2 * Copyright IBM Corporation 2001, 2005, 2006
3 * Copyright Dave Engebretsen & Todd Inglett 2001
4 * Copyright Linas Vepstas 2005, 2006
5 * Copyright 2001-2012 IBM Corporation.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * Please address comments and feedback to Linas Vepstas <linas@austin.ibm.com>
24 #include <linux/delay.h>
25 #include <linux/debugfs.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <linux/list.h>
29 #include <linux/pci.h>
30 #include <linux/iommu.h>
31 #include <linux/proc_fs.h>
32 #include <linux/rbtree.h>
33 #include <linux/reboot.h>
34 #include <linux/seq_file.h>
35 #include <linux/spinlock.h>
36 #include <linux/export.h>
39 #include <linux/atomic.h>
40 #include <asm/debug.h>
42 #include <asm/eeh_event.h>
44 #include <asm/iommu.h>
45 #include <asm/machdep.h>
46 #include <asm/ppc-pci.h>
51 * EEH, or "Extended Error Handling" is a PCI bridge technology for
52 * dealing with PCI bus errors that can't be dealt with within the
53 * usual PCI framework, except by check-stopping the CPU. Systems
54 * that are designed for high-availability/reliability cannot afford
55 * to crash due to a "mere" PCI error, thus the need for EEH.
56 * An EEH-capable bridge operates by converting a detected error
57 * into a "slot freeze", taking the PCI adapter off-line, making
58 * the slot behave, from the OS'es point of view, as if the slot
59 * were "empty": all reads return 0xff's and all writes are silently
60 * ignored. EEH slot isolation events can be triggered by parity
61 * errors on the address or data busses (e.g. during posted writes),
62 * which in turn might be caused by low voltage on the bus, dust,
63 * vibration, humidity, radioactivity or plain-old failed hardware.
65 * Note, however, that one of the leading causes of EEH slot
66 * freeze events are buggy device drivers, buggy device microcode,
67 * or buggy device hardware. This is because any attempt by the
68 * device to bus-master data to a memory address that is not
69 * assigned to the device will trigger a slot freeze. (The idea
70 * is to prevent devices-gone-wild from corrupting system memory).
71 * Buggy hardware/drivers will have a miserable time co-existing
74 * Ideally, a PCI device driver, when suspecting that an isolation
75 * event has occurred (e.g. by reading 0xff's), will then ask EEH
76 * whether this is the case, and then take appropriate steps to
77 * reset the PCI slot, the PCI device, and then resume operations.
78 * However, until that day, the checking is done here, with the
79 * eeh_check_failure() routine embedded in the MMIO macros. If
80 * the slot is found to be isolated, an "EEH Event" is synthesized
81 * and sent out for processing.
84 /* If a device driver keeps reading an MMIO register in an interrupt
85 * handler after a slot isolation event, it might be broken.
86 * This sets the threshold for how many read attempts we allow
87 * before printing an error message.
89 #define EEH_MAX_FAILS 2100000
91 /* Time to wait for a PCI slot to report status, in milliseconds */
92 #define PCI_BUS_RESET_WAIT_MSEC (5*60*1000)
95 * EEH probe mode support, which is part of the flags,
96 * is to support multiple platforms for EEH. Some platforms
97 * like pSeries do PCI emunation based on device tree.
98 * However, other platforms like powernv probe PCI devices
99 * from hardware. The flag is used to distinguish that.
100 * In addition, struct eeh_ops::probe would be invoked for
101 * particular OF node or PCI device so that the corresponding
102 * PE would be created there.
104 int eeh_subsystem_flags
;
105 EXPORT_SYMBOL(eeh_subsystem_flags
);
108 * EEH allowed maximal frozen times. If one particular PE's
109 * frozen count in last hour exceeds this limit, the PE will
110 * be forced to be offline permanently.
112 int eeh_max_freezes
= 5;
114 /* Platform dependent EEH operations */
115 struct eeh_ops
*eeh_ops
= NULL
;
117 /* Lock to avoid races due to multiple reports of an error */
118 DEFINE_RAW_SPINLOCK(confirm_error_lock
);
120 /* Lock to protect passed flags */
121 static DEFINE_MUTEX(eeh_dev_mutex
);
123 /* Buffer for reporting pci register dumps. Its here in BSS, and
124 * not dynamically alloced, so that it ends up in RMO where RTAS
127 #define EEH_PCI_REGS_LOG_LEN 8192
128 static unsigned char pci_regs_buf
[EEH_PCI_REGS_LOG_LEN
];
131 * The struct is used to maintain the EEH global statistic
132 * information. Besides, the EEH global statistics will be
133 * exported to user space through procfs
136 u64 no_device
; /* PCI device not found */
137 u64 no_dn
; /* OF node not found */
138 u64 no_cfg_addr
; /* Config address not found */
139 u64 ignored_check
; /* EEH check skipped */
140 u64 total_mmio_ffs
; /* Total EEH checks */
141 u64 false_positives
; /* Unnecessary EEH checks */
142 u64 slot_resets
; /* PE reset */
145 static struct eeh_stats eeh_stats
;
147 static int __init
eeh_setup(char *str
)
149 if (!strcmp(str
, "off"))
150 eeh_add_flag(EEH_FORCE_DISABLED
);
151 else if (!strcmp(str
, "early_log"))
152 eeh_add_flag(EEH_EARLY_DUMP_LOG
);
156 __setup("eeh=", eeh_setup
);
159 * This routine captures assorted PCI configuration space data
160 * for the indicated PCI device, and puts them into a buffer
161 * for RTAS error logging.
