blk: rq_data_dir() should not return a boolean
[cris-mirror.git] / arch / mips / mm / uasm-mips.c
blobb4a8378935625b2e1d0f228f6961ebd8208544f1
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
16 #include <linux/kernel.h>
17 #include <linux/types.h>
19 #include <asm/inst.h>
20 #include <asm/elf.h>
21 #include <asm/bugs.h>
22 #define UASM_ISA _UASM_ISA_CLASSIC
23 #include <asm/uasm.h>
25 #define RS_MASK 0x1f
26 #define RS_SH 21
27 #define RT_MASK 0x1f
28 #define RT_SH 16
29 #define SCIMM_MASK 0xfffff
30 #define SCIMM_SH 6
32 /* This macro sets the non-variable bits of an instruction. */
33 #define M(a, b, c, d, e, f) \
34 ((a) << OP_SH \
35 | (b) << RS_SH \
36 | (c) << RT_SH \
37 | (d) << RD_SH \
38 | (e) << RE_SH \
39 | (f) << FUNC_SH)
41 /* This macro sets the non-variable bits of an R6 instruction. */
42 #define M6(a, b, c, d, e) \
43 ((a) << OP_SH \
44 | (b) << RS_SH \
45 | (c) << RT_SH \
46 | (d) << SIMM9_SH \
47 | (e) << FUNC_SH)
49 #include "uasm.c"
51 static struct insn insn_table[] = {
52 { insn_addiu, M(addiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
53 { insn_addu, M(spec_op, 0, 0, 0, 0, addu_op), RS | RT | RD },
54 { insn_andi, M(andi_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
55 { insn_and, M(spec_op, 0, 0, 0, 0, and_op), RS | RT | RD },
56 { insn_bbit0, M(lwc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
57 { insn_bbit1, M(swc2_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
58 { insn_beql, M(beql_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
59 { insn_beq, M(beq_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
60 { insn_bgezl, M(bcond_op, 0, bgezl_op, 0, 0, 0), RS | BIMM },
61 { insn_bgez, M(bcond_op, 0, bgez_op, 0, 0, 0), RS | BIMM },
62 { insn_bltzl, M(bcond_op, 0, bltzl_op, 0, 0, 0), RS | BIMM },
63 { insn_bltz, M(bcond_op, 0, bltz_op, 0, 0, 0), RS | BIMM },
64 { insn_bne, M(bne_op, 0, 0, 0, 0, 0), RS | RT | BIMM },
65 #ifndef CONFIG_CPU_MIPSR6
66 { insn_cache, M(cache_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
67 #else
68 { insn_cache, M6(cache_op, 0, 0, 0, cache6_op), RS | RT | SIMM9 },
69 #endif
70 { insn_daddiu, M(daddiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
71 { insn_daddu, M(spec_op, 0, 0, 0, 0, daddu_op), RS | RT | RD },
72 { insn_dinsm, M(spec3_op, 0, 0, 0, 0, dinsm_op), RS | RT | RD | RE },
73 { insn_dins, M(spec3_op, 0, 0, 0, 0, dins_op), RS | RT | RD | RE },
74 { insn_divu, M(spec_op, 0, 0, 0, 0, divu_op), RS | RT },
75 { insn_dmfc0, M(cop0_op, dmfc_op, 0, 0, 0, 0), RT | RD | SET},
76 { insn_dmtc0, M(cop0_op, dmtc_op, 0, 0, 0, 0), RT | RD | SET},
77 { insn_drotr32, M(spec_op, 1, 0, 0, 0, dsrl32_op), RT | RD | RE },
78 { insn_drotr, M(spec_op, 1, 0, 0, 0, dsrl_op), RT | RD | RE },
79 { insn_dsll32, M(spec_op, 0, 0, 0, 0, dsll32_op), RT | RD | RE },
80 { insn_dsll, M(spec_op, 0, 0, 0, 0, dsll_op), RT | RD | RE },
81 { insn_dsra, M(spec_op, 0, 0, 0, 0, dsra_op), RT | RD | RE },
82 { insn_dsrl32, M(spec_op, 0, 0, 0, 0, dsrl32_op), RT | RD | RE },
83 { insn_dsrl, M(spec_op, 0, 0, 0, 0, dsrl_op), RT | RD | RE },
84 { insn_dsubu, M(spec_op, 0, 0, 0, 0, dsubu_op), RS | RT | RD },
