2 * Ptrace user space interface.
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
35 #include "compat_ptrace.h"
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
41 void update_cr_regs(struct task_struct
*task
)
43 struct pt_regs
*regs
= task_pt_regs(task
);
44 struct thread_struct
*thread
= &task
->thread
;
45 struct per_regs old
, new;
47 /* Take care of the enable/disable of transactional execution. */
49 unsigned long cr
, cr_new
;
51 __ctl_store(cr
, 0, 0);
52 /* Set or clear transaction execution TXC bit 8. */
53 cr_new
= cr
| (1UL << 55);
54 if (task
->thread
.per_flags
& PER_FLAG_NO_TE
)
55 cr_new
&= ~(1UL << 55);
57 __ctl_load(cr_new
, 0, 0);
58 /* Set or clear transaction execution TDC bits 62 and 63. */
59 __ctl_store(cr
, 2, 2);
61 if (task
->thread
.per_flags
& PER_FLAG_TE_ABORT_RAND
) {
62 if (task
->thread
.per_flags
& PER_FLAG_TE_ABORT_RAND_TEND
)
68 __ctl_load(cr_new
, 2, 2);
70 /* Copy user specified PER registers */
71 new.control
= thread
->per_user
.control
;
72 new.start
= thread
->per_user
.start
;
73 new.end
= thread
->per_user
.end
;
75 /* merge TIF_SINGLE_STEP into user specified PER registers. */
76 if (test_tsk_thread_flag(task
, TIF_SINGLE_STEP
) ||
77 test_tsk_thread_flag(task
, TIF_UPROBE_SINGLESTEP
)) {
78 if (test_tsk_thread_flag(task
, TIF_BLOCK_STEP
))
79 new.control
|= PER_EVENT_BRANCH
;
81 new.control
|= PER_EVENT_IFETCH
;
82 new.control
|= PER_CONTROL_SUSPENSION
;
83 new.control
|= PER_EVENT_TRANSACTION_END
;
84 if (test_tsk_thread_flag(task
, TIF_UPROBE_SINGLESTEP
))
85 new.control
|= PER_EVENT_IFETCH
;
87 new.end
= PSW_ADDR_INSN
;
90 /* Take care of the PER enablement bit in the PSW. */
91 if (!(new.control
& PER_EVENT_MASK
)) {
92 regs
->psw
.mask
&= ~PSW_MASK_PER
;
95 regs
->psw
.mask
|= PSW_MASK_PER
;
96 __ctl_store(old
, 9, 11);
97 if (memcmp(&new, &old
, sizeof(struct per_regs
)) != 0)
98 __ctl_load(new, 9, 11);
101 void user_enable_single_step(struct task_struct
*task
)
103 clear_tsk_thread_flag(task
, TIF_BLOCK_STEP
);
104 set_tsk_thread_flag(task
, TIF_SINGLE_STEP
);
107 void user_disable_single_step(struct task_struct
*task
)
109 clear_tsk_thread_flag(task
, TIF_BLOCK_STEP
);
110 clear_tsk_thread_flag(task
, TIF_SINGLE_STEP
);
113 void user_enable_block_step(struct task_struct
*task
)
115 set_tsk_thread_flag(task
, TIF_SINGLE_STEP
);
116 set_tsk_thread_flag(task
, TIF_BLOCK_STEP
);
120 * Called by kernel/ptrace.c when detaching..
122 * Clear all debugging related fields.
124 void ptrace_disable(struct task_struct
*task
)
126 memset(&task
->thread
.per_user
, 0, sizeof(task
->thread
.per_user
));
127 memset(&task
->thread
.per_event
, 0, sizeof(task
->thread
.per_event
));
128 clear_tsk_thread_flag(task
, TIF_SINGLE_STEP
);
129 clear_pt_regs_flag(task_pt_regs(task
), PIF_PER_TRAP
);
130 task
->thread
.per_flags
= 0;
133 #define __ADDR_MASK 7
135 static inline unsigned long __peek_user_per(struct task_struct
*child
,
138 struct per_struct_kernel
*dummy
= NULL
;
140 if (addr
== (addr_t
) &dummy
->cr9
)
141 /* Control bits of the active per set. */
142 return test_thread_flag(TIF_SINGLE_STEP
) ?
143 PER_EVENT_IFETCH
: child
->thread
.per_user
.control
;
144 else if (addr
== (addr_t
) &dummy
->cr10
)
145 /* Start address of the active per set. */
146 return test_thread_flag(TIF_SINGLE_STEP
) ?
147 0 : child
->thread
.per_user
.start
;
148 else if (addr
== (addr_t
) &dummy
->cr11
)
149 /* End address of the active per set. */
150 return test_thread_flag(TIF_SINGLE_STEP
) ?
151 PSW_ADDR_INSN
: child
->thread
.per_user
.end
;
152 else if (addr
== (addr_t
) &dummy
->bits
)
153 /* Single-step bit. */
154 return test_thread_flag(TIF_SINGLE_STEP
) ?
155 (1UL << (BITS_PER_LONG
- 1)) : 0;
156 else if (addr
== (addr_t
) &dummy
->starting_addr
)
157 /* Start address of the user specified per set. */
158 return child
->thread
.per_user
.start
;
159 else if (addr
== (addr_t
) &dummy
->ending_addr
)
160 /* End address of the user specified per set. */
161 return child
->thread
.per_user
.end
;
162 else if (addr
== (addr_t
) &dummy
->perc_atmid
)
163 /* PER code, ATMID and AI of the last PER trap */
164 return (unsigned long)
165 child
->thread
.per_event
.cause
<< (BITS_PER_LONG
- 16);
166 else if (addr
== (addr_t
) &dummy
->address
)
167 /* Address of the last PER trap */
168 return child
->thread
.per_event
.address
;
169 else if (addr
== (addr_t
) &dummy
->access_id
)
170 /* Access id of the last PER trap */
171 return (unsigned long)
172 child
->thread
.per_event
.paid
<< (BITS_PER_LONG
- 8);
177 * Read the word at offset addr from the user area of a process. The
178 * trouble here is that the information is littered over different
179 * locations. The process registers are found on the kernel stack,
180 * the floating point stuff and the trace settings are stored in
181 * the task structure. In addition the different structures in
182 * struct user contain pad bytes that should be read as zeroes.
