const struct sys_reg_desc *rd)
744 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
746 if (p->is_write) {
747 u64 val = *dbg_reg;
749 val &= 0xffffffffUL;
750 val |= *vcpu_reg(vcpu, p->Rt) << 32;
751 *dbg_reg = val;
753 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
754 } else {
755 *vcpu_reg(vcpu, p->Rt) = *dbg_reg >> 32;
758 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
760 return true;
763 #define DBG_BCR_BVR_WCR_WVR(n) \
764 /* DBGBVRn */ \
765 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
766 /* DBGBCRn */ \
767 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
768 /* DBGWVRn */ \
769 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
770 /* DBGWCRn */ \
771 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
773 #define DBGBXVR(n) \
774 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
777 * Trapped cp14 registers. We generally ignore most of the external
778 * debug, on the principle that they don't really make sense to a
779 * guest. Revisit this one day, would this principle change.
781 static const struct sys_reg_desc cp14_regs[] = {
782 /* DBGIDR */
783 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
784 /* DBGDTRRXext */
785 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
787 DBG_BCR_BVR_WCR_WVR(0),
788 /* DBGDSCRint */
789 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
790 DBG_BCR_BVR_WCR_WVR(1),
791 /* DBGDCCINT */
792 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
793 /* DBGDSCRext */
794 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
795 DBG_BCR_BVR_WCR_WVR(2),
796 /* DBGDTR[RT]Xint */
797 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
798 /* DBGDTR[RT]Xext */
799 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
800 DBG_BCR_BVR_WCR_WVR(3),
801 DBG_BCR_BVR_WCR_WVR(4),
802 DBG_BCR_BVR_WCR_WVR(5),
803 /* DBGWFAR */
804 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
805 /* DBGOSECCR */
806 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
807 DBG_BCR_BVR_WCR_WVR(6),
808 /* DBGVCR */
809 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
810 DBG_BCR_BVR_WCR_WVR(7),
811 DBG_BCR_BVR_WCR_WVR(8),
812 DBG_BCR_BVR_WCR_WVR(9),
813 DBG_BCR_BVR_WCR_WVR(10),
814 DBG_BCR_BVR_WCR_WVR(11),
815 DBG_BCR_BVR_WCR_WVR(12),
816 DBG_BCR_BVR_WCR_WVR(13),
817 DBG_BCR_BVR_WCR_WVR(14),
818 DBG_BCR_BVR_WCR_WVR(15),
820 /* DBGDRAR (32bit) */
821 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
823 DBGBXVR(0),
824 /* DBGOSLAR */
825 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
826 DBGBXVR(1),
827 /* DBGOSLSR */
828 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
829 DBGBXVR(2),
830 DBGBXVR(3),
831 /* DBGOSDLR */
832 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
833 DBGBXVR(4),
834 /* DBGPRCR */
835 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
836 DBGBXVR(5),
837 DBGBXVR(6),
838 DBGBXVR(7),
839 DBGBXVR(8),
840 DBGBXVR(9),
841 DBGBXVR(10),
842 DBGBXVR(11),
843 DBGBXVR(12),
844 DBGBXVR(13),
845 DBGBXVR(14),
846 DBGBXVR(15),
848 /* DBGDSAR (32bit) */
849 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
851 /* DBGDEVID2 */
852 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
853 /* DBGDEVID1 */
854 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
855 /* DBGDEVID */
856 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
857 /* DBGCLAIMSET */
858 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
859 /* DBGCLAIMCLR */
860 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
861 /* DBGAUTHSTATUS */
862 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
865 /* Trapped cp14 64bit registers */
866 static const struct sys_reg_desc cp14_64_regs[] = {
867 /* DBGDRAR (64bit) */
868 { Op1( 0), CRm( 1), .access = trap_raz_wi },
870 /* DBGDSAR (64bit) */
871 { Op1( 0), CRm( 2), .access = trap_raz_wi },
875 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
876 * depending on the way they are accessed (as a 32bit or a 64bit
877 * register).