85 { insn_eret, M(cop0_op, cop_op, 0, 0, 0, eret_op), 0 },
86 { insn_ext, M(spec3_op, 0, 0, 0, 0, ext_op), RS | RT | RD | RE },
87 { insn_ins, M(spec3_op, 0, 0, 0, 0, ins_op), RS | RT | RD | RE },
88 { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
89 { insn_jal, M(jal_op, 0, 0, 0, 0, 0), JIMM },
90 { insn_jalr, M(spec_op, 0, 0, 0, 0, jalr_op), RS | RD },
91 { insn_j, M(j_op, 0, 0, 0, 0, 0), JIMM },
92 #ifndef CONFIG_CPU_MIPSR6
93 { insn_jr, M(spec_op, 0, 0, 0, 0, jr_op), RS },
94 #else
95 { insn_jr, M(spec_op, 0, 0, 0, 0, jalr_op), RS },
96 #endif
97 { insn_lb, M(lb_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
98 { insn_ld, M(ld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
99 { insn_ldx, M(spec3_op, 0, 0, 0, ldx_op, lx_op), RS | RT | RD },
100 { insn_lh, M(lh_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
101 #ifndef CONFIG_CPU_MIPSR6
102 { insn_lld, M(lld_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
103 { insn_ll, M(ll_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
104 #else
105 { insn_lld, M6(spec3_op, 0, 0, 0, lld6_op), RS | RT | SIMM9 },
106 { insn_ll, M6(spec3_op, 0, 0, 0, ll6_op), RS | RT | SIMM9 },
107 #endif
108 { insn_lui, M(lui_op, 0, 0, 0, 0, 0), RT | SIMM },
109 { insn_lw, M(lw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
110 { insn_lwx, M(spec3_op, 0, 0, 0, lwx_op, lx_op), RS | RT | RD },
111 { insn_mfc0, M(cop0_op, mfc_op, 0, 0, 0, 0), RT | RD | SET},
112 { insn_mfhc0, M(cop0_op, mfhc0_op, 0, 0, 0, 0), RT | RD | SET},
113 { insn_mfhi, M(spec_op, 0, 0, 0, 0, mfhi_op), RD },
114 { insn_mflo, M(spec_op, 0, 0, 0, 0, mflo_op), RD },
115 { insn_mtc0, M(cop0_op, mtc_op, 0, 0, 0, 0), RT | RD | SET},
116 { insn_mthc0, M(cop0_op, mthc0_op, 0, 0, 0, 0), RT | RD | SET},
117 { insn_mul, M(spec2_op, 0, 0, 0, 0, mul_op), RS | RT | RD},
118 { insn_ori, M(ori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
119 { insn_or, M(spec_op, 0, 0, 0, 0, or_op), RS | RT | RD },
120 #ifndef CONFIG_CPU_MIPSR6
121 { insn_pref, M(pref_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
122 #else
123 { insn_pref, M6(spec3_op, 0, 0, 0, pref6_op), RS | RT | SIMM9 },
124 #endif
125 { insn_rfe, M(cop0_op, cop_op, 0, 0, 0, rfe_op), 0 },
126 { insn_rotr, M(spec_op, 1, 0, 0, 0, srl_op), RT | RD | RE },
127 #ifndef CONFIG_CPU_MIPSR6
128 { insn_scd, M(scd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
129 { insn_sc, M(sc_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
130 #else
131 { insn_scd, M6(spec3_op, 0, 0, 0, scd6_op), RS | RT | SIMM9 },
132 { insn_sc, M6(spec3_op, 0, 0, 0, sc6_op), RS | RT | SIMM9 },
133 #endif
134 { insn_sd, M(sd_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
135 { insn_sll, M(spec_op, 0, 0, 0, 0, sll_op), RT | RD | RE },
136 { insn_sllv, M(spec_op, 0, 0, 0, 0, sllv_op), RS | RT | RD },
137 { insn_slt, M(spec_op, 0, 0, 0, 0, slt_op), RS | RT | RD },
138 { insn_sltiu, M(sltiu_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
139 { insn_sltu, M(spec_op, 0, 0, 0, 0, sltu_op), RS | RT | RD },
140 { insn_sra, M(spec_op, 0, 0, 0, 0, sra_op), RT | RD | RE },
