blk: rq_data_dir() should not return a boolean
[cris-mirror.git] / arch / mips / mm / dma-default.c
bloba914dc1cb6d1bc339cf44cc0c5aeac887a2e5f74
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
7 * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
9 */
11 #include <linux/types.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/mm.h>
14 #include <linux/module.h>
15 #include <linux/scatterlist.h>
16 #include <linux/string.h>
17 #include <linux/gfp.h>
18 #include <linux/highmem.h>
19 #include <linux/dma-contiguous.h>
21 #include <asm/cache.h>
22 #include <asm/cpu-type.h>
23 #include <asm/io.h>
25 #include <dma-coherence.h>
27 #ifdef CONFIG_DMA_MAYBE_COHERENT
28 int coherentio = 0; /* User defined DMA coherency from command line. */
29 EXPORT_SYMBOL_GPL(coherentio);
30 int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
32 static int __init setcoherentio(char *str)
34 coherentio = 1;
35 pr_info("Hardware DMA cache coherency (command line)\n");
36 return 0;
38 early_param("coherentio", setcoherentio);
40 static int __init setnocoherentio(char *str)
42 coherentio = 0;
43 pr_info("Software DMA cache coherency (command line)\n");
44 return 0;
46 early_param("nocoherentio", setnocoherentio);
47 #endif
49 static inline struct page *dma_addr_to_page(struct device *dev,
50 dma_addr_t dma_addr)
52 return pfn_to_page(
53 plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
58 * speculatively fill random cachelines with stale data at any time,
59 * requiring an extra flush post-DMA.
61 * Warning on the terminology - Linux calls an uncached area coherent;
62 * MIPS terminology calls memory areas with hardware maintained coherency
63 * coherent.
65 * Note that the R14000 and R16000 should also be checked for in this
66 * condition. However this function is only called on non-I/O-coherent
67 * systems and only the R10000 and R12000 are used in such systems, the
68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
70 static inline int cpu_needs_post_dma_flush(struct device *dev)
72 return !plat_device_is_coherent(dev) &&
73 (boot_cpu_type() == CPU_R10000 ||
74 boot_cpu_type() == CPU_R12000 ||
75 boot_cpu_type() == CPU_BMIPS5000);
78 static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
80 gfp_t dma_flag;
82 /* ignore region specifiers */
83 gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
85 #ifdef CONFIG_ISA
86 if (dev == NULL)
87 dma_flag = __GFP_DMA;
88 else
89 #endif
90 #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
91 if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
92 dma_flag = __GFP_DMA;
93 else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
94 dma_flag = __GFP_DMA32;
95 else
96 #endif
97 #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
98 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
99 dma_flag = __GFP_DMA32;
100 else
101 #endif
102 #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
103 if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
104 dma_flag = __GFP_DMA;
105 else
106 #endif
107 dma_flag = 0;
109 /* Don't invoke OOM killer */
110 gfp |= __GFP_NORETRY;
112 return gfp | dma_flag;
115 static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
116 dma_addr_t * dma_handle, gfp_t gfp)
118 void *ret;
120 gfp = massage_gfp_flags(dev, gfp);
122 ret = (void *) __get_free_pages(gfp, get_order(size));
124 if (ret != NULL) {
125 memset(ret, 0, size);
126 *dma_handle = plat_map_dma_mem(dev, ret, size);
129 return ret;
132 static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
133 dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
135 void *ret;
136 struct page *page = NULL;
137 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
140 * XXX: seems like the coherent and non-coherent implementations could
141 * be consolidated.