185 static unsigned long __peek_user(struct task_struct
*child
, addr_t addr
)
187 struct user
*dummy
= NULL
;
190 if (addr
< (addr_t
) &dummy
->regs
.acrs
) {
192 * psw and gprs are stored on the stack
194 tmp
= *(addr_t
*)((addr_t
) &task_pt_regs(child
)->psw
+ addr
);
195 if (addr
== (addr_t
) &dummy
->regs
.psw
.mask
) {
196 /* Return a clean psw mask. */
197 tmp
&= PSW_MASK_USER
| PSW_MASK_RI
;
198 tmp
|= PSW_USER_BITS
;
201 } else if (addr
< (addr_t
) &dummy
->regs
.orig_gpr2
) {
203 * access registers are stored in the thread structure
205 offset
= addr
- (addr_t
) &dummy
->regs
.acrs
;
207 * Very special case: old & broken 64 bit gdb reading
208 * from acrs[15]. Result is a 64 bit value. Read the
209 * 32 bit acrs[15] value and shift it by 32. Sick...
211 if (addr
== (addr_t
) &dummy
->regs
.acrs
[15])
212 tmp
= ((unsigned long) child
->thread
.acrs
[15]) << 32;
214 tmp
= *(addr_t
*)((addr_t
) &child
->thread
.acrs
+ offset
);
216 } else if (addr
== (addr_t
) &dummy
->regs
.orig_gpr2
) {
218 * orig_gpr2 is stored on the kernel stack
220 tmp
= (addr_t
) task_pt_regs(child
)->orig_gpr2
;
222 } else if (addr
< (addr_t
) &dummy
->regs
.fp_regs
) {
224 * prevent reads of padding hole between
225 * orig_gpr2 and fp_regs on s390.
229 } else if (addr
== (addr_t
) &dummy
->regs
.fp_regs
.fpc
) {
231 * floating point control reg. is in the thread structure
233 tmp
= child
->thread
.fpu
.fpc
;
234 tmp
<<= BITS_PER_LONG
- 32;
236 } else if (addr
< (addr_t
) (&dummy
->regs
.fp_regs
+ 1)) {
238 * floating point regs. are either in child->thread.fpu
239 * or the child->thread.fpu.vxrs array
241 offset
= addr
- (addr_t
) &dummy
->regs
.fp_regs
.fprs
;
242 if (is_vx_task(child
))
244 ((addr_t
) child
->thread
.fpu
.vxrs
+ 2*offset
);
247 ((addr_t
) &child
->thread
.fpu
.fprs
+ offset
);
249 } else if (addr
< (addr_t
) (&dummy
->regs
.per_info
+ 1)) {
251 * Handle access to the per_info structure.
253 addr
-= (addr_t
) &dummy
->regs
.per_info
;
254 tmp
= __peek_user_per(child
, addr
);
263 peek_user(struct task_struct
*child
, addr_t addr
, addr_t data
)
268 * Stupid gdb peeks/pokes the access registers in 64 bit with
269 * an alignment of 4. Programmers from hell...
272 if (addr
>= (addr_t
) &((struct user
*) NULL
)->regs
.acrs
&&
273 addr
< (addr_t
) &((struct user
*) NULL
)->regs
.orig_gpr2
)
275 if ((addr
& mask
) || addr
> sizeof(struct user
) - __ADDR_MASK
)
278 tmp
= __peek_user(child
, addr
);
279 return put_user(tmp
, (addr_t __user
*) data
);
282 static inline void __poke_user_per(struct task_struct
*child
,
283 addr_t addr
, addr_t data
)
285 struct per_struct_kernel
*dummy
= NULL
;
288 * There are only three fields in the per_info struct that the
289 * debugger user can write to.
290 * 1) cr9: the debugger wants to set a new PER event mask
291 * 2) starting_addr: the debugger wants to set a new starting
292 * address to use with the PER event mask.
293 * 3) ending_addr: the debugger wants to set a new ending
294 * address to use with the PER event mask.
295 * The user specified PER event mask and the start and end
296 * addresses are used only if single stepping is not in effect.
297 * Writes to any other field in per_info are ignored.
299 if (addr
== (addr_t
) &dummy
->cr9
)
300 /* PER event mask of the user specified per set. */
301 child
->thread
.per_user
.control
=
302 data
& (PER_EVENT_MASK
| PER_CONTROL_MASK
);
303 else if (addr
== (addr_t
) &dummy
->starting_addr
)
304 /* Starting address of the user specified per set. */
305 child
->thread
.per_user
.start
= data
;
306 else if (addr
== (addr_t
) &dummy
->ending_addr
)
307 /* Ending address of the user specified per set. */
308 child
->thread
.per_user
.end
= data
;
312 * Write a word to the user area of a process at location addr. This
313 * operation does have an additional problem compared to peek_user.
314 * Stores to the program status word and on the floating point
315 * control register needs to get checked for validity.
317 static int __poke_user(struct task_struct
*child
, addr_t addr
, addr_t data
)
319 struct user
*dummy
= NULL
;
322 if (addr
< (addr_t
) &dummy
->regs
.acrs
) {
324 * psw and gprs are stored on the stack
326 if (addr
== (addr_t
) &dummy
->regs
.psw
.mask
) {
327 unsigned long mask
= PSW_MASK_USER
;
329 mask
|= is_ri_task(child
) ? PSW_MASK_RI
: 0;
330 if ((data
^ PSW_USER_BITS
) & ~mask
)
331 /* Invalid psw mask. */
333 if ((data
& PSW_MASK_ASC
) == PSW_ASC_HOME
)
334 /* Invalid address-space-control bits */
336 if ((data
& PSW_MASK_EA
) && !(data
& PSW_MASK_BA
))
337 /* Invalid addressing mode bits */
340 *(addr_t
*)((addr_t
) &task_pt_regs(child
)->psw
+ addr
) = data
;
342 } else if (addr
< (addr_t
) (&dummy
->regs
.orig_gpr2
)) {
344 * access registers are stored in the thread structure
346 offset
= addr
- (addr_t
) &dummy
->regs
.acrs
;
348 * Very special case: old & broken 64 bit gdb writing
349 * to acrs[15] with a 64 bit value. Ignore the lower
350 * half of the value and write the upper 32 bit to
353 if (addr
== (addr_t
) &dummy
->regs
.acrs
[15])
354 child
->thread
.acrs
[15] = (unsigned int) (data
>> 32);
356 *(addr_t
*)((addr_t
) &child
->thread
.acrs
+ offset
) = data
;
358 } else if (addr
== (addr_t
) &dummy
->regs
.orig_gpr2
) {
360 * orig_gpr2 is stored on the kernel stack
362 task_pt_regs(child
)->orig_gpr2
= data
;
364 } else if (addr
< (addr_t
) &dummy
->regs
.fp_regs
) {
366 * prevent writes of padding hole between
367 * orig_gpr2 and fp_regs on s390.