141 { insn_srl, M(spec_op, 0, 0, 0, 0, srl_op), RT | RD | RE },
142 { insn_srlv, M(spec_op, 0, 0, 0, 0, srlv_op), RS | RT | RD },
143 { insn_subu, M(spec_op, 0, 0, 0, 0, subu_op), RS | RT | RD },
144 { insn_sw, M(sw_op, 0, 0, 0, 0, 0), RS | RT | SIMM },
145 { insn_sync, M(spec_op, 0, 0, 0, 0, sync_op), RE },
146 { insn_syscall, M(spec_op, 0, 0, 0, 0, syscall_op), SCIMM},
147 { insn_tlbp, M(cop0_op, cop_op, 0, 0, 0, tlbp_op), 0 },
148 { insn_tlbr, M(cop0_op, cop_op, 0, 0, 0, tlbr_op), 0 },
149 { insn_tlbwi, M(cop0_op, cop_op, 0, 0, 0, tlbwi_op), 0 },
150 { insn_tlbwr, M(cop0_op, cop_op, 0, 0, 0, tlbwr_op), 0 },
151 { insn_wait, M(cop0_op, cop_op, 0, 0, 0, wait_op), SCIMM },
152 { insn_wsbh, M(spec3_op, 0, 0, 0, wsbh_op, bshfl_op), RT | RD },
153 { insn_xori, M(xori_op, 0, 0, 0, 0, 0), RS | RT | UIMM },
154 { insn_xor, M(spec_op, 0, 0, 0, 0, xor_op), RS | RT | RD },
155 { insn_yield, M(spec3_op, 0, 0, 0, 0, yield_op), RS | RD },
156 { insn_invalid, 0, 0 }
159 #undef M
161 static inline u32 build_bimm(s32 arg)
163 WARN(arg > 0x1ffff || arg < -0x20000,
164 KERN_WARNING "Micro-assembler field overflow\n");
166 WARN(arg & 0x3, KERN_WARNING "Invalid micro-assembler branch target\n");
168 return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff);
171 static inline u32 build_jimm(u32 arg)
173 WARN(arg & ~(JIMM_MASK << 2),
174 KERN_WARNING "Micro-assembler field overflow\n");
176 return (arg >> 2) & JIMM_MASK;
180 * The order of opcode arguments is implicitly left to right,
181 * starting with RS and ending with FUNC or IMM.
183 static void build_insn(u32 **buf, enum opcode opc, ...)
185 struct insn *ip = NULL;
186 unsigned int i;
187 va_list ap;
188 u32 op;
190 for (i = 0; insn_table[i].opcode != insn_invalid; i++)
191 if (insn_table[i].opcode == opc) {
192 ip = &insn_table[i];
193 break;
196 if (!ip || (opc == insn_daddiu && r4k_daddiu_bug()))
197 panic("Unsupported Micro-assembler instruction %d", opc);
199 op = ip->match;
200 va_start(ap, opc);
201 if (ip->fields & RS)
202 op |= build_rs(va_arg(ap, u32));
203 if (ip->fields & RT)
204 op |= build_rt(va_arg(ap, u32));
205 if (ip->fields & RD)
206 op |= build_rd(va_arg(ap, u32));
207 if (ip->fields & RE)
208 op |= build_re(va_arg(ap, u32));
209 if (ip->fields & SIMM)
210 op |= build_simm(va_arg(ap, s32));
211 if (ip->fields & UIMM)
212 op |= build_uimm(va_arg(ap, u32));
213 if (ip->fields & BIMM)
214 op |= build_bimm(va_arg(ap, s32));
215 if (ip->fields & JIMM)
216 op |= build_jimm(va_arg(ap, u32));
217 if (ip->fields & FUNC)
218 op |= build_func(va_arg(ap, u32));
219 if (ip->fields & SET)
220 op |= build_set(va_arg(ap, u32));
221 if (ip->fields & SCIMM)
222 op |= build_scimm(va_arg(ap, u32));
223 if (ip->fields & SIMM9)
224 op |= build_scimm9(va_arg(ap, u32));
225 va_end(ap);
227 **buf = op;
228 (*buf)++;
231 static inline void
232 __resolve_relocs(struct uasm_reloc *rel, struct uasm_label *lab)
234 long laddr = (long)lab->addr;
235 long raddr = (long)rel->addr;
237 switch (rel->type) {
238 case R_MIPS_PC16:
239 *rel->addr |= build_bimm(laddr - (raddr + 4));
240 break;
242 default:
243 panic("Unsupported Micro-assembler relocation %d",
244 rel->type);