163 static size_t eeh_dump_dev_log(struct eeh_dev
*edev
, char *buf
, size_t len
)
165 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
171 n
+= scnprintf(buf
+n
, len
-n
, "%04x:%02x:%02x:%01x\n",
172 edev
->phb
->global_number
, pdn
->busno
,
173 PCI_SLOT(pdn
->devfn
), PCI_FUNC(pdn
->devfn
));
174 pr_warn("EEH: of node=%04x:%02x:%02x:%01x\n",
175 edev
->phb
->global_number
, pdn
->busno
,
176 PCI_SLOT(pdn
->devfn
), PCI_FUNC(pdn
->devfn
));
178 eeh_ops
->read_config(pdn
, PCI_VENDOR_ID
, 4, &cfg
);
179 n
+= scnprintf(buf
+n
, len
-n
, "dev/vend:%08x\n", cfg
);
180 pr_warn("EEH: PCI device/vendor: %08x\n", cfg
);
182 eeh_ops
->read_config(pdn
, PCI_COMMAND
, 4, &cfg
);
183 n
+= scnprintf(buf
+n
, len
-n
, "cmd/stat:%x\n", cfg
);
184 pr_warn("EEH: PCI cmd/status register: %08x\n", cfg
);
186 /* Gather bridge-specific registers */
187 if (edev
->mode
& EEH_DEV_BRIDGE
) {
188 eeh_ops
->read_config(pdn
, PCI_SEC_STATUS
, 2, &cfg
);
189 n
+= scnprintf(buf
+n
, len
-n
, "sec stat:%x\n", cfg
);
190 pr_warn("EEH: Bridge secondary status: %04x\n", cfg
);
192 eeh_ops
->read_config(pdn
, PCI_BRIDGE_CONTROL
, 2, &cfg
);
193 n
+= scnprintf(buf
+n
, len
-n
, "brdg ctl:%x\n", cfg
);
194 pr_warn("EEH: Bridge control: %04x\n", cfg
);
197 /* Dump out the PCI-X command and status regs */
198 cap
= edev
->pcix_cap
;
200 eeh_ops
->read_config(pdn
, cap
, 4, &cfg
);
201 n
+= scnprintf(buf
+n
, len
-n
, "pcix-cmd:%x\n", cfg
);
202 pr_warn("EEH: PCI-X cmd: %08x\n", cfg
);
204 eeh_ops
->read_config(pdn
, cap
+4, 4, &cfg
);
205 n
+= scnprintf(buf
+n
, len
-n
, "pcix-stat:%x\n", cfg
);
206 pr_warn("EEH: PCI-X status: %08x\n", cfg
);
209 /* If PCI-E capable, dump PCI-E cap 10 */
210 cap
= edev
->pcie_cap
;
212 n
+= scnprintf(buf
+n
, len
-n
, "pci-e cap10:\n");
213 pr_warn("EEH: PCI-E capabilities and status follow:\n");
215 for (i
=0; i
<=8; i
++) {
216 eeh_ops
->read_config(pdn
, cap
+4*i
, 4, &cfg
);
217 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
221 pr_warn("%s\n", buffer
);
223 l
= scnprintf(buffer
, sizeof(buffer
),
224 "EEH: PCI-E %02x: %08x ",
227 l
+= scnprintf(buffer
+l
, sizeof(buffer
)-l
,
233 pr_warn("%s\n", buffer
);
236 /* If AER capable, dump it */
239 n
+= scnprintf(buf
+n
, len
-n
, "pci-e AER:\n");
240 pr_warn("EEH: PCI-E AER capability register set follows:\n");
242 for (i
=0; i
<=13; i
++) {
243 eeh_ops
->read_config(pdn
, cap
+4*i
, 4, &cfg
);
244 n
+= scnprintf(buf
+n
, len
-n
, "%02x:%x\n", 4*i
, cfg
);
248 pr_warn("%s\n", buffer
);
250 l
= scnprintf(buffer
, sizeof(buffer
),
251 "EEH: PCI-E AER %02x: %08x ",
254 l
+= scnprintf(buffer
+l
, sizeof(buffer
)-l
,
259 pr_warn("%s\n", buffer
);
265 static void *eeh_dump_pe_log(void *data
, void *flag
)
267 struct eeh_pe
*pe
= data
;
268 struct eeh_dev
*edev
, *tmp
;
271 /* If the PE's config space is blocked, 0xFF's will be
272 * returned. It's pointless to collect the log in this
275 if (pe
->state
& EEH_PE_CFG_BLOCKED
)
278 eeh_pe_for_each_dev(pe
, edev
, tmp
)
279 *plen
+= eeh_dump_dev_log(edev
, pci_regs_buf
+ *plen
,
280 EEH_PCI_REGS_LOG_LEN
- *plen
);
286 * eeh_slot_error_detail - Generate combined log including driver log and error log
288 * @severity: temporary or permanent error log
290 * This routine should be called to generate the combined log, which
291 * is comprised of driver log and error log. The driver log is figured
292 * out from the config space of the corresponding PCI device, while
293 * the error log is fetched through platform dependent function call.
295 void eeh_slot_error_detail(struct eeh_pe
*pe
, int severity
)
300 * When the PHB is fenced or dead, it's pointless to collect
301 * the data from PCI config space because it should return
302 * 0xFF's. For ER, we still retrieve the data from the PCI
305 * For pHyp, we have to enable IO for log retrieval. Otherwise,
306 * 0xFF's is always returned from PCI config space.
308 if (!(pe
->type
& EEH_PE_PHB
)) {
309 if (eeh_has_flag(EEH_ENABLE_IO_FOR_LOG
))
310 eeh_pci_enable(pe
, EEH_OPT_THAW_MMIO
);
313 * The config space of some PCI devices can't be accessed
314 * when their PEs are in frozen state. Otherwise, fenced
315 * PHB might be seen. Those PEs are identified with flag
316 * EEH_PE_CFG_RESTRICTED, indicating EEH_PE_CFG_BLOCKED
317 * is set automatically when the PE is put to EEH_PE_ISOLATED.
319 * Restoring BARs possibly triggers PCI config access in
320 * (OPAL) firmware and then causes fenced PHB. If the
321 * PCI config is blocked with flag EEH_PE_CFG_BLOCKED, it's
322 * pointless to restore BARs and dump config space.
324 eeh_ops
->configure_bridge(pe
);
325 if (!(pe
->state
& EEH_PE_CFG_BLOCKED
)) {
326 eeh_pe_restore_bars(pe
);
329 eeh_pe_traverse(pe
, eeh_dump_pe_log
, &loglen
);
333 eeh_ops
->get_log(pe
, severity
, pci_regs_buf
, loglen
);
337 * eeh_token_to_phys - Convert EEH address token to phys address
338 * @token: I/O token, should be address in the form 0xA....
340 * This routine should be called to convert virtual I/O address
343 static inline unsigned long eeh_token_to_phys(unsigned long token
)
350 * We won't find hugepages here(this is iomem). Hence we are not
351 * worried about _PAGE_SPLITTING/collapse. Also we will not hit
352 * page table free, because of init_mm.
354 ptep
= __find_linux_pte_or_hugepte(init_mm
.pgd
, token
, &hugepage_shift
);
357 WARN_ON(hugepage_shift
);
358 pa
= pte_pfn(*ptep
) << PAGE_SHIFT
;
360 return pa
| (token
& (PAGE_SIZE
-1));
364 * On PowerNV platform, we might already have fenced PHB there.
365 * For that case, it's meaningless to recover frozen PE. Intead,
366 * We have to handle fenced PHB firstly.