371 } else if (addr
== (addr_t
) &dummy
->regs
.fp_regs
.fpc
) {
373 * floating point control reg. is in the thread structure
375 if ((unsigned int) data
!= 0 ||
376 test_fp_ctl(data
>> (BITS_PER_LONG
- 32)))
378 child
->thread
.fpu
.fpc
= data
>> (BITS_PER_LONG
- 32);
380 } else if (addr
< (addr_t
) (&dummy
->regs
.fp_regs
+ 1)) {
382 * floating point regs. are either in child->thread.fpu
383 * or the child->thread.fpu.vxrs array
385 offset
= addr
- (addr_t
) &dummy
->regs
.fp_regs
.fprs
;
386 if (is_vx_task(child
))
388 child
->thread
.fpu
.vxrs
+ 2*offset
) = data
;
391 &child
->thread
.fpu
.fprs
+ offset
) = data
;
393 } else if (addr
< (addr_t
) (&dummy
->regs
.per_info
+ 1)) {
395 * Handle access to the per_info structure.
397 addr
-= (addr_t
) &dummy
->regs
.per_info
;
398 __poke_user_per(child
, addr
, data
);
405 static int poke_user(struct task_struct
*child
, addr_t addr
, addr_t data
)
410 * Stupid gdb peeks/pokes the access registers in 64 bit with
411 * an alignment of 4. Programmers from hell indeed...
414 if (addr
>= (addr_t
) &((struct user
*) NULL
)->regs
.acrs
&&
415 addr
< (addr_t
) &((struct user
*) NULL
)->regs
.orig_gpr2
)
417 if ((addr
& mask
) || addr
> sizeof(struct user
) - __ADDR_MASK
)
420 return __poke_user(child
, addr
, data
);
423 long arch_ptrace(struct task_struct
*child
, long request
,
424 unsigned long addr
, unsigned long data
)
431 /* read the word at location addr in the USER area. */
432 return peek_user(child
, addr
, data
);
435 /* write the word at location addr in the USER area */
436 return poke_user(child
, addr
, data
);
438 case PTRACE_PEEKUSR_AREA
:
439 case PTRACE_POKEUSR_AREA
:
440 if (copy_from_user(&parea
, (void __force __user
*) addr
,
443 addr
= parea
.kernel_addr
;
444 data
= parea
.process_addr
;
446 while (copied
< parea
.len
) {
447 if (request
== PTRACE_PEEKUSR_AREA
)
448 ret
= peek_user(child
, addr
, data
);
452 (addr_t __force __user
*) data
))
454 ret
= poke_user(child
, addr
, utmp
);
458 addr
+= sizeof(unsigned long);
459 data
+= sizeof(unsigned long);
460 copied
+= sizeof(unsigned long);
463 case PTRACE_GET_LAST_BREAK
:
464 put_user(task_thread_info(child
)->last_break
,
465 (unsigned long __user
*) data
);
467 case PTRACE_ENABLE_TE
:
470 child
->thread
.per_flags
&= ~PER_FLAG_NO_TE
;
472 case PTRACE_DISABLE_TE
:
475 child
->thread
.per_flags
|= PER_FLAG_NO_TE
;
476 child
->thread
.per_flags
&= ~PER_FLAG_TE_ABORT_RAND
;
478 case PTRACE_TE_ABORT_RAND
:
479 if (!MACHINE_HAS_TE
|| (child
->thread
.per_flags
& PER_FLAG_NO_TE
))
483 child
->thread
.per_flags
&= ~PER_FLAG_TE_ABORT_RAND
;
486 child
->thread
.per_flags
|= PER_FLAG_TE_ABORT_RAND
;
487 child
->thread
.per_flags
|= PER_FLAG_TE_ABORT_RAND_TEND
;
490 child
->thread
.per_flags
|= PER_FLAG_TE_ABORT_RAND
;
491 child
->thread
.per_flags
&= ~PER_FLAG_TE_ABORT_RAND_TEND
;
498 /* Removing high order bit from addr (only for 31 bit). */
499 addr
&= PSW_ADDR_INSN
;
500 return ptrace_request(child
, request
, addr
, data
);
506 * Now the fun part starts... a 31 bit program running in the
507 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
508 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
509 * to handle, the difference to the 64 bit versions of the requests
510 * is that the access is done in multiples of 4 byte instead of
511 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
512 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
513 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
514 * is a 31 bit program too, the content of struct user can be
515 * emulated. A 31 bit program peeking into the struct user of
516 * a 64 bit program is a no-no.
520 * Same as peek_user_per but for a 31 bit program.
522 static inline __u32
__peek_user_per_compat(struct task_struct
*child
,
525 struct compat_per_struct_kernel
*dummy32
= NULL
;
527 if (addr
== (addr_t
) &dummy32
->cr9
)
528 /* Control bits of the active per set. */
529 return (__u32
) test_thread_flag(TIF_SINGLE_STEP
) ?
530 PER_EVENT_IFETCH
: child
->thread
.per_user
.control
;
531 else if (addr
== (addr_t
) &dummy32
->cr10
)
532 /* Start address of the active per set. */
533 return (__u32
) test_thread_flag(TIF_SINGLE_STEP
) ?