879 static const struct sys_reg_desc cp15_regs[] = {
880 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
882 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
883 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
884 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
885 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
886 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
887 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
888 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
889 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
890 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
891 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
892 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
895 * DC{C,I,CI}SW operations:
897 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
898 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
899 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
901 /* PMU */
902 { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
903 { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
904 { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
905 { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
906 { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
907 { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
908 { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
909 { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
910 { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
911 { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
912 { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
913 { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
914 { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
916 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
917 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
918 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
919 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
921 /* ICC_SRE */
922 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
924 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
927 static const struct sys_reg_desc cp15_64_regs[] = {
928 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
929 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
930 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
933 /* Target specific emulation tables */
934 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
936 void kvm_register_target_sys_reg_table(unsigned int target,
937 struct kvm_sys_reg_target_table *table)
939 target_tables[target] = table;
942 /* Get specific register table for this target. */
943 static const struct sys_reg_desc *get_target_table(unsigned target,
944 bool mode_is_64,
945 size_t *num)
947 struct kvm_sys_reg_target_table *table;
949 table = target_tables[target];
950 if (mode_is_64) {
951 *num = table->table64.num;
952 return table->table64.table;
953 } else {
954 *num = table->table32.num;
955 return table->table32.table;
959 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
960 const struct sys_reg_desc table[],
961 unsigned int num)
963 unsigned int i;
965 for (i = 0; i < num; i++) {
966 const struct sys_reg_desc *r = &table[i];
968 if (params->Op0 != r->Op0)
969 continue;
970 if (params->Op1 != r->Op1)
971 continue;
972 if (params->CRn != r->CRn)
973 continue;
974 if (params->CRm != r->CRm)
975 continue;
976 if (params->Op2 != r->Op2)
977 continue;
979 return r;
981 return NULL;
984 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
986 kvm_inject_undefined(vcpu);
987 return 1;
991 * emulate_cp -- tries to match a sys_reg access in a handling table, and
992 * call the corresponding trap handler.
994 * @params: pointer to the descriptor of the access
995 * @table: array of trap descriptors
996 * @num: size of the trap descriptor array
998 * Return 0 if the access has been handled, and -1 if not.
1000 static int emulate_cp(struct kvm_vcpu *vcpu,
1001 const struct sys_reg_params *params,
1002 const struct sys_reg_desc *table,
1003 size_t num)
1005 const struct sys_reg_desc *r;
1007 if (!table)
1008 return -1; /* Not handled */
1010 r = find_reg(params, table, num);
1012 if (r) {
1014 * Not having an accessor means that we have
1015 * configured a trap that we don't know how to
1016 * handle. This certainly qualifies as a gross bug
1017 * that should be fixed right away.
1019 BUG_ON(!r->access);
1021 if (likely(r->access(vcpu, params, r))) {
1022 /* Skip instruction, since it was emulated */
1023 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1026 /* Handled */
1027 return 0;
1030 /* Not handled */
1031 return -1;
1034 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1035 struct sys_reg_params *params)
1037 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1038 int cp;
1040 switch(hsr_ec) {
1041 case ESR_ELx_EC_CP15_32:
1042 case ESR_ELx_EC_CP15_64:
1043 cp = 15;
1044 break;
1045 case ESR_ELx_EC_CP14_MR:
1046 case ESR_ELx_EC_CP14_64:
1047 cp = 14;
1048 break;
1049 default:
1050 WARN_ON((cp = -1));
1053 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1054 cp, *vcpu_pc(vcpu));
1055 print_sys_reg_instr(params);
1056 kvm_inject_undefined(vcpu);
1060 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
1061 * @vcpu: The VCPU pointer
1062 * @run: The kvm_run struct
1064 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1065 const struct sys_reg_desc *global,
1066 size_t nr_global,
1067 const struct sys_reg_desc *target_specific,
1068 size_t nr_specific)
1070 struct sys_reg_params params;
1071 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1072 int Rt2 = (hsr >> 10) & 0xf;
1074 params.is_aarch32 = true;
1075 params.is_32bit = false;
1076 params.CRm = (hsr >> 1) & 0xf;
1077 params.Rt = (hsr >> 5) & 0xf;
1078 params.is_write = ((hsr & 1) == 0);
1080 params.Op0 = 0;
1081 params.Op1 = (hsr >> 16) & 0xf;
1082 params.Op2 = 0;
1083 params.CRn = 0;
1086 * Massive hack here. Store Rt2 in the top 32bits so we only
1087 * have one register to deal with. As we use the same trap
1088 * backends between AArch32 and AArch64, we get away with it.