368 static int eeh_phb_check_failure(struct eeh_pe
*pe
)
370 struct eeh_pe
*phb_pe
;
374 if (!eeh_has_flag(EEH_PROBE_MODE_DEV
))
377 /* Find the PHB PE */
378 phb_pe
= eeh_phb_pe_get(pe
->phb
);
380 pr_warn("%s Can't find PE for PHB#%d\n",
381 __func__
, pe
->phb
->global_number
);
385 /* If the PHB has been in problematic state */
386 eeh_serialize_lock(&flags
);
387 if (phb_pe
->state
& EEH_PE_ISOLATED
) {
392 /* Check PHB state */
393 ret
= eeh_ops
->get_state(phb_pe
, NULL
);
395 (ret
== EEH_STATE_NOT_SUPPORT
) ||
396 (ret
& (EEH_STATE_MMIO_ACTIVE
| EEH_STATE_DMA_ACTIVE
)) ==
397 (EEH_STATE_MMIO_ACTIVE
| EEH_STATE_DMA_ACTIVE
)) {
402 /* Isolate the PHB and send event */
403 eeh_pe_state_mark(phb_pe
, EEH_PE_ISOLATED
);
404 eeh_serialize_unlock(flags
);
406 pr_err("EEH: PHB#%x failure detected, location: %s\n",
407 phb_pe
->phb
->global_number
, eeh_pe_loc_get(phb_pe
));
409 eeh_send_failure_event(phb_pe
);
413 eeh_serialize_unlock(flags
);
418 * eeh_dev_check_failure - Check if all 1's data is due to EEH slot freeze
421 * Check for an EEH failure for the given device node. Call this
422 * routine if the result of a read was all 0xff's and you want to
423 * find out if this is due to an EEH slot freeze. This routine
424 * will query firmware for the EEH status.
426 * Returns 0 if there has not been an EEH error; otherwise returns
427 * a non-zero value and queues up a slot isolation event notification.
429 * It is safe to call this routine in an interrupt context.
431 int eeh_dev_check_failure(struct eeh_dev
*edev
)
434 int active_flags
= (EEH_STATE_MMIO_ACTIVE
| EEH_STATE_DMA_ACTIVE
);
438 struct eeh_pe
*pe
, *parent_pe
, *phb_pe
;
440 const char *location
= NULL
;
442 eeh_stats
.total_mmio_ffs
++;
451 dev
= eeh_dev_to_pci_dev(edev
);
452 pe
= eeh_dev_to_pe(edev
);
454 /* Access to IO BARs might get this far and still not want checking. */
456 eeh_stats
.ignored_check
++;
457 pr_debug("EEH: Ignored check for %s\n",
462 if (!pe
->addr
&& !pe
->config_addr
) {
463 eeh_stats
.no_cfg_addr
++;
468 * On PowerNV platform, we might already have fenced PHB
469 * there and we need take care of that firstly.
471 ret
= eeh_phb_check_failure(pe
);
476 * If the PE isn't owned by us, we shouldn't check the
477 * state. Instead, let the owner handle it if the PE has
480 if (eeh_pe_passed(pe
))
483 /* If we already have a pending isolation event for this
484 * slot, we know it's bad already, we don't need to check.
485 * Do this checking under a lock; as multiple PCI devices
486 * in one slot might report errors simultaneously, and we
487 * only want one error recovery routine running.
489 eeh_serialize_lock(&flags
);
491 if (pe
->state
& EEH_PE_ISOLATED
) {
493 if (pe
->check_count
% EEH_MAX_FAILS
== 0) {
494 pdn
= eeh_dev_to_pdn(edev
);
496 location
= of_get_property(pdn
->node
, "ibm,loc-code", NULL
);
497 printk(KERN_ERR
"EEH: %d reads ignored for recovering device at "
498 "location=%s driver=%s pci addr=%s\n",
500 location
? location
: "unknown",
501 eeh_driver_name(dev
), eeh_pci_name(dev
));
502 printk(KERN_ERR
"EEH: Might be infinite loop in %s driver\n",
503 eeh_driver_name(dev
));
510 * Now test for an EEH failure. This is VERY expensive.
511 * Note that the eeh_config_addr may be a parent device
512 * in the case of a device behind a bridge, or it may be
513 * function zero of a multi-function device.
514 * In any case they must share a common PHB.
516 ret
= eeh_ops
->get_state(pe
, NULL
);
518 /* Note that config-io to empty slots may fail;
519 * they are empty when they don't have children.
520 * We will punt with the following conditions: Failure to get
521 * PE's state, EEH not support and Permanently unavailable
522 * state, PE is in good state.
525 (ret
== EEH_STATE_NOT_SUPPORT
) ||
526 ((ret
& active_flags
) == active_flags
)) {
527 eeh_stats
.false_positives
++;
528 pe
->false_positives
++;
534 * It should be corner case that the parent PE has been
535 * put into frozen state as well. We should take care
538 parent_pe
= pe
->parent
;
540 /* Hit the ceiling ? */
541 if (parent_pe
->type
& EEH_PE_PHB
)
544 /* Frozen parent PE ? */
545 ret
= eeh_ops
->get_state(parent_pe
, NULL
);
547 (ret
& active_flags
) != active_flags
)
550 /* Next parent level */
551 parent_pe
= parent_pe
->parent
;
554 eeh_stats
.slot_resets
++;
556 /* Avoid repeated reports of this failure, including problems
557 * with other functions on this device, and functions under
560 eeh_pe_state_mark(pe
, EEH_PE_ISOLATED
);
561 eeh_serialize_unlock(flags
);
563 /* Most EEH events are due to device driver bugs. Having
564 * a stack trace will help the device-driver authors figure
565 * out what happened. So print that out.
567 phb_pe
= eeh_phb_pe_get(pe
->phb
);
568 pr_err("EEH: Frozen PHB#%x-PE#%x detected\n",
569 pe
->phb
->global_number
, pe
->addr
);
570 pr_err("EEH: PE location: %s, PHB location: %s\n",
571 eeh_pe_loc_get(pe
), eeh_pe_loc_get(phb_pe
));
574 eeh_send_failure_event(pe
);
579 eeh_serialize_unlock(flags
);
583 EXPORT_SYMBOL_GPL(eeh_dev_check_failure
);
586 * eeh_check_failure - Check if all 1's data is due to EEH slot freeze
587 * @token: I/O address
589 * Check for an EEH failure at the given I/O address. Call this
590 * routine if the result of a read was all 0xff's and you want to
591 * find out if this is due to an EEH slot freeze event. This routine
592 * will query firmware for the EEH status.
594 * Note this routine is safe to call in an interrupt context.
596 int eeh_check_failure(const volatile void __iomem
*token
)
599 struct eeh_dev
*edev
;
601 /* Finding the phys addr + pci device; this is pretty quick. */
602 addr
= eeh_token_to_phys((unsigned long __force
) token
);
603 edev
= eeh_addr_cache_get_dev(addr
);
605 eeh_stats
.no_device
++;
609 return eeh_dev_check_failure(edev
);
611 EXPORT_SYMBOL(eeh_check_failure
);
615 * eeh_pci_enable - Enable MMIO or DMA transfers for this slot
618 * This routine should be called to reenable frozen MMIO or DMA
619 * so that it would work correctly again. It's useful while doing
620 * recovery or log collection on the indicated device.