534 0 : child
->thread
.per_user
.start
;
535 else if (addr
== (addr_t
) &dummy32
->cr11
)
536 /* End address of the active per set. */
537 return test_thread_flag(TIF_SINGLE_STEP
) ?
538 PSW32_ADDR_INSN
: child
->thread
.per_user
.end
;
539 else if (addr
== (addr_t
) &dummy32
->bits
)
540 /* Single-step bit. */
541 return (__u32
) test_thread_flag(TIF_SINGLE_STEP
) ?
543 else if (addr
== (addr_t
) &dummy32
->starting_addr
)
544 /* Start address of the user specified per set. */
545 return (__u32
) child
->thread
.per_user
.start
;
546 else if (addr
== (addr_t
) &dummy32
->ending_addr
)
547 /* End address of the user specified per set. */
548 return (__u32
) child
->thread
.per_user
.end
;
549 else if (addr
== (addr_t
) &dummy32
->perc_atmid
)
550 /* PER code, ATMID and AI of the last PER trap */
551 return (__u32
) child
->thread
.per_event
.cause
<< 16;
552 else if (addr
== (addr_t
) &dummy32
->address
)
553 /* Address of the last PER trap */
554 return (__u32
) child
->thread
.per_event
.address
;
555 else if (addr
== (addr_t
) &dummy32
->access_id
)
556 /* Access id of the last PER trap */
557 return (__u32
) child
->thread
.per_event
.paid
<< 24;
562 * Same as peek_user but for a 31 bit program.
564 static u32
__peek_user_compat(struct task_struct
*child
, addr_t addr
)
566 struct compat_user
*dummy32
= NULL
;
570 if (addr
< (addr_t
) &dummy32
->regs
.acrs
) {
571 struct pt_regs
*regs
= task_pt_regs(child
);
573 * psw and gprs are stored on the stack
575 if (addr
== (addr_t
) &dummy32
->regs
.psw
.mask
) {
576 /* Fake a 31 bit psw mask. */
577 tmp
= (__u32
)(regs
->psw
.mask
>> 32);
578 tmp
&= PSW32_MASK_USER
| PSW32_MASK_RI
;
579 tmp
|= PSW32_USER_BITS
;
580 } else if (addr
== (addr_t
) &dummy32
->regs
.psw
.addr
) {
581 /* Fake a 31 bit psw address. */
582 tmp
= (__u32
) regs
->psw
.addr
|
583 (__u32
)(regs
->psw
.mask
& PSW_MASK_BA
);
586 tmp
= *(__u32
*)((addr_t
) ®s
->psw
+ addr
*2 + 4);
588 } else if (addr
< (addr_t
) (&dummy32
->regs
.orig_gpr2
)) {
590 * access registers are stored in the thread structure
592 offset
= addr
- (addr_t
) &dummy32
->regs
.acrs
;
593 tmp
= *(__u32
*)((addr_t
) &child
->thread
.acrs
+ offset
);
595 } else if (addr
== (addr_t
) (&dummy32
->regs
.orig_gpr2
)) {
597 * orig_gpr2 is stored on the kernel stack
599 tmp
= *(__u32
*)((addr_t
) &task_pt_regs(child
)->orig_gpr2
+ 4);
601 } else if (addr
< (addr_t
) &dummy32
->regs
.fp_regs
) {
603 * prevent reads of padding hole between
604 * orig_gpr2 and fp_regs on s390.
608 } else if (addr
== (addr_t
) &dummy32
->regs
.fp_regs
.fpc
) {
610 * floating point control reg. is in the thread structure
612 tmp
= child
->thread
.fpu
.fpc
;
614 } else if (addr
< (addr_t
) (&dummy32
->regs
.fp_regs
+ 1)) {
616 * floating point regs. are either in child->thread.fpu
617 * or the child->thread.fpu.vxrs array
619 offset
= addr
- (addr_t
) &dummy32
->regs
.fp_regs
.fprs
;
620 if (is_vx_task(child
))
622 ((addr_t
) child
->thread
.fpu
.vxrs
+ 2*offset
);
625 ((addr_t
) &child
->thread
.fpu
.fprs
+ offset
);
627 } else if (addr
< (addr_t
) (&dummy32
->regs
.per_info
+ 1)) {
629 * Handle access to the per_info structure.
631 addr
-= (addr_t
) &dummy32
->regs
.per_info
;
632 tmp
= __peek_user_per_compat(child
, addr
);
640 static int peek_user_compat(struct task_struct
*child
,
641 addr_t addr
, addr_t data
)
645 if (!is_compat_task() || (addr
& 3) || addr
> sizeof(struct user
) - 3)
648 tmp
= __peek_user_compat(child
, addr
);
649 return put_user(tmp
, (__u32 __user
*) data
);
653 * Same as poke_user_per but for a 31 bit program.
655 static inline void __poke_user_per_compat(struct task_struct
*child
,
656 addr_t addr
, __u32 data
)
658 struct compat_per_struct_kernel
*dummy32
= NULL
;
660 if (addr
== (addr_t
) &dummy32
->cr9
)
661 /* PER event mask of the user specified per set. */
662 child
->thread
.per_user
.control
=
663 data
& (PER_EVENT_MASK
| PER_CONTROL_MASK
);
664 else if (addr
== (addr_t
) &dummy32
->starting_addr
)
665 /* Starting address of the user specified per set. */
666 child
->thread
.per_user
.start
= data
;
667 else if (addr
== (addr_t
) &dummy32
->ending_addr
)
668 /* Ending address of the user specified per set. */
669 child
->thread
.per_user
.end
= data
;
673 * Same as poke_user but for a 31 bit program.