1090 if (params.is_write) {
1091 u64 val = *vcpu_reg(vcpu, params.Rt);
1092 val &= 0xffffffff;
1093 val |= *vcpu_reg(vcpu, Rt2) << 32;
1094 *vcpu_reg(vcpu, params.Rt) = val;
1097 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1098 goto out;
1099 if (!emulate_cp(vcpu, &params, global, nr_global))
1100 goto out;
1102 unhandled_cp_access(vcpu, &params);
1104 out:
1105 /* Do the opposite hack for the read side */
1106 if (!params.is_write) {
1107 u64 val = *vcpu_reg(vcpu, params.Rt);
1108 val >>= 32;
1109 *vcpu_reg(vcpu, Rt2) = val;
1112 return 1;
1116 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
1117 * @vcpu: The VCPU pointer
1118 * @run: The kvm_run struct
1120 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1121 const struct sys_reg_desc *global,
1122 size_t nr_global,
1123 const struct sys_reg_desc *target_specific,
1124 size_t nr_specific)
1126 struct sys_reg_params params;
1127 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1129 params.is_aarch32 = true;
1130 params.is_32bit = true;
1131 params.CRm = (hsr >> 1) & 0xf;
1132 params.Rt = (hsr >> 5) & 0xf;
1133 params.is_write = ((hsr & 1) == 0);
1134 params.CRn = (hsr >> 10) & 0xf;
1135 params.Op0 = 0;
1136 params.Op1 = (hsr >> 14) & 0x7;
1137 params.Op2 = (hsr >> 17) & 0x7;
1139 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1140 return 1;
1141 if (!emulate_cp(vcpu, &params, global, nr_global))
1142 return 1;
1144 unhandled_cp_access(vcpu, &params);
1145 return 1;
1148 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1150 const struct sys_reg_desc *target_specific;
1151 size_t num;
1153 target_specific = get_target_table(vcpu->arch.target, false, &num);
1154 return kvm_handle_cp_64(vcpu,
1155 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1156 target_specific, num);
1159 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1161 const struct sys_reg_desc *target_specific;
1162 size_t num;
1164 target_specific = get_target_table(vcpu->arch.target, false, &num);
1165 return kvm_handle_cp_32(vcpu,
1166 cp15_regs, ARRAY_SIZE(cp15_regs),
1167 target_specific, num);
1170 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1172 return kvm_handle_cp_64(vcpu,
1173 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1174 NULL, 0);
1177 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1179 return kvm_handle_cp_32(vcpu,
1180 cp14_regs, ARRAY_SIZE(cp14_regs),
1181 NULL, 0);
1184 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1185 const struct sys_reg_params *params)
1187 size_t num;
1188 const struct sys_reg_desc *table, *r;
1190 table = get_target_table(vcpu->arch.target, true, &num);
1192 /* Search target-specific then generic table. */
1193 r = find_reg(params, table, num);
1194 if (!r)
1195 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1197 if (likely(r)) {
1199 * Not having an accessor means that we have
1200 * configured a trap that we don't know how to
1201 * handle. This certainly qualifies as a gross bug
1202 * that should be fixed right away.
1204 BUG_ON(!r->access);
1206 if (likely(r->access(vcpu, params, r))) {
1207 /* Skip instruction, since it was emulated */
1208 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1209 return 1;
1211 /* If access function fails, it should complain. */
1212 } else {
1213 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1214 *vcpu_pc(vcpu));
1215 print_sys_reg_instr(params);
1217 kvm_inject_undefined(vcpu);
1218 return 1;
1221 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1222 const struct sys_reg_desc *table, size_t num)
1224 unsigned long i;
1226 for (i = 0; i < num; i++)
1227 if (table[i].reset)
1228 table[i].reset(vcpu, &table[i]);
1232 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1233 * @vcpu: The VCPU pointer
1234 * @run: The kvm_run struct
1236 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1238 struct sys_reg_params params;
1239 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1241 trace_kvm_handle_sys_reg(esr);
1243 params.is_aarch32 = false;
1244 params.is_32bit = false;
1245 params.Op0 = (esr >> 20) & 3;
1246 params.Op1 = (esr >> 14) & 0x7;
1247 params.CRn = (esr >> 10) & 0xf;
1248 params.CRm = (esr >> 1) & 0xf;
1249 params.Op2 = (esr >> 17) & 0x7;
1250 params.Rt = (esr >> 5) & 0x1f;
1251 params.is_write = !(esr & 1);
1253 return emulate_sys_reg(vcpu, &params);
1256 /******************************************************************************
1257 * Userspace API
1258 *****************************************************************************/
1260 static bool index_to_params(u64 id, struct sys_reg_params *params)
1262 switch (id & KVM_REG_SIZE_MASK) {
1263 case KVM_REG_SIZE_U64:
1264 /* Any unused index bits means it's not valid. */
1265 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1266 | KVM_REG_ARM_COPROC_MASK