622 int eeh_pci_enable(struct eeh_pe
*pe
, int function
)
627 * pHyp doesn't allow to enable IO or DMA on unfrozen PE.
628 * Also, it's pointless to enable them on unfrozen PE. So
629 * we have to check before enabling IO or DMA.
632 case EEH_OPT_THAW_MMIO
:
633 active_flag
= EEH_STATE_MMIO_ACTIVE
;
635 case EEH_OPT_THAW_DMA
:
636 active_flag
= EEH_STATE_DMA_ACTIVE
;
638 case EEH_OPT_DISABLE
:
640 case EEH_OPT_FREEZE_PE
:
644 pr_warn("%s: Invalid function %d\n",
650 * Check if IO or DMA has been enabled before
654 rc
= eeh_ops
->get_state(pe
, NULL
);
658 /* Needn't enable it at all */
659 if (rc
== EEH_STATE_NOT_SUPPORT
)
662 /* It's already enabled */
663 if (rc
& active_flag
)
668 /* Issue the request */
669 rc
= eeh_ops
->set_option(pe
, function
);
671 pr_warn("%s: Unexpected state change %d on "
672 "PHB#%d-PE#%x, err=%d\n",
673 __func__
, function
, pe
->phb
->global_number
,
676 /* Check if the request is finished successfully */
678 rc
= eeh_ops
->wait_state(pe
, PCI_BUS_RESET_WAIT_MSEC
);
682 if (rc
& active_flag
)
691 static void *eeh_disable_and_save_dev_state(void *data
, void *userdata
)
693 struct eeh_dev
*edev
= data
;
694 struct pci_dev
*pdev
= eeh_dev_to_pci_dev(edev
);
695 struct pci_dev
*dev
= userdata
;
698 * The caller should have disabled and saved the
699 * state for the specified device
701 if (!pdev
|| pdev
== dev
)
704 /* Ensure we have D0 power state */
705 pci_set_power_state(pdev
, PCI_D0
);
707 /* Save device state */
708 pci_save_state(pdev
);
711 * Disable device to avoid any DMA traffic and
712 * interrupt from the device
714 pci_write_config_word(pdev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
719 static void *eeh_restore_dev_state(void *data
, void *userdata
)
721 struct eeh_dev
*edev
= data
;
722 struct pci_dn
*pdn
= eeh_dev_to_pdn(edev
);
723 struct pci_dev
*pdev
= eeh_dev_to_pci_dev(edev
);
724 struct pci_dev
*dev
= userdata
;
729 /* Apply customization from firmware */
730 if (pdn
&& eeh_ops
->restore_config
)
731 eeh_ops
->restore_config(pdn
);
733 /* The caller should restore state for the specified device */
735 pci_restore_state(pdev
);
741 * pcibios_set_pcie_slot_reset - Set PCI-E reset state
742 * @dev: pci device struct
743 * @state: reset state to enter
748 int pcibios_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
750 struct eeh_dev
*edev
= pci_dev_to_eeh_dev(dev
);
751 struct eeh_pe
*pe
= eeh_dev_to_pe(edev
);
754 pr_err("%s: No PE found on PCI device %s\n",
755 __func__
, pci_name(dev
));
760 case pcie_deassert_reset
:
761 eeh_ops
->reset(pe
, EEH_RESET_DEACTIVATE
);
762 eeh_unfreeze_pe(pe
, false);
763 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
);
764 eeh_pe_dev_traverse(pe
, eeh_restore_dev_state
, dev
);
765 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
);
768 eeh_pe_state_mark_with_cfg(pe
, EEH_PE_ISOLATED
);
769 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
770 eeh_pe_dev_traverse(pe
, eeh_disable_and_save_dev_state
, dev
);
771 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
772 eeh_ops
->reset(pe
, EEH_RESET_HOT
);
774 case pcie_warm_reset
:
775 eeh_pe_state_mark_with_cfg(pe
, EEH_PE_ISOLATED
);
776 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
777 eeh_pe_dev_traverse(pe
, eeh_disable_and_save_dev_state
, dev
);
778 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
779 eeh_ops
->reset(pe
, EEH_RESET_FUNDAMENTAL
);
782 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
| EEH_PE_CFG_BLOCKED
);
790 * eeh_set_pe_freset - Check the required reset for the indicated device
792 * @flag: return value
794 * Each device might have its preferred reset type: fundamental or
795 * hot reset. The routine is used to collected the information for
796 * the indicated device and its children so that the bunch of the
797 * devices could be reset properly.
799 static void *eeh_set_dev_freset(void *data
, void *flag
)
802 unsigned int *freset
= (unsigned int *)flag
;
803 struct eeh_dev
*edev
= (struct eeh_dev
*)data
;
805 dev
= eeh_dev_to_pci_dev(edev
);
807 *freset
|= dev
->needs_freset
;
813 * eeh_reset_pe_once - Assert the pci #RST line for 1/4 second
816 * Assert the PCI #RST line for 1/4 second.
818 static void eeh_reset_pe_once(struct eeh_pe
*pe
)
820 unsigned int freset
= 0;
822 /* Determine type of EEH reset required for
823 * Partitionable Endpoint, a hot-reset (1)
824 * or a fundamental reset (3).
825 * A fundamental reset required by any device under
826 * Partitionable Endpoint trumps hot-reset.
828 eeh_pe_dev_traverse(pe
, eeh_set_dev_freset
, &freset
);
831 eeh_ops
->reset(pe
, EEH_RESET_FUNDAMENTAL
);
833 eeh_ops
->reset(pe
, EEH_RESET_HOT
);
835 eeh_ops
->reset(pe
, EEH_RESET_DEACTIVATE
);
839 * eeh_reset_pe - Reset the indicated PE
842 * This routine should be called to reset indicated device, including
843 * PE. A PE might include multiple PCI devices and sometimes PCI bridges
844 * might be involved as well.