675 static int __poke_user_compat(struct task_struct
*child
,
676 addr_t addr
, addr_t data
)
678 struct compat_user
*dummy32
= NULL
;
679 __u32 tmp
= (__u32
) data
;
682 if (addr
< (addr_t
) &dummy32
->regs
.acrs
) {
683 struct pt_regs
*regs
= task_pt_regs(child
);
685 * psw, gprs, acrs and orig_gpr2 are stored on the stack
687 if (addr
== (addr_t
) &dummy32
->regs
.psw
.mask
) {
688 __u32 mask
= PSW32_MASK_USER
;
690 mask
|= is_ri_task(child
) ? PSW32_MASK_RI
: 0;
691 /* Build a 64 bit psw mask from 31 bit mask. */
692 if ((tmp
^ PSW32_USER_BITS
) & ~mask
)
693 /* Invalid psw mask. */
695 if ((data
& PSW32_MASK_ASC
) == PSW32_ASC_HOME
)
696 /* Invalid address-space-control bits */
698 regs
->psw
.mask
= (regs
->psw
.mask
& ~PSW_MASK_USER
) |
699 (regs
->psw
.mask
& PSW_MASK_BA
) |
700 (__u64
)(tmp
& mask
) << 32;
701 } else if (addr
== (addr_t
) &dummy32
->regs
.psw
.addr
) {
702 /* Build a 64 bit psw address from 31 bit address. */
703 regs
->psw
.addr
= (__u64
) tmp
& PSW32_ADDR_INSN
;
704 /* Transfer 31 bit amode bit to psw mask. */
705 regs
->psw
.mask
= (regs
->psw
.mask
& ~PSW_MASK_BA
) |
706 (__u64
)(tmp
& PSW32_ADDR_AMODE
);
709 *(__u32
*)((addr_t
) ®s
->psw
+ addr
*2 + 4) = tmp
;
711 } else if (addr
< (addr_t
) (&dummy32
->regs
.orig_gpr2
)) {
713 * access registers are stored in the thread structure
715 offset
= addr
- (addr_t
) &dummy32
->regs
.acrs
;
716 *(__u32
*)((addr_t
) &child
->thread
.acrs
+ offset
) = tmp
;
718 } else if (addr
== (addr_t
) (&dummy32
->regs
.orig_gpr2
)) {
720 * orig_gpr2 is stored on the kernel stack
722 *(__u32
*)((addr_t
) &task_pt_regs(child
)->orig_gpr2
+ 4) = tmp
;
724 } else if (addr
< (addr_t
) &dummy32
->regs
.fp_regs
) {
726 * prevent writess of padding hole between
727 * orig_gpr2 and fp_regs on s390.
731 } else if (addr
== (addr_t
) &dummy32
->regs
.fp_regs
.fpc
) {
733 * floating point control reg. is in the thread structure
735 if (test_fp_ctl(tmp
))
737 child
->thread
.fpu
.fpc
= data
;
739 } else if (addr
< (addr_t
) (&dummy32
->regs
.fp_regs
+ 1)) {
741 * floating point regs. are either in child->thread.fpu
742 * or the child->thread.fpu.vxrs array
744 offset
= addr
- (addr_t
) &dummy32
->regs
.fp_regs
.fprs
;
745 if (is_vx_task(child
))
747 child
->thread
.fpu
.vxrs
+ 2*offset
) = tmp
;
750 &child
->thread
.fpu
.fprs
+ offset
) = tmp
;
752 } else if (addr
< (addr_t
) (&dummy32
->regs
.per_info
+ 1)) {
754 * Handle access to the per_info structure.
756 addr
-= (addr_t
) &dummy32
->regs
.per_info
;
757 __poke_user_per_compat(child
, addr
, data
);
763 static int poke_user_compat(struct task_struct
*child
,
764 addr_t addr
, addr_t data
)
766 if (!is_compat_task() || (addr
& 3) ||
767 addr
> sizeof(struct compat_user
) - 3)
770 return __poke_user_compat(child
, addr
, data
);
773 long compat_arch_ptrace(struct task_struct
*child
, compat_long_t request
,
774 compat_ulong_t caddr
, compat_ulong_t cdata
)
776 unsigned long addr
= caddr
;
777 unsigned long data
= cdata
;
778 compat_ptrace_area parea
;
783 /* read the word at location addr in the USER area. */
784 return peek_user_compat(child
, addr
, data
);
787 /* write the word at location addr in the USER area */
788 return poke_user_compat(child
, addr
, data
);
790 case PTRACE_PEEKUSR_AREA
:
791 case PTRACE_POKEUSR_AREA
:
792 if (copy_from_user(&parea
, (void __force __user
*) addr
,
795 addr
= parea
.kernel_addr
;
796 data
= parea
.process_addr
;
798 while (copied
< parea
.len
) {
799 if (request
== PTRACE_PEEKUSR_AREA
)
800 ret
= peek_user_compat(child
, addr
, data
);
804 (__u32 __force __user
*) data
))
806 ret
= poke_user_compat(child
, addr
, utmp
);
810 addr
+= sizeof(unsigned int);
811 data
+= sizeof(unsigned int);
812 copied
+= sizeof(unsigned int);
815 case PTRACE_GET_LAST_BREAK
:
816 put_user(task_thread_info(child
)->last_break
,
817 (unsigned int __user
*) data
);
820 return compat_ptrace_request(child
, request
, addr
, data
);
824 asmlinkage
long do_syscall_trace_enter(struct pt_regs
*regs
)
828 /* Do the secure computing check first. */
829 if (secure_computing()) {
830 /* seccomp failures shouldn't expose any additional code. */
836 * The sysc_tracesys code in entry.S stored the system
837 * call number to gprs[2].
839 if (test_thread_flag(TIF_SYSCALL_TRACE
) &&
840 (tracehook_report_syscall_entry(regs
) ||
841 regs
->gprs
[2] >= NR_syscalls
)) {
843 * Tracing decided this syscall should not happen or the
844 * debugger stored an invalid system call number. Skip
845 * the system call and the system call restart handling.
847 clear_pt_regs_flag(regs
, PIF_SYSCALL
);
851 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT
)))
852 trace_sys_enter(regs
, regs
->gprs
[2]);
854 audit_syscall_entry(regs
->gprs
[2], regs
->orig_gpr2
,
855 regs
->gprs
[3], regs
->gprs
[4],
858 return ret
?: regs
->gprs
[2];
861 asmlinkage
void do_syscall_trace_exit(struct pt_regs
*regs
)
863 audit_syscall_exit(regs
);
865 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT
)))
866 trace_sys_exit(regs
, regs
->gprs
[2]);
868 if (test_thread_flag(TIF_SYSCALL_TRACE
))
869 tracehook_report_syscall_exit(regs
, 0);
873 * user_regset definitions.