143 if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs))
144 return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
146 gfp = massage_gfp_flags(dev, gfp);
148 if (IS_ENABLED(CONFIG_DMA_CMA) && !(gfp & GFP_ATOMIC))
149 page = dma_alloc_from_contiguous(dev,
150 count, get_order(size));
151 if (!page)
152 page = alloc_pages(gfp, get_order(size));
154 if (!page)
155 return NULL;
157 ret = page_address(page);
158 memset(ret, 0, size);
159 *dma_handle = plat_map_dma_mem(dev, ret, size);
160 if (!plat_device_is_coherent(dev)) {
161 dma_cache_wback_inv((unsigned long) ret, size);
162 if (!hw_coherentio)
163 ret = UNCAC_ADDR(ret);
166 return ret;
170 static void mips_dma_free_noncoherent(struct device *dev, size_t size,
171 void *vaddr, dma_addr_t dma_handle)
173 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
174 free_pages((unsigned long) vaddr, get_order(size));
177 static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
178 dma_addr_t dma_handle, struct dma_attrs *attrs)
180 unsigned long addr = (unsigned long) vaddr;
181 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
182 struct page *page = NULL;
184 if (dma_get_attr(DMA_ATTR_NON_CONSISTENT, attrs)) {
185 mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
186 return;
189 plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
191 if (!plat_device_is_coherent(dev) && !hw_coherentio)
192 addr = CAC_ADDR(addr);
194 page = virt_to_page((void *) addr);
196 if (!dma_release_from_contiguous(dev, page, count))
197 __free_pages(page, get_order(size));
200 static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
201 void *cpu_addr, dma_addr_t dma_addr, size_t size,
202 struct dma_attrs *attrs)
204 unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
205 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
206 unsigned long addr = (unsigned long)cpu_addr;
207 unsigned long off = vma->vm_pgoff;
208 unsigned long pfn;
209 int ret = -ENXIO;
211 if (!plat_device_is_coherent(dev) && !hw_coherentio)
212 addr = CAC_ADDR(addr);
214 pfn = page_to_pfn(virt_to_page((void *)addr));
216 if (dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
217 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
218 else
219 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
221 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
222 return ret;
224 if (off < count && user_count <= (count - off)) {
225 ret = remap_pfn_range(vma, vma->vm_start,
226 pfn + off,
227 user_count << PAGE_SHIFT,
228 vma->vm_page_prot);
231 return ret;
234 static inline void __dma_sync_virtual(void *addr, size_t size,
235 enum dma_data_direction direction)
237 switch (direction) {
238 case DMA_TO_DEVICE:
239 dma_cache_wback((unsigned long)addr, size);
240 break;
242 case DMA_FROM_DEVICE:
243 dma_cache_inv((unsigned long)addr, size);
244 break;
246 case DMA_BIDIRECTIONAL:
247 dma_cache_wback_inv((unsigned long)addr, size);
248 break;
250 default:
251 BUG();
256 * A single sg entry may refer to multiple physically contiguous
257 * pages. But we still need to process highmem pages individually.
258 * If highmem is not configured then the bulk of this loop gets
259 * optimized out.
261 static inline void __dma_sync(struct page *page,
262 unsigned long offset, size_t size, enum dma_data_direction direction)
264 size_t left = size;
266 do {
267 size_t len = left;
269 if (PageHighMem(page)) {
270 void *addr;
272 if (offset + len > PAGE_SIZE) {
273 if (offset >= PAGE_SIZE) {
274 page += offset >> PAGE_SHIFT;
275 offset &= ~PAGE_MASK;
277 len = PAGE_SIZE - offset;
280 addr = kmap_atomic(page);
281 __dma_sync_virtual(addr + offset, len, direction);
282 kunmap_atomic(addr);
283 } else
284 __dma_sync_virtual(page_address(page) + offset,
285 size, direction);
286 offset = 0;
287 page++;
288 left -= len;
289 } while (left);
292 static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
293 size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
295 if (cpu_needs_post_dma_flush(dev))