846 int eeh_reset_pe(struct eeh_pe
*pe
)
848 int flags
= (EEH_STATE_MMIO_ACTIVE
| EEH_STATE_DMA_ACTIVE
);
851 /* Mark as reset and block config space */
852 eeh_pe_state_mark(pe
, EEH_PE_RESET
| EEH_PE_CFG_BLOCKED
);
854 /* Take three shots at resetting the bus */
855 for (i
= 0; i
< 3; i
++) {
856 eeh_reset_pe_once(pe
);
859 * EEH_PE_ISOLATED is expected to be removed after
862 state
= eeh_ops
->wait_state(pe
, PCI_BUS_RESET_WAIT_MSEC
);
863 if ((state
& flags
) == flags
) {
869 pr_warn("%s: Unrecoverable slot failure on PHB#%d-PE#%x",
870 __func__
, pe
->phb
->global_number
, pe
->addr
);
871 ret
= -ENOTRECOVERABLE
;
875 /* We might run out of credits */
877 pr_warn("%s: Failure %d resetting PHB#%x-PE#%x\n (%d)\n",
878 __func__
, state
, pe
->phb
->global_number
, pe
->addr
, (i
+ 1));
882 eeh_pe_state_clear(pe
, EEH_PE_RESET
| EEH_PE_CFG_BLOCKED
);
887 * eeh_save_bars - Save device bars
888 * @edev: PCI device associated EEH device
890 * Save the values of the device bars. Unlike the restore
891 * routine, this routine is *not* recursive. This is because
892 * PCI devices are added individually; but, for the restore,
893 * an entire slot is reset at a time.
895 void eeh_save_bars(struct eeh_dev
*edev
)
900 pdn
= eeh_dev_to_pdn(edev
);
904 for (i
= 0; i
< 16; i
++)
905 eeh_ops
->read_config(pdn
, i
* 4, 4, &edev
->config_space
[i
]);
908 * For PCI bridges including root port, we need enable bus
909 * master explicitly. Otherwise, it can't fetch IODA table
910 * entries correctly. So we cache the bit in advance so that
911 * we can restore it after reset, either PHB range or PE range.
913 if (edev
->mode
& EEH_DEV_BRIDGE
)
914 edev
->config_space
[1] |= PCI_COMMAND_MASTER
;
918 * eeh_ops_register - Register platform dependent EEH operations
919 * @ops: platform dependent EEH operations
921 * Register the platform dependent EEH operation callback
922 * functions. The platform should call this function before
923 * any other EEH operations.
925 int __init
eeh_ops_register(struct eeh_ops
*ops
)
928 pr_warn("%s: Invalid EEH ops name for %p\n",
933 if (eeh_ops
&& eeh_ops
!= ops
) {
934 pr_warn("%s: EEH ops of platform %s already existing (%s)\n",
935 __func__
, eeh_ops
->name
, ops
->name
);
945 * eeh_ops_unregister - Unreigster platform dependent EEH operations
946 * @name: name of EEH platform operations
948 * Unregister the platform dependent EEH operation callback
951 int __exit
eeh_ops_unregister(const char *name
)
953 if (!name
|| !strlen(name
)) {
954 pr_warn("%s: Invalid EEH ops name\n",
959 if (eeh_ops
&& !strcmp(eeh_ops
->name
, name
)) {
967 static int eeh_reboot_notifier(struct notifier_block
*nb
,
968 unsigned long action
, void *unused
)
970 eeh_clear_flag(EEH_ENABLED
);
974 static struct notifier_block eeh_reboot_nb
= {
975 .notifier_call
= eeh_reboot_notifier
,
979 * eeh_init - EEH initialization
981 * Initialize EEH by trying to enable it for all of the adapters in the system.
982 * As a side effect we can determine here if eeh is supported at all.
983 * Note that we leave EEH on so failed config cycles won't cause a machine
984 * check. If a user turns off EEH for a particular adapter they are really
985 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
986 * grant access to a slot if EEH isn't enabled, and so we always enable
987 * EEH for all slots/all devices.
989 * The eeh-force-off option disables EEH checking globally, for all slots.
990 * Even if force-off is set, the EEH hardware is still enabled, so that
991 * newer systems can boot.
995 struct pci_controller
*hose
, *tmp
;
1001 * We have to delay the initialization on PowerNV after
1002 * the PCI hierarchy tree has been built because the PEs
1003 * are figured out based on PCI devices instead of device
1006 if (machine_is(powernv
) && cnt
++ <= 0)
1009 /* Register reboot notifier */
1010 ret
= register_reboot_notifier(&eeh_reboot_nb
);
1012 pr_warn("%s: Failed to register notifier (%d)\n",
1017 /* call platform initialization function */
1019 pr_warn("%s: Platform EEH operation not found\n",
1022 } else if ((ret
= eeh_ops
->init()))
1025 /* Initialize EEH event */
1026 ret
= eeh_event_init();
1030 /* Enable EEH for all adapters */
1031 list_for_each_entry_safe(hose
, tmp
, &hose_list
, list_node
) {
1032 pdn
= hose
->pci_data
;
1033 traverse_pci_dn(pdn
, eeh_ops
->probe
, NULL
);
1037 * Call platform post-initialization. Actually, It's good chance
1038 * to inform platform that EEH is ready to supply service if the
1039 * I/O cache stuff has been built up.
1041 if (eeh_ops
->post_init
) {
1042 ret
= eeh_ops
->post_init();
1048 pr_info("EEH: PCI Enhanced I/O Error Handling Enabled\n");
1050 pr_warn("EEH: No capable adapters found\n");
1055 core_initcall_sync(eeh_init
);
1058 * eeh_add_device_early - Enable EEH for the indicated device node
1059 * @pdn: PCI device node for which to set up EEH
1061 * This routine must be used to perform EEH initialization for PCI
1062 * devices that were added after system boot (e.g. hotplug, dlpar).
1063 * This routine must be called before any i/o is performed to the
1064 * adapter (inluding any config-space i/o).
1065 * Whether this actually enables EEH or not for this device depends
1066 * on the CEC architecture, type of the device, on earlier boot
1067 * command-line arguments & etc.
1069 void eeh_add_device_early(struct pci_dn
*pdn
)
1071 struct pci_controller
*phb
;
1072 struct eeh_dev
*edev
= pdn_to_eeh_dev(pdn
);
1074 if (!edev
|| !eeh_enabled())
1077 if (!eeh_has_flag(EEH_PROBE_MODE_DEVTREE
))
1080 /* USB Bus children of PCI devices will not have BUID's */
1083 (eeh_has_flag(EEH_PROBE_MODE_DEVTREE
) && 0 == phb
->buid
))
1086 eeh_ops
->probe(pdn
, NULL
);
1090 * eeh_add_device_tree_early - Enable EEH for the indicated device
1091 * @pdn: PCI device node
1093 * This routine must be used to perform EEH initialization for the
1094 * indicated PCI device that was added after system boot (e.g.
1097 void eeh_add_device_tree_early(struct pci_dn
*pdn
)
1104 list_for_each_entry(n
, &pdn
->child_list
, list
)
1105 eeh_add_device_tree_early(n
);
1106 eeh_add_device_early(pdn
);
1108 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early
);
1111 * eeh_add_device_late - Perform EEH initialization for the indicated pci device
1112 * @dev: pci device for which to set up EEH
1114 * This routine must be used to complete EEH initialization for PCI
1115 * devices that were added after system boot (e.g. hotplug, dlpar).