876 static int s390_regs_get(struct task_struct
*target
,
877 const struct user_regset
*regset
,
878 unsigned int pos
, unsigned int count
,
879 void *kbuf
, void __user
*ubuf
)
881 if (target
== current
)
882 save_access_regs(target
->thread
.acrs
);
885 unsigned long *k
= kbuf
;
887 *k
++ = __peek_user(target
, pos
);
892 unsigned long __user
*u
= ubuf
;
894 if (__put_user(__peek_user(target
, pos
), u
++))
903 static int s390_regs_set(struct task_struct
*target
,
904 const struct user_regset
*regset
,
905 unsigned int pos
, unsigned int count
,
906 const void *kbuf
, const void __user
*ubuf
)
910 if (target
== current
)
911 save_access_regs(target
->thread
.acrs
);
914 const unsigned long *k
= kbuf
;
915 while (count
> 0 && !rc
) {
916 rc
= __poke_user(target
, pos
, *k
++);
921 const unsigned long __user
*u
= ubuf
;
922 while (count
> 0 && !rc
) {
924 rc
= __get_user(word
, u
++);
927 rc
= __poke_user(target
, pos
, word
);
933 if (rc
== 0 && target
== current
)
934 restore_access_regs(target
->thread
.acrs
);
939 static int s390_fpregs_get(struct task_struct
*target
,
940 const struct user_regset
*regset
, unsigned int pos
,
941 unsigned int count
, void *kbuf
, void __user
*ubuf
)
943 _s390_fp_regs fp_regs
;
945 if (target
== current
)
948 fp_regs
.fpc
= target
->thread
.fpu
.fpc
;
949 fpregs_store(&fp_regs
, &target
->thread
.fpu
);
951 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
955 static int s390_fpregs_set(struct task_struct
*target
,
956 const struct user_regset
*regset
, unsigned int pos
,
957 unsigned int count
, const void *kbuf
,
958 const void __user
*ubuf
)
961 freg_t fprs
[__NUM_FPRS
];
963 if (target
== current
)
966 /* If setting FPC, must validate it first. */
967 if (count
> 0 && pos
< offsetof(s390_fp_regs
, fprs
)) {
968 u32 ufpc
[2] = { target
->thread
.fpu
.fpc
, 0 };
969 rc
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, &ufpc
,
970 0, offsetof(s390_fp_regs
, fprs
));
973 if (ufpc
[1] != 0 || test_fp_ctl(ufpc
[0]))
975 target
->thread
.fpu
.fpc
= ufpc
[0];
978 if (rc
== 0 && count
> 0)
979 rc
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
980 fprs
, offsetof(s390_fp_regs
, fprs
), -1);
984 if (is_vx_task(target
))
985 convert_fp_to_vx(target
->thread
.fpu
.vxrs
, fprs
);
987 memcpy(target
->thread
.fpu
.fprs
, &fprs
, sizeof(fprs
));
992 static int s390_last_break_get(struct task_struct
*target
,
993 const struct user_regset
*regset
,
994 unsigned int pos
, unsigned int count
,
995 void *kbuf
, void __user
*ubuf
)
999 unsigned long *k
= kbuf
;
1000 *k
= task_thread_info(target
)->last_break
;
1002 unsigned long __user
*u
= ubuf
;
1003 if (__put_user(task_thread_info(target
)->last_break
, u
))
1010 static int s390_last_break_set(struct task_struct
*target
,
1011 const struct user_regset
*regset
,
1012 unsigned int pos
, unsigned int count
,
1013 const void *kbuf
, const void __user
*ubuf
)
1018 static int s390_tdb_get(struct task_struct
*target
,
1019 const struct user_regset
*regset
,
1020 unsigned int pos
, unsigned int count
,
1021 void *kbuf
, void __user
*ubuf
)
1023 struct pt_regs
*regs
= task_pt_regs(target
);
1024 unsigned char *data
;
1026 if (!(regs
->int_code
& 0x200))
1028 data
= target
->thread
.trap_tdb
;
1029 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, data
, 0, 256);
1032 static int s390_tdb_set(struct task_struct
*target
,
1033 const struct user_regset
*regset
,
1034 unsigned int pos
, unsigned int count
,
1035 const void *kbuf
, const void __user
*ubuf
)
1040 static int s390_vxrs_low_get(struct task_struct
*target
,
1041 const struct user_regset
*regset
,
1042 unsigned int pos
, unsigned int count
,
1043 void *kbuf
, void __user
*ubuf
)
1045 __u64 vxrs
[__NUM_VXRS_LOW
];
1048 if (!MACHINE_HAS_VX
)
1050 if (is_vx_task(target
)) {
1051 if (target
== current
)
1053 for (i
= 0; i
< __NUM_VXRS_LOW
; i
++)
1054 vxrs
[i
] = *((__u64
*)(target
->thread
.fpu
.vxrs
+ i
) + 1);
1056 memset(vxrs
, 0, sizeof(vxrs
));
1057 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, vxrs
, 0, -1);
1060 static int s390_vxrs_low_set(struct task_struct
*target
,
1061 const struct user_regset
*regset
,
1062 unsigned int pos
, unsigned int count
,
1063 const void *kbuf
, const void __user
*ubuf
)
1065 __u64 vxrs
[__NUM_VXRS_LOW
];
1068 if (!MACHINE_HAS_VX
)
1070 if (!is_vx_task(target
)) {
1071 rc
= alloc_vector_registers(target
);
1074 } else if (target
== current
)
1077 rc
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
, vxrs
, 0, -1);
1079 for (i
= 0; i
< __NUM_VXRS_LOW
; i
++)
1080 *((__u64
*)(target
->thread
.fpu
.vxrs
+ i
) + 1) = vxrs
[i
];
1085 static int s390_vxrs_high_get(struct task_struct
*target
,
1086 const struct user_regset
