2 * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
4 * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org)
5 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6 * Copyright (C) 1999 - 2001 Kanoj Sarcar
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
27 #include <asm/bootinfo.h>
29 #include <asm/mipsregs.h>
31 #include <asm/processor.h>
32 #include <asm/sn/addrs.h>
33 #include <asm/sn/agent.h>
34 #include <asm/sn/arch.h>
35 #include <asm/sn/hub.h>
36 #include <asm/sn/intr.h>
39 * Linux has a controller-independent x86 interrupt architecture.
40 * every controller has a 'controller-template', that is used
41 * by the main code to do the right thing. Each driver-visible
42 * interrupt source is transparently wired to the appropriate
43 * controller. Thus drivers need not be aware of the
44 * interrupt-controller.
46 * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
47 * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
48 * (IO-APICs assumed to be messaging to Pentium local-APICs)
50 * the code is designed to be easily extended with new/different
51 * interrupt controllers, without having to do assembly magic.
54 extern asmlinkage
void ip27_irq(void);
59 static int ms1bit(unsigned long x
)
63 s
= 16; if (x
>> 16 == 0) s
= 0; b
+= s
; x
>>= s
;
64 s
= 8; if (x
>> 8 == 0) s
= 0; b
+= s
; x
>>= s
;
65 s
= 4; if (x
>> 4 == 0) s
= 0; b
+= s
; x
>>= s
;
66 s
= 2; if (x
>> 2 == 0) s
= 0; b
+= s
; x
>>= s
;
67 s
= 1; if (x
>> 1 == 0) s
= 0; b
+= s
;
73 * This code is unnecessarily complex, because we do
74 * intr enabling. Basically, once we grab the set of intrs we need
75 * to service, we must mask _all_ these interrupts; firstly, to make
76 * sure the same intr does not intr again, causing recursion that
77 * can lead to stack overflow. Secondly, we can not just mask the
78 * one intr we are do_IRQing, because the non-masked intrs in the
79 * first set might intr again, causing multiple servicings of the
80 * same intr. This effect is mostly seen for intercpu intrs.
84 static void ip27_do_irq_mask0(void)
87 hubreg_t pend0
, mask0
;
88 cpuid_t cpu
= smp_processor_id();
90 (cputoslice(cpu
) == 0) ? PI_INT_MASK0_A
: PI_INT_MASK0_B
;
92 /* copied from Irix intpend0() */
93 pend0
= LOCAL_HUB_L(PI_INT_PEND0
);
94 mask0
= LOCAL_HUB_L(pi_int_mask0
);
96 pend0
&= mask0
; /* Pick intrs we should look at */
100 swlevel
= ms1bit(pend0
);
102 if (pend0
& (1UL << CPU_RESCHED_A_IRQ
)) {
103 LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ
);
105 } else if (pend0
& (1UL << CPU_RESCHED_B_IRQ
)) {
106 LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ
);
108 } else if (pend0
& (1UL << CPU_CALL_A_IRQ
)) {
109 LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ
);
111 generic_smp_call_function_interrupt();
113 } else if (pend0
& (1UL << CPU_CALL_B_IRQ
)) {
114 LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ
);
116 generic_smp_call_function_interrupt();
121 /* "map" swlevel to irq */
122 struct slice_data
*si
= cpu_data
[cpu
].data
;
124 irq
= si
->level_to_irq
[swlevel
];
128 LOCAL_HUB_L(PI_INT_PEND0
);
131 static void ip27_do_irq_mask1(void)
134 hubreg_t pend1
, mask1
;
135 cpuid_t cpu
= smp_processor_id();
136 int pi_int_mask1
= (cputoslice(cpu
) == 0) ? PI_INT_MASK1_A
: PI_INT_MASK1_B
;
137 struct slice_data
*si
= cpu_data
[cpu
].data
;
139 /* copied from Irix intpend0() */
140 pend1
= LOCAL_HUB_L(PI_INT_PEND1
);
141 mask1
= LOCAL_HUB_L(pi_int_mask1
);
143 pend1
&= mask1
; /* Pick intrs we should look at */
147 swlevel
= ms1bit(pend1
);
148 /* "map" swlevel to irq */
149 irq
= si
->level_to_irq
[swlevel
];
150 LOCAL_HUB_CLR_INTR(swlevel
);
153 LOCAL_HUB_L(PI_INT_PEND1
);
156 static void ip27_prof_timer(void)
158 panic("CPU %d got a profiling interrupt", smp_processor_id());
161 static void ip27_hub_error(void)
163 panic("CPU %d got a hub error interrupt", smp_processor_id());
166 asmlinkage
void plat_irq_dispatch(void)
168 unsigned long pending
= read_c0_cause() & read_c0_status();
169 extern unsigned int rt_timer_irq
;
171 if (pending
& CAUSEF_IP4
)
172 do_IRQ(rt_timer_irq
);
173 else if (pending
& CAUSEF_IP2
) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
175 else if (pending
& CAUSEF_IP3
) /* PI_INT_PEND_1 */
177 else if (pending
& CAUSEF_IP5
)
179 else if (pending
& CAUSEF_IP6
)
183 void __init
arch_init_irq(void)
187 void install_ipi(void)
189 int slice
= LOCAL_HUB_L(PI_CPU_NUM
);
190 int cpu
= smp_processor_id();
191 struct slice_data
*si
= cpu_data
[cpu
].data
;
192 struct hub_data
*hub
= hub_data(cpu_to_node(cpu
));
195 resched
= CPU_RESCHED_A_IRQ
+ slice
;
196 __set_bit(resched
, hub
->irq_alloc_mask
);
197 __set_bit(resched
, si
->irq_enable_mask
);
198 LOCAL_HUB_CLR_INTR(resched
);
200 call
= CPU_CALL_A_IRQ
+ slice
;
201 __set_bit(call
, hub
->irq_alloc_mask
);
202 __set_bit(call
, si
->irq_enable_mask
);
203 LOCAL_HUB_CLR_INTR(call
);
206 LOCAL_HUB_S(PI_INT_MASK0_A
, si
->irq_enable_mask
[0]);
207 LOCAL_HUB_S(PI_INT_MASK1_A
, si
->irq_enable_mask
[1]);
209 LOCAL_HUB_S(PI_INT_MASK0_B
, si
->irq_enable_mask
[0]);
210 LOCAL_HUB_S(PI_INT_MASK1_B
, si
->irq_enable_mask
[1]);