1117 void eeh_add_device_late(struct pci_dev
*dev
)
1120 struct eeh_dev
*edev
;
1122 if (!dev
|| !eeh_enabled())
1125 pr_debug("EEH: Adding device %s\n", pci_name(dev
));
1127 pdn
= pci_get_pdn_by_devfn(dev
->bus
, dev
->devfn
);
1128 edev
= pdn_to_eeh_dev(pdn
);
1129 if (edev
->pdev
== dev
) {
1130 pr_debug("EEH: Already referenced !\n");
1135 * The EEH cache might not be removed correctly because of
1136 * unbalanced kref to the device during unplug time, which
1137 * relies on pcibios_release_device(). So we have to remove
1138 * that here explicitly.
1141 eeh_rmv_from_parent_pe(edev
);
1142 eeh_addr_cache_rmv_dev(edev
->pdev
);
1143 eeh_sysfs_remove_device(edev
->pdev
);
1144 edev
->mode
&= ~EEH_DEV_SYSFS
;
1147 * We definitely should have the PCI device removed
1148 * though it wasn't correctly. So we needn't call
1149 * into error handler afterwards.
1151 edev
->mode
|= EEH_DEV_NO_HANDLER
;
1154 dev
->dev
.archdata
.edev
= NULL
;
1157 if (eeh_has_flag(EEH_PROBE_MODE_DEV
))
1158 eeh_ops
->probe(pdn
, NULL
);
1161 dev
->dev
.archdata
.edev
= edev
;
1163 eeh_addr_cache_insert_dev(dev
);
1167 * eeh_add_device_tree_late - Perform EEH initialization for the indicated PCI bus
1170 * This routine must be used to perform EEH initialization for PCI
1171 * devices which are attached to the indicated PCI bus. The PCI bus
1172 * is added after system boot through hotplug or dlpar.
1174 void eeh_add_device_tree_late(struct pci_bus
*bus
)
1176 struct pci_dev
*dev
;
1178 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
1179 eeh_add_device_late(dev
);
1180 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1181 struct pci_bus
*subbus
= dev
->subordinate
;
1183 eeh_add_device_tree_late(subbus
);
1187 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late
);
1190 * eeh_add_sysfs_files - Add EEH sysfs files for the indicated PCI bus
1193 * This routine must be used to add EEH sysfs files for PCI
1194 * devices which are attached to the indicated PCI bus. The PCI bus
1195 * is added after system boot through hotplug or dlpar.
1197 void eeh_add_sysfs_files(struct pci_bus
*bus
)
1199 struct pci_dev
*dev
;
1201 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
1202 eeh_sysfs_add_device(dev
);
1203 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
) {
1204 struct pci_bus
*subbus
= dev
->subordinate
;
1206 eeh_add_sysfs_files(subbus
);
1210 EXPORT_SYMBOL_GPL(eeh_add_sysfs_files
);
1213 * eeh_remove_device - Undo EEH setup for the indicated pci device
1214 * @dev: pci device to be removed
1216 * This routine should be called when a device is removed from
1217 * a running system (e.g. by hotplug or dlpar). It unregisters
1218 * the PCI device from the EEH subsystem. I/O errors affecting
1219 * this device will no longer be detected after this call; thus,
1220 * i/o errors affecting this slot may leave this device unusable.
1222 void eeh_remove_device(struct pci_dev
*dev
)
1224 struct eeh_dev
*edev
;
1226 if (!dev
|| !eeh_enabled())
1228 edev
= pci_dev_to_eeh_dev(dev
);
1230 /* Unregister the device with the EEH/PCI address search system */
1231 pr_debug("EEH: Removing device %s\n", pci_name(dev
));
1233 if (!edev
|| !edev
->pdev
|| !edev
->pe
) {
1234 pr_debug("EEH: Not referenced !\n");
1239 * During the hotplug for EEH error recovery, we need the EEH
1240 * device attached to the parent PE in order for BAR restore
1241 * a bit later. So we keep it for BAR restore and remove it
1242 * from the parent PE during the BAR resotre.
1245 dev
->dev
.archdata
.edev
= NULL
;
1246 if (!(edev
->pe
->state
& EEH_PE_KEEP
))
1247 eeh_rmv_from_parent_pe(edev
);
1249 edev
->mode
|= EEH_DEV_DISCONNECTED
;
1252 * We're removing from the PCI subsystem, that means
1253 * the PCI device driver can't support EEH or not
1254 * well. So we rely on hotplug completely to do recovery
1255 * for the specific PCI device.
1257 edev
->mode
|= EEH_DEV_NO_HANDLER
;
1259 eeh_addr_cache_rmv_dev(dev
);
1260 eeh_sysfs_remove_device(dev
);
1261 edev
->mode
&= ~EEH_DEV_SYSFS
;
1264 int eeh_unfreeze_pe(struct eeh_pe
*pe
, bool sw_state
)
1268 ret
= eeh_pci_enable(pe
, EEH_OPT_THAW_MMIO
);
1270 pr_warn("%s: Failure %d enabling IO on PHB#%x-PE#%x\n",
1271 __func__
, ret
, pe
->phb
->global_number
, pe
->addr
);
1275 ret
= eeh_pci_enable(pe
, EEH_OPT_THAW_DMA
);
1277 pr_warn("%s: Failure %d enabling DMA on PHB#%x-PE#%x\n",
1278 __func__
, ret
, pe
->phb
->global_number
, pe
->addr
);
1282 /* Clear software isolated state */
1283 if (sw_state
&& (pe
->state
& EEH_PE_ISOLATED
))
1284 eeh_pe_state_clear(pe
, EEH_PE_ISOLATED
);
1290 static struct pci_device_id eeh_reset_ids
[] = {
1291 { PCI_DEVICE(0x19a2, 0x0710) }, /* Emulex, BE */
1292 { PCI_DEVICE(0x10df, 0xe220) }, /* Emulex, Lancer */
1293 { PCI_DEVICE(0x14e4, 0x1657) }, /* Broadcom BCM5719 */
1297 static int eeh_pe_change_owner(struct eeh_pe
*pe
)
1299 struct eeh_dev
*edev
, *tmp
;
1300 struct pci_dev
*pdev
;
1301 struct pci_device_id
*id
;
1304 /* Check PE state */
1305 flags
= (EEH_STATE_MMIO_ACTIVE
| EEH_STATE_DMA_ACTIVE
);
1306 ret
= eeh_ops
->get_state(pe
, NULL
);
1307 if (ret
< 0 || ret
== EEH_STATE_NOT_SUPPORT
)
1310 /* Unfrozen PE, nothing to do */
1311 if ((ret
& flags