1267 | KVM_REG_ARM64_SYSREG_OP0_MASK
1268 | KVM_REG_ARM64_SYSREG_OP1_MASK
1269 | KVM_REG_ARM64_SYSREG_CRN_MASK
1270 | KVM_REG_ARM64_SYSREG_CRM_MASK
1271 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1272 return false;
1273 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1274 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1275 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1276 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1277 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1278 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1279 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1280 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1281 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1282 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1283 return true;
1284 default:
1285 return false;
1289 /* Decode an index value, and find the sys_reg_desc entry. */
1290 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1291 u64 id)
1293 size_t num;
1294 const struct sys_reg_desc *table, *r;
1295 struct sys_reg_params params;
1297 /* We only do sys_reg for now. */
1298 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1299 return NULL;
1301 if (!index_to_params(id, &params))
1302 return NULL;
1304 table = get_target_table(vcpu->arch.target, true, &num);
1305 r = find_reg(&params, table, num);
1306 if (!r)
1307 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1309 /* Not saved in the sys_reg array? */
1310 if (r && !r->reg)
1311 r = NULL;
1313 return r;
1317 * These are the invariant sys_reg registers: we let the guest see the
1318 * host versions of these, so they're part of the guest state.
1320 * A future CPU may provide a mechanism to present different values to
1321 * the guest, or a future kvm may trap them.
1324 #define FUNCTION_INVARIANT(reg) \
1325 static void get_##reg(struct kvm_vcpu *v, \
1326 const struct sys_reg_desc *r) \
1328 u64 val; \
1330 asm volatile("mrs %0, " __stringify(reg) "\n" \
1331 : "=r" (val)); \
1332 ((struct sys_reg_desc *)r)->val = val; \
1335 FUNCTION_INVARIANT(midr_el1)
1336 FUNCTION_INVARIANT(ctr_el0)
1337 FUNCTION_INVARIANT(revidr_el1)
1338 FUNCTION_INVARIANT(id_pfr0_el1)
1339 FUNCTION_INVARIANT(id_pfr1_el1)
1340 FUNCTION_INVARIANT(id_dfr0_el1)
1341 FUNCTION_INVARIANT(id_afr0_el1)
1342 FUNCTION_INVARIANT(id_mmfr0_el1)
1343 FUNCTION_INVARIANT(id_mmfr1_el1)
1344 FUNCTION_INVARIANT(id_mmfr2_el1)
1345 FUNCTION_INVARIANT(id_mmfr3_el1)
1346 FUNCTION_INVARIANT(id_isar0_el1)
1347 FUNCTION_INVARIANT(id_isar1_el1)
1348 FUNCTION_INVARIANT(id_isar2_el1)
1349 FUNCTION_INVARIANT(id_isar3_el1)
1350 FUNCTION_INVARIANT(id_isar4_el1)
1351 FUNCTION_INVARIANT(id_isar5_el1)
1352 FUNCTION_INVARIANT(clidr_el1)
1353 FUNCTION_INVARIANT(aidr_el1)
1355 /* ->val is filled in by kvm_sys_reg_table_init() */
1356 static struct sys_reg_desc invariant_sys_regs[] = {
1357 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1358 NULL, get_midr_el1 },
1359 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1360 NULL, get_revidr_el1 },
1361 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1362 NULL, get_id_pfr0_el1 },
1363 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1364 NULL, get_id_pfr1_el1 },
1365 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1366 NULL, get_id_dfr0_el1 },
1367 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1368 NULL, get_id_afr0_el1 },
1369 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1370 NULL, get_id_mmfr0_el1 },
1371 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1372 NULL, get_id_mmfr1_el1 },
1373 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1374 NULL, get_id_mmfr2_el1 },
1375 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1376 NULL, get_id_mmfr3_el1 },
1377 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1378 NULL, get_id_isar0_el1 },
1379 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1380 NULL, get_id_isar1_el1 },
1381 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1382 NULL, get_id_isar2_el1 },
1383 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1384 NULL, get_id_isar3_el1 },
1385 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1386 NULL, get_id_isar4_el1 },
1387 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1388 NULL, get_id_isar5_el1 },
1389 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1390 NULL, get_clidr_el1 },
1391 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1392 NULL, get_aidr_el1 },
1393 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1394 NULL, get_ctr_el0 },
1397 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1399 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1400 return -EFAULT;
1401 return 0;
1404 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1406 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1407 return -EFAULT;