296 __dma_sync(dma_addr_to_page(dev, dma_addr),
297 dma_addr & ~PAGE_MASK, size, direction);
298 plat_post_dma_flush(dev);
299 plat_unmap_dma_mem(dev, dma_addr, size, direction);
302 static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
303 int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
305 int i;
306 struct scatterlist *sg;
308 for_each_sg(sglist, sg, nents, i) {
309 if (!plat_device_is_coherent(dev))
310 __dma_sync(sg_page(sg), sg->offset, sg->length,
311 direction);
312 #ifdef CONFIG_NEED_SG_DMA_LENGTH
313 sg->dma_length = sg->length;
314 #endif
315 sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
316 sg->offset;
319 return nents;
322 static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
323 unsigned long offset, size_t size, enum dma_data_direction direction,
324 struct dma_attrs *attrs)
326 if (!plat_device_is_coherent(dev))
327 __dma_sync(page, offset, size, direction);
329 return plat_map_dma_mem_page(dev, page) + offset;
332 static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
333 int nhwentries, enum dma_data_direction direction,
334 struct dma_attrs *attrs)
336 int i;
337 struct scatterlist *sg;
339 for_each_sg(sglist, sg, nhwentries, i) {
340 if (!plat_device_is_coherent(dev) &&
341 direction != DMA_TO_DEVICE)
342 __dma_sync(sg_page(sg), sg->offset, sg->length,
343 direction);
344 plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
348 static void mips_dma_sync_single_for_cpu(struct device *dev,
349 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
351 if (cpu_needs_post_dma_flush(dev))
352 __dma_sync(dma_addr_to_page(dev, dma_handle),
353 dma_handle & ~PAGE_MASK, size, direction);
354 plat_post_dma_flush(dev);
357 static void mips_dma_sync_single_for_device(struct device *dev,
358 dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
360 if (!plat_device_is_coherent(dev))
361 __dma_sync(dma_addr_to_page(dev, dma_handle),
362 dma_handle & ~PAGE_MASK, size, direction);
365 static void mips_dma_sync_sg_for_cpu(struct device *dev,
366 struct scatterlist *sglist, int nelems,
367 enum dma_data_direction direction)
369 int i;
370 struct scatterlist *sg;
372 if (cpu_needs_post_dma_flush(dev)) {
373 for_each_sg(sglist, sg, nelems, i) {
374 __dma_sync(sg_page(sg), sg->offset, sg->length,
375 direction);
378 plat_post_dma_flush(dev);
381 static void mips_dma_sync_sg_for_device(struct device *dev,
382 struct scatterlist *sglist, int nelems,
383 enum dma_data_direction direction)
385 int i;
386 struct scatterlist *sg;
388 if (!plat_device_is_coherent(dev)) {
389 for_each_sg(sglist, sg, nelems, i) {
390 __dma_sync(sg_page(sg), sg->offset, sg->length,
391 direction);
396 int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
398 return 0;
401 int mips_dma_supported(struct device *dev, u64 mask)
403 return plat_dma_supported(dev, mask);
406 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
407 enum dma_data_direction direction)
409 BUG_ON(direction == DMA_NONE);
411 if (!plat_device_is_coherent(dev))
412 __dma_sync_virtual(vaddr, size, direction);
415 EXPORT_SYMBOL(dma_cache_sync);
417 static struct dma_map_ops mips_default_dma_map_ops = {
418 .alloc = mips_dma_alloc_coherent,
419 .free = mips_dma_free_coherent,
420 .mmap = mips_dma_mmap,
421 .map_page = mips_dma_map_page,
422 .unmap_page = mips_dma_unmap_page,
423 .map_sg = mips_dma_map_sg,
424 .unmap_sg = mips_dma_unmap_sg,
425 .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
426 .sync_single_for_device = mips_dma_sync_single_for_device,
427 .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
428 .sync_sg_for_device = mips_dma_sync_sg_for_device,
429 .mapping_error = mips_dma_mapping_error,
430 .dma_supported = mips_dma_supported
433 struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
434 EXPORT_SYMBOL(mips_dma_map_ops);
436 #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
438 static int __init mips_dma_init(void)
440 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
442 return 0;
444 fs_initcall(mips_dma_init);