) == flags
)
1314 /* Frozen PE, check if it needs PE level reset */
1315 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
1316 pdev
= eeh_dev_to_pci_dev(edev
);
1320 for (id
= &eeh_reset_ids
[0]; id
->vendor
!= 0; id
++) {
1321 if (id
->vendor
!= PCI_ANY_ID
&&
1322 id
->vendor
!= pdev
->vendor
)
1324 if (id
->device
!= PCI_ANY_ID
&&
1325 id
->device
!= pdev
->device
)
1327 if (id
->subvendor
!= PCI_ANY_ID
&&
1328 id
->subvendor
!= pdev
->subsystem_vendor
)
1330 if (id
->subdevice
!= PCI_ANY_ID
&&
1331 id
->subdevice
!= pdev
->subsystem_device
)
1338 return eeh_unfreeze_pe(pe
, true);
1341 return eeh_pe_reset_and_recover(pe
);
1345 * eeh_dev_open - Increase count of pass through devices for PE
1348 * Increase count of passed through devices for the indicated
1349 * PE. In the result, the EEH errors detected on the PE won't be
1350 * reported. The PE owner will be responsible for detection
1353 int eeh_dev_open(struct pci_dev
*pdev
)
1355 struct eeh_dev
*edev
;
1358 mutex_lock(&eeh_dev_mutex
);
1360 /* No PCI device ? */
1364 /* No EEH device or PE ? */
1365 edev
= pci_dev_to_eeh_dev(pdev
);
1366 if (!edev
|| !edev
->pe
)
1370 * The PE might have been put into frozen state, but we
1371 * didn't detect that yet. The passed through PCI devices
1372 * in frozen PE won't work properly. Clear the frozen state
1375 ret
= eeh_pe_change_owner(edev
->pe
);
1379 /* Increase PE's pass through count */
1380 atomic_inc(&edev
->pe
->pass_dev_cnt
);
1381 mutex_unlock(&eeh_dev_mutex
);
1385 mutex_unlock(&eeh_dev_mutex
);
1388 EXPORT_SYMBOL_GPL(eeh_dev_open
);
1391 * eeh_dev_release - Decrease count of pass through devices for PE
1394 * Decrease count of pass through devices for the indicated PE. If
1395 * there is no passed through device in PE, the EEH errors detected
1396 * on the PE will be reported and handled as usual.
1398 void eeh_dev_release(struct pci_dev
*pdev
)
1400 struct eeh_dev
*edev
;
1402 mutex_lock(&eeh_dev_mutex
);
1404 /* No PCI device ? */
1408 /* No EEH device ? */
1409 edev
= pci_dev_to_eeh_dev(pdev
);
1410 if (!edev
|| !edev
->pe
|| !eeh_pe_passed(edev
->pe
))
1413 /* Decrease PE's pass through count */
1414 atomic_dec(&edev
->pe
->pass_dev_cnt
);
1415 WARN_ON(atomic_read(&edev
->pe
->pass_dev_cnt
) < 0);
1416 eeh_pe_change_owner(edev
->pe
);
1418 mutex_unlock(&eeh_dev_mutex
);
1420 EXPORT_SYMBOL(eeh_dev_release
);
1422 #ifdef CONFIG_IOMMU_API
1424 static int dev_has_iommu_table(struct device
*dev
, void *data
)
1426 struct pci_dev
*pdev
= to_pci_dev(dev
);
1427 struct pci_dev
**ppdev
= data
;
1432 if (dev
->iommu_group
) {
1441 * eeh_iommu_group_to_pe - Convert IOMMU group to EEH PE
1442 * @group: IOMMU group
1444 * The routine is called to convert IOMMU group to EEH PE.
1446 struct eeh_pe
*eeh_iommu_group_to_pe(struct iommu_group
*group
)
1448 struct pci_dev
*pdev
= NULL
;
1449 struct eeh_dev
*edev
;
1452 /* No IOMMU group ? */
1456 ret
= iommu_group_for_each_dev(group
, &pdev
, dev_has_iommu_table
);
1460 /* No EEH device or PE ? */
1461 edev
= pci_dev_to_eeh_dev(pdev
);
1462 if (!edev
|| !edev
->pe
)
1467 EXPORT_SYMBOL_GPL(eeh_iommu_group_to_pe
);
1469 #endif /* CONFIG_IOMMU_API */
1472 * eeh_pe_set_option - Set options for the indicated PE
1474 * @option: requested option
1476 * The routine is called to enable or disable EEH functionality
1477 * on the indicated PE, to enable IO or DMA for the frozen PE.
1479 int eeh_pe_set_option(struct eeh_pe
*pe
, int option
)
1488 * EEH functionality could possibly be disabled, just
1489 * return error for the case. And the EEH functinality
1490 * isn't expected to be disabled on one specific PE.
1493 case EEH_OPT_ENABLE
:
1494 if (eeh_enabled()) {
1495 ret
= eeh_pe_change_owner(pe
);
1500 case EEH_OPT_DISABLE
:
1502 case EEH_OPT_THAW_MMIO
:
1503 case EEH_OPT_THAW_DMA
:
1504 if (!eeh_ops
|| !eeh_ops
->set_option
) {
1509 ret
= eeh_pci_enable(pe
, option
);
1512 pr_debug("%s: Option %d out of range (%d, %d)\n",
1513 __func__
, option
, EEH_OPT_DISABLE
, EEH_OPT_THAW_DMA
);
1519 EXPORT_SYMBOL_GPL(eeh_pe_set_option
);
1522 * eeh_pe_get_state - Retrieve PE's state
1525 * Retrieve the PE's state, which includes 3 aspects: enabled
1526 * DMA, enabled IO and asserted reset.
1528 int eeh_pe_get_state(struct eeh_pe
*pe
)
1530 int result
, ret
= 0;
1531 bool rst_active
, dma_en
, mmio_en
;
1537 if (!eeh_ops
|| !eeh_ops
->get_state
)
1540 result
= eeh_ops
->get_state(pe
, NULL
);
1541 rst_active
= !!(result
& EEH_STATE_RESET_ACTIVE
);
1542 dma_en
= !!(result
& EEH_STATE_DMA_ENABLED
);
1543 mmio_en
= !!(result
& EEH_STATE_MMIO_ENABLED
);
1546 ret
= EEH_PE_STATE_RESET
;
1547 else if (dma_en
&& mmio_en
)
1548 ret
= EEH_PE_STATE_NORMAL
;
1549 else if (!dma_en
&& !mmio_en
)
1550 ret
= EEH_PE_STATE_STOPPED_IO_DMA
;
1551 else if (!dma_en
&& mmio_en
)
1552 ret
= EEH_PE_STATE_STOPPED_DMA
;
1554 ret
= EEH_PE_STATE_UNAVAIL
;
1558 EXPORT_SYMBOL_GPL(eeh_pe_get_state
);
1560 static int eeh_pe_reenable_devices(struct eeh_pe
*pe
)
1562 struct eeh_dev
*edev
, *tmp
;
1563 struct pci_dev
*pdev
;
1566 /* Restore config space */
1567 eeh_pe_restore_bars(pe
);
1570 * Reenable PCI devices as the devices passed
1571 * through are always enabled before the reset.