1408 return 0;
1411 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1413 struct sys_reg_params params;
1414 const struct sys_reg_desc *r;
1416 if (!index_to_params(id, &params))
1417 return -ENOENT;
1419 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1420 if (!r)
1421 return -ENOENT;
1423 return reg_to_user(uaddr, &r->val, id);
1426 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1428 struct sys_reg_params params;
1429 const struct sys_reg_desc *r;
1430 int err;
1431 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1433 if (!index_to_params(id, &params))
1434 return -ENOENT;
1435 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1436 if (!r)
1437 return -ENOENT;
1439 err = reg_from_user(&val, uaddr, id);
1440 if (err)
1441 return err;
1443 /* This is what we mean by invariant: you can't change it. */
1444 if (r->val != val)
1445 return -EINVAL;
1447 return 0;
1450 static bool is_valid_cache(u32 val)
1452 u32 level, ctype;
1454 if (val >= CSSELR_MAX)
1455 return false;
1457 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1458 level = (val >> 1);
1459 ctype = (cache_levels >> (level * 3)) & 7;
1461 switch (ctype) {
1462 case 0: /* No cache */
1463 return false;
1464 case 1: /* Instruction cache only */
1465 return (val & 1);
1466 case 2: /* Data cache only */
1467 case 4: /* Unified cache */
1468 return !(val & 1);
1469 case 3: /* Separate instruction and data caches */
1470 return true;
1471 default: /* Reserved: we can't know instruction or data. */
1472 return false;
1476 static int demux_c15_get(u64 id, void __user *uaddr)
1478 u32 val;
1479 u32 __user *uval = uaddr;
1481 /* Fail if we have unknown bits set. */
1482 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1483 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1484 return -ENOENT;
1486 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1487 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1488 if (KVM_REG_SIZE(id) != 4)
1489 return -ENOENT;
1490 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1491 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1492 if (!is_valid_cache(val))
1493 return -ENOENT;
1495 return put_user(get_ccsidr(val), uval);
1496 default:
1497 return -ENOENT;
1501 static int demux_c15_set(u64 id, void __user *uaddr)
1503 u32 val, newval;
1504 u32 __user *uval = uaddr;
1506 /* Fail if we have unknown bits set. */
1507 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1508 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1509 return -ENOENT;
1511 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1512 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1513 if (KVM_REG_SIZE(id) != 4)
1514 return -ENOENT;
1515 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1516 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1517 if (!is_valid_cache(val))
1518 return -ENOENT;
1520 if (get_user(newval, uval))
1521 return -EFAULT;
1523 /* This is also invariant: you can't change it. */
1524 if (newval != get_ccsidr(val))
1525 return -EINVAL;
1526 return 0;
1527 default:
1528 return -ENOENT;
1532 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1534 const struct sys_reg_desc *r;
1535 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1537 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1538 return demux_c15_get(reg->id, uaddr);
1540 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1541 return -ENOENT;
1543 r = index_to_sys_reg_desc(vcpu, reg->id);
1544 if (!r)
1545 return get_invariant_sys_reg(reg->id, uaddr);
1547 if (r->get_user)
1548 return (r->get_user)(vcpu, r, reg, uaddr);
1550 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1553 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1555 const struct sys_reg_desc *r;
1556 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1558 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1559 return demux_c15_set(reg->id, uaddr);
1561 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1562 return -ENOENT;
1564 r = index_to_sys_reg_desc(vcpu, reg->id);
1565 if (!r)
1566 return set_invariant_sys_reg(reg->id, uaddr);
1568 if (r->set_user)
1569 return (r->set_user)(vcpu, r, reg, uaddr);
1571 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1574 static unsigned int num_demux_regs(void)
1576 unsigned int i, count = 0;
1578 for (i = 0; i < CSSELR_MAX; i++)
1579 if (is_valid_cache(i))
1580 count++;
1582 return count;
1585 static int write_demux_regids(u64 __user *uindices)
1587 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1588 unsigned int i;
1590 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1591 for (i = 0; i < CSSELR_MAX; i++) {
1592 if (!is_valid_cache(i))
1593 continue;
1594 if (put_user(val | i, uindices))
1595 return -EFAULT;
1596 uindices++;
1598 return 0;