*regset
,
1087 unsigned int pos
, unsigned int count
,
1088 void *kbuf
, void __user
*ubuf
)
1090 __vector128 vxrs
[__NUM_VXRS_HIGH
];
1092 if (!MACHINE_HAS_VX
)
1094 if (is_vx_task(target
)) {
1095 if (target
== current
)
1097 memcpy(vxrs
, target
->thread
.fpu
.vxrs
+ __NUM_VXRS_LOW
,
1100 memset(vxrs
, 0, sizeof(vxrs
));
1101 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
, vxrs
, 0, -1);
1104 static int s390_vxrs_high_set(struct task_struct
*target
,
1105 const struct user_regset
*regset
,
1106 unsigned int pos
, unsigned int count
,
1107 const void *kbuf
, const void __user
*ubuf
)
1111 if (!MACHINE_HAS_VX
)
1113 if (!is_vx_task(target
)) {
1114 rc
= alloc_vector_registers(target
);
1117 } else if (target
== current
)
1120 rc
= user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1121 target
->thread
.fpu
.vxrs
+ __NUM_VXRS_LOW
, 0, -1);
1125 static int s390_system_call_get(struct task_struct
*target
,
1126 const struct user_regset
*regset
,
1127 unsigned int pos
, unsigned int count
,
1128 void *kbuf
, void __user
*ubuf
)
1130 unsigned int *data
= &task_thread_info(target
)->system_call
;
1131 return user_regset_copyout(&pos
, &count
, &kbuf
, &ubuf
,
1132 data
, 0, sizeof(unsigned int));
1135 static int s390_system_call_set(struct task_struct
*target
,
1136 const struct user_regset
*regset
,
1137 unsigned int pos
, unsigned int count
,
1138 const void *kbuf
, const void __user
*ubuf
)
1140 unsigned int *data
= &task_thread_info(target
)->system_call
;
1141 return user_regset_copyin(&pos
, &count
, &kbuf
, &ubuf
,
1142 data
, 0, sizeof(unsigned int));
1145 static const struct user_regset s390_regsets
[] = {
1147 .core_note_type
= NT_PRSTATUS
,
1148 .n
= sizeof(s390_regs
) / sizeof(long),
1149 .size
= sizeof(long),
1150 .align
= sizeof(long),
1151 .get
= s390_regs_get
,
1152 .set
= s390_regs_set
,
1155 .core_note_type
= NT_PRFPREG
,
1156 .n
= sizeof(s390_fp_regs
) / sizeof(long),
1157 .size
= sizeof(long),
1158 .align
= sizeof(long),
1159 .get
= s390_fpregs_get
,
1160 .set
= s390_fpregs_set
,
1163 .core_note_type
= NT_S390_SYSTEM_CALL
,
1165 .size
= sizeof(unsigned int),
1166 .align
= sizeof(unsigned int),
1167 .get
= s390_system_call_get
,
1168 .set
= s390_system_call_set
,
1171 .core_note_type
= NT_S390_LAST_BREAK
,
1173 .size
= sizeof(long),
1174 .align
= sizeof(long),
1175 .get
= s390_last_break_get
,
1176 .set
= s390_last_break_set
,
1179 .core_note_type
= NT_S390_TDB
,
1183 .get
= s390_tdb_get
,
1184 .set
= s390_tdb_set
,
1187 .core_note_type
= NT_S390_VXRS_LOW
,
1188 .n
= __NUM_VXRS_LOW
,
1189 .size
= sizeof(__u64
),
1190 .align
= sizeof(__u64
),
1191 .get
= s390_vxrs_low_get
,
1192 .set
= s390_vxrs_low_set
,
1195 .core_note_type
= NT_S390_VXRS_HIGH
,
1196 .n
= __NUM_VXRS_HIGH
,
1197 .size
= sizeof(__vector128
),
1198 .align
= sizeof(__vector128
),
1199 .get
= s390_vxrs_high_get
,
1200 .set
= s390_vxrs_high_set
,
1204 static const struct user_regset_view user_s390_view
= {
1205 .name
= UTS_MACHINE
,
1206 .e_machine
= EM_S390
,
1207 .regsets
= s390_regsets
,
1208 .n
= ARRAY_SIZE(s390_regsets
)
1211 #ifdef CONFIG_COMPAT
1212 static int s390_compat_regs_get(struct task_struct
*target
,
1213 const struct user_regset
*regset
,
1214 unsigned int pos
, unsigned int count
,
1215 void *kbuf
, void __user
*ubuf
)
1217 if (target
== current
)
1218 save_access_regs(target
->thread
.acrs
);
1221 compat_ulong_t
*k
= kbuf
;
1223 *k
++ = __peek_user_compat(target
, pos
);
1224 count
-= sizeof(*k
);
1228 compat_ulong_t __user
*u
= ubuf
;
1230 if (__put_user(__peek_user_compat(target
, pos
), u
++))
1232 count
-= sizeof(*u
);
1239 static int s390_compat_regs_set(struct task_struct
*target
,
1240 const struct user_regset
*regset
,
1241 unsigned int pos
, unsigned int count
,
1242 const void *kbuf
, const void __user
*ubuf
)
1246 if (target
== current
)
1247 save_access_regs(target
->thread
.acrs
);
1250 const compat_ulong_t
*k
= kbuf
;
1251 while (count
> 0 && !rc
) {
1252 rc
= __poke_user_compat(target
, pos
, *k
++);
1253 count
-= sizeof(*k
);
1257 const compat_ulong_t __user
*u
= ubuf
;
1258 while (count
> 0 && !rc
) {
1259 compat_ulong_t word
;
1260 rc
= __get_user(word
, u
++);
1263 rc
= __poke_user_compat(target
, pos
, word
);
1264 count
-= sizeof(*u
);
1269 if (rc
== 0 && target
== current
)
1270 restore_access_regs(target
->thread
.acrs
);
1275 static int s390_compat_regs_high_get(struct task_struct
*target
,
1276 const struct user_regset
*regset
,
1277 unsigned int pos
, unsigned int count
,
1278 void *kbuf
, void __user
*ubuf
)
1280 compat_ulong_t
*gprs_high
;
1282 gprs_high
= (compat_ulong_t
*)
1283 &task_pt_regs(target
)->gprs
[pos
/ sizeof(compat_ulong_t
)];
1285 compat_ulong_t
*k