1573 eeh_pe_for_each_dev(pe
, edev
, tmp
) {
1574 pdev
= eeh_dev_to_pci_dev(edev
);
1578 ret
= pci_reenable_device(pdev
);
1580 pr_warn("%s: Failure %d reenabling %s\n",
1581 __func__
, ret
, pci_name(pdev
));
1586 /* The PE is still in frozen state */
1587 return eeh_unfreeze_pe(pe
, true);
1591 * eeh_pe_reset - Issue PE reset according to specified type
1593 * @option: reset type
1595 * The routine is called to reset the specified PE with the
1596 * indicated type, either fundamental reset or hot reset.
1597 * PE reset is the most important part for error recovery.
1599 int eeh_pe_reset(struct eeh_pe
*pe
, int option
)
1607 if (!eeh_ops
|| !eeh_ops
->set_option
|| !eeh_ops
->reset
)
1611 case EEH_RESET_DEACTIVATE
:
1612 ret
= eeh_ops
->reset(pe
, option
);
1613 eeh_pe_state_clear(pe
, EEH_PE_CFG_BLOCKED
);
1617 ret
= eeh_pe_reenable_devices(pe
);
1620 case EEH_RESET_FUNDAMENTAL
:
1622 * Proactively freeze the PE to drop all MMIO access
1623 * during reset, which should be banned as it's always
1624 * cause recursive EEH error.
1626 eeh_ops
->set_option(pe
, EEH_OPT_FREEZE_PE
);
1628 eeh_pe_state_mark(pe
, EEH_PE_CFG_BLOCKED
);
1629 ret
= eeh_ops
->reset(pe
, option
);
1632 pr_debug("%s: Unsupported option %d\n",
1639 EXPORT_SYMBOL_GPL(eeh_pe_reset
);
1642 * eeh_pe_configure - Configure PCI bridges after PE reset
1645 * The routine is called to restore the PCI config space for
1646 * those PCI devices, especially PCI bridges affected by PE
1647 * reset issued previously.
1649 int eeh_pe_configure(struct eeh_pe
*pe
)
1659 EXPORT_SYMBOL_GPL(eeh_pe_configure
);
1662 * eeh_pe_inject_err - Injecting the specified PCI error to the indicated PE
1663 * @pe: the indicated PE
1665 * @function: error function
1667 * @mask: address mask
1669 * The routine is called to inject the specified PCI error, which
1670 * is determined by @type and @function, to the indicated PE for
1673 int eeh_pe_inject_err(struct eeh_pe
*pe
, int type
, int func
,
1674 unsigned long addr
, unsigned long mask
)
1680 /* Unsupported operation ? */
1681 if (!eeh_ops
|| !eeh_ops
->err_inject
)
1684 /* Check on PCI error type */
1685 if (type
!= EEH_ERR_TYPE_32
&& type
!= EEH_ERR_TYPE_64
)
1688 /* Check on PCI error function */
1689 if (func
< EEH_ERR_FUNC_MIN
|| func
> EEH_ERR_FUNC_MAX
)
1692 return eeh_ops
->err_inject(pe
, type
, func
, addr
, mask
);
1694 EXPORT_SYMBOL_GPL(eeh_pe_inject_err
);
1696 static int proc_eeh_show(struct seq_file
*m
, void *v
)
1698 if (!eeh_enabled()) {
1699 seq_printf(m
, "EEH Subsystem is globally disabled\n");
1700 seq_printf(m
, "eeh_total_mmio_ffs=%llu\n", eeh_stats
.total_mmio_ffs
);
1702 seq_printf(m
, "EEH Subsystem is enabled\n");
1705 "no device node=%llu\n"
1706 "no config address=%llu\n"
1707 "check not wanted=%llu\n"
1708 "eeh_total_mmio_ffs=%llu\n"
1709 "eeh_false_positives=%llu\n"
1710 "eeh_slot_resets=%llu\n",
1711 eeh_stats
.no_device
,
1713 eeh_stats
.no_cfg_addr
,
1714 eeh_stats
.ignored_check
,
1715 eeh_stats
.total_mmio_ffs
,
1716 eeh_stats
.false_positives
,
1717 eeh_stats
.slot_resets
);
1723 static int proc_eeh_open(struct inode
*inode
, struct file
*file
)
1725 return single_open(file
, proc_eeh_show
, NULL
);
1728 static const struct file_operations proc_eeh_operations
= {
1729 .open
= proc_eeh_open
,
1731 .llseek
= seq_lseek
,
1732 .release
= single_release
,
1735 #ifdef CONFIG_DEBUG_FS
1736 static int eeh_enable_dbgfs_set(void *data
, u64 val
)
1739 eeh_clear_flag(EEH_FORCE_DISABLED
);
1741 eeh_add_flag(EEH_FORCE_DISABLED
);
1743 /* Notify the backend */
1744 if (eeh_ops
->post_init
)
1745 eeh_ops
->post_init();
1750 static int eeh_enable_dbgfs_get(void *data
, u64
*val
)
1759 static int eeh_freeze_dbgfs_set(void *data
, u64 val
)
1761 eeh_max_freezes
= val
;
1765 static int eeh_freeze_dbgfs_get(void *data
, u64
*val
)
1767 *val
= eeh_max_freezes
;
1771 DEFINE_SIMPLE_ATTRIBUTE(eeh_enable_dbgfs_ops
, eeh_enable_dbgfs_get
,
1772 eeh_enable_dbgfs_set
, "0x%llx\n");
1773 DEFINE_SIMPLE_ATTRIBUTE(eeh_freeze_dbgfs_ops
, eeh_freeze_dbgfs_get
,
1774 eeh_freeze_dbgfs_set
, "0x%llx\n");
1777 static int __init
eeh_init_proc(void)
1779 if (machine_is(pseries
) || machine_is(powernv
)) {
1780 proc_create("powerpc/eeh", 0, NULL
, &proc_eeh_operations
);
1781 #ifdef CONFIG_DEBUG_FS
1782 debugfs_create_file("eeh_enable", 0600,
1783 powerpc_debugfs_root
, NULL
,
1784 &eeh_enable_dbgfs_ops
);
1785 debugfs_create_file("eeh_max_freezes", 0600,
1786 powerpc_debugfs_root
, NULL
,
1787 &eeh_freeze_dbgfs_ops
);
1793 __initcall(eeh_init_proc
);