1601 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1603 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1604 KVM_REG_ARM64_SYSREG |
1605 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1606 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1607 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1608 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1609 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1612 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1614 if (!*uind)
1615 return true;
1617 if (put_user(sys_reg_to_index(reg), *uind))
1618 return false;
1620 (*uind)++;
1621 return true;
1624 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1625 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1627 const struct sys_reg_desc *i1, *i2, *end1, *end2;
1628 unsigned int total = 0;
1629 size_t num;
1631 /* We check for duplicates here, to allow arch-specific overrides. */
1632 i1 = get_target_table(vcpu->arch.target, true, &num);
1633 end1 = i1 + num;
1634 i2 = sys_reg_descs;
1635 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1637 BUG_ON(i1 == end1 || i2 == end2);
1639 /* Walk carefully, as both tables may refer to the same register. */
1640 while (i1 || i2) {
1641 int cmp = cmp_sys_reg(i1, i2);
1642 /* target-specific overrides generic entry. */
1643 if (cmp <= 0) {
1644 /* Ignore registers we trap but don't save. */
1645 if (i1->reg) {
1646 if (!copy_reg_to_user(i1, &uind))
1647 return -EFAULT;
1648 total++;
1650 } else {
1651 /* Ignore registers we trap but don't save. */
1652 if (i2->reg) {
1653 if (!copy_reg_to_user(i2, &uind))
1654 return -EFAULT;
1655 total++;
1659 if (cmp <= 0 && ++i1 == end1)
1660 i1 = NULL;
1661 if (cmp >= 0 && ++i2 == end2)
1662 i2 = NULL;
1664 return total;
1667 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1669 return ARRAY_SIZE(invariant_sys_regs)
1670 + num_demux_regs()
1671 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1674 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1676 unsigned int i;
1677 int err;
1679 /* Then give them all the invariant registers' indices. */
1680 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1681 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1682 return -EFAULT;
1683 uindices++;
1686 err = walk_sys_regs(vcpu, uindices);
1687 if (err < 0)
1688 return err;
1689 uindices += err;
1691 return write_demux_regids(uindices);
1694 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1696 unsigned int i;
1698 for (i = 1; i < n; i++) {
1699 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1700 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1701 return 1;
1705 return 0;
1708 void kvm_sys_reg_table_init(void)
1710 unsigned int i;
1711 struct sys_reg_desc clidr;
1713 /* Make sure tables are unique and in order. */
1714 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1715 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1716 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1717 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1718 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1719 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1721 /* We abuse the reset function to overwrite the table itself. */
1722 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1723 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1726 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1728 * If software reads the Cache Type fields from Ctype1
1729 * upwards, once it has seen a value of 0b000, no caches
1730 * exist at further-out levels of the hierarchy. So, for
1731 * example, if Ctype3 is the first Cache Type field with a
1732 * value of 0b000, the values of Ctype4 to Ctype7 must be
1733 * ignored.
1735 get_clidr_el1(NULL, &clidr); /* Ugly... */
1736 cache_levels = clidr.val;
1737 for (i = 0; i < 7; i++)
1738 if (((cache_levels >> (i*3)) & 7) == 0)
1739 break;
1740 /* Clear all higher bits. */
1741 cache_levels &= (1 << (i*3))-1;
1745 * kvm_reset_sys_regs - sets system registers to reset value
1746 * @vcpu: The VCPU pointer
1748 * This function finds the right table above and sets the registers on the
1749 * virtual CPU struct to their architecturally defined reset values.
1751 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1753 size_t num;
1754 const struct sys_reg_desc *table;
1756 /* Catch someone adding a register without putting in reset entry. */
1757 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1759 /* Generic chip reset first (so target could override). */
1760 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1762 table = get_target_table(vcpu->arch.target, true, &num);
1763 reset_sys_reg_descs(vcpu, table, num);
1765 for (num = 1; num < NR_SYS_REGS; num++)
1766 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1767 panic("Didn't reset vcpu_sys_reg(%zi)", num);