= kbuf
;
1289 count
-= sizeof(*k
);
1292 compat_ulong_t __user
*u
= ubuf
;
1294 if (__put_user(*gprs_high
, u
++))
1297 count
-= sizeof(*u
);
1303 static int s390_compat_regs_high_set(struct task_struct
*target
,
1304 const struct user_regset
*regset
,
1305 unsigned int pos
, unsigned int count
,
1306 const void *kbuf
, const void __user
*ubuf
)
1308 compat_ulong_t
*gprs_high
;
1311 gprs_high
= (compat_ulong_t
*)
1312 &task_pt_regs(target
)->gprs
[pos
/ sizeof(compat_ulong_t
)];
1314 const compat_ulong_t
*k
= kbuf
;
1318 count
-= sizeof(*k
);
1321 const compat_ulong_t __user
*u
= ubuf
;
1322 while (count
> 0 && !rc
) {
1324 rc
= __get_user(word
, u
++);
1329 count
-= sizeof(*u
);
1336 static int s390_compat_last_break_get(struct task_struct
*target
,
1337 const struct user_regset
*regset
,
1338 unsigned int pos
, unsigned int count
,
1339 void *kbuf
, void __user
*ubuf
)
1341 compat_ulong_t last_break
;
1344 last_break
= task_thread_info(target
)->last_break
;
1346 unsigned long *k
= kbuf
;
1349 unsigned long __user
*u
= ubuf
;
1350 if (__put_user(last_break
, u
))
1357 static int s390_compat_last_break_set(struct task_struct
*target
,
1358 const struct user_regset
*regset
,
1359 unsigned int pos
, unsigned int count
,
1360 const void *kbuf
, const void __user
*ubuf
)
1365 static const struct user_regset s390_compat_regsets
[] = {
1367 .core_note_type
= NT_PRSTATUS
,
1368 .n
= sizeof(s390_compat_regs
) / sizeof(compat_long_t
),
1369 .size
= sizeof(compat_long_t
),
1370 .align
= sizeof(compat_long_t
),
1371 .get
= s390_compat_regs_get
,
1372 .set
= s390_compat_regs_set
,
1375 .core_note_type
= NT_PRFPREG
,
1376 .n
= sizeof(s390_fp_regs
) / sizeof(compat_long_t
),
1377 .size
= sizeof(compat_long_t
),
1378 .align
= sizeof(compat_long_t
),
1379 .get
= s390_fpregs_get
,
1380 .set
= s390_fpregs_set
,
1383 .core_note_type
= NT_S390_SYSTEM_CALL
,
1385 .size
= sizeof(compat_uint_t
),
1386 .align
= sizeof(compat_uint_t
),
1387 .get
= s390_system_call_get
,
1388 .set
= s390_system_call_set
,
1391 .core_note_type
= NT_S390_LAST_BREAK
,
1393 .size
= sizeof(long),
1394 .align
= sizeof(long),
1395 .get
= s390_compat_last_break_get
,
1396 .set
= s390_compat_last_break_set
,
1399 .core_note_type
= NT_S390_TDB
,
1403 .get
= s390_tdb_get
,
1404 .set
= s390_tdb_set
,
1407 .core_note_type
= NT_S390_VXRS_LOW
,
1408 .n
= __NUM_VXRS_LOW
,
1409 .size
= sizeof(__u64
),
1410 .align
= sizeof(__u64
),
1411 .get
= s390_vxrs_low_get
,
1412 .set
= s390_vxrs_low_set
,
1415 .core_note_type
= NT_S390_VXRS_HIGH
,
1416 .n
= __NUM_VXRS_HIGH
,
1417 .size
= sizeof(__vector128
),
1418 .align
= sizeof(__vector128
),
1419 .get
= s390_vxrs_high_get
,
1420 .set
= s390_vxrs_high_set
,
1423 .core_note_type
= NT_S390_HIGH_GPRS
,
1424 .n
= sizeof(s390_compat_regs_high
) / sizeof(compat_long_t
),
1425 .size
= sizeof(compat_long_t
),
1426 .align
= sizeof(compat_long_t
),
1427 .get
= s390_compat_regs_high_get
,
1428 .set
= s390_compat_regs_high_set
,
1432 static const struct user_regset_view user_s390_compat_view
= {
1434 .e_machine
= EM_S390
,
1435 .regsets
= s390_compat_regsets
,
1436 .n
= ARRAY_SIZE(s390_compat_regsets
)
1440 const struct user_regset_view
*task_user_regset_view(struct task_struct
*task
)
1442 #ifdef CONFIG_COMPAT
1443 if (test_tsk_thread_flag(task
, TIF_31BIT
))
1444 return &user_s390_compat_view
;
1446 return &user_s390_view
;
1449 static const char *gpr_names
[NUM_GPRS
] = {
1450 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1451 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1454 unsigned long regs_get_register(struct pt_regs
*regs
, unsigned int offset
)
1456 if (offset
>= NUM_GPRS
)
1458 return regs
->gprs
[offset
];
1461 int regs_query_register_offset(const char *name
)
1463 unsigned long offset
;
1465 if (!name
|| *name
!= 'r')
1467 if (kstrtoul(name
+ 1, 10, &offset
))
1469 if (offset
>= NUM_GPRS
)
1474 const char *regs_query_register_name(unsigned int offset
)
1476 if (offset
>= NUM_GPRS
)
1478 return gpr_names
[offset
];
1481 static int regs_within_kernel_stack(struct pt_regs
*regs
, unsigned long addr
)
1483 unsigned long ksp
= kernel_stack_pointer(regs
);
1485 return (addr
& ~(THREAD_SIZE
- 1)) == (ksp
& ~(THREAD_SIZE
- 1));
1489 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1490 * @regs:pt_regs which contains kernel stack pointer.
1491 * @n:stack entry number.
1493 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1494 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1497 unsigned long regs_get_kernel_stack_nth(struct pt_regs
*regs
, unsigned int n
)
1501 addr
= kernel_stack_pointer(regs
) + n
* sizeof(long);
1502 if (!regs_within_kernel_stack(regs
, addr
))
1504 return *(unsigned long *)addr
;