blk: rq_data_dir() should not return a boolean
[cris-mirror.git] / arch / s390 / kernel / ptrace.c
blob8b1c8e33f184a94f057d35f479145734aafc6ad0
1 /*
2 * Ptrace user space interface.
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
41 void update_cr_regs(struct task_struct *task)
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
47 /* Take care of the enable/disable of transactional execution. */
48 if (MACHINE_HAS_TE) {
49 unsigned long cr, cr_new;
51 __ctl_store(cr, 0, 0);
52 /* Set or clear transaction execution TXC bit 8. */
53 cr_new = cr | (1UL << 55);
54 if (task->thread.per_flags & PER_FLAG_NO_TE)
55 cr_new &= ~(1UL << 55);
56 if (cr_new != cr)
57 __ctl_load(cr_new, 0, 0);
58 /* Set or clear transaction execution TDC bits 62 and 63. */
59 __ctl_store(cr, 2, 2);
60 cr_new = cr & ~3UL;
61 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63 cr_new |= 1UL;
64 else
65 cr_new |= 2UL;
67 if (cr_new != cr)
68 __ctl_load(cr_new, 2, 2);
70 /* Copy user specified PER registers */
71 new.control = thread->per_user.control;
72 new.start = thread->per_user.start;
73 new.end = thread->per_user.end;
75 /* merge TIF_SINGLE_STEP into user specified PER registers. */
76 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
77 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
78 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
79 new.control |= PER_EVENT_BRANCH;
80 else
81 new.control |= PER_EVENT_IFETCH;
82 new.control |= PER_CONTROL_SUSPENSION;
83 new.control |= PER_EVENT_TRANSACTION_END;
84 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
85 new.control |= PER_EVENT_IFETCH;
86 new.start = 0;
87 new.end = PSW_ADDR_INSN;
90 /* Take care of the PER enablement bit in the PSW. */
91 if (!(new.control & PER_EVENT_MASK)) {
92 regs->psw.mask &= ~PSW_MASK_PER;
93 return;
95 regs->psw.mask |= PSW_MASK_PER;
96 __ctl_store(old, 9, 11);
97 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
98 __ctl_load(new, 9, 11);
101 void user_enable_single_step(struct task_struct *task)
103 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
104 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
107 void user_disable_single_step(struct task_struct *task)
109 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
110 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
113 void user_enable_block_step(struct task_struct *task)
115 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 * Called by kernel/ptrace.c when detaching..
122 * Clear all debugging related fields.
124 void ptrace_disable(struct task_struct *task)
126 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
127 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
128 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
129 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
130 task->thread.per_flags = 0;
133 #define __ADDR_MASK 7
135 static inline unsigned long __peek_user_per(struct task_struct *child,
136 addr_t addr)
138 struct per_struct_kernel *dummy = NULL;
140 if (addr == (addr_t) &dummy->cr9)
141 /* Control bits of the active per set. */
142 return test_thread_flag(TIF_SINGLE_STEP) ?
143 PER_EVENT_IFETCH : child->thread.per_user.control;
144 else if (addr == (addr_t) &dummy->cr10)
145 /* Start address of the active per set. */
146 return test_thread_flag(TIF_SINGLE_STEP) ?
147 0 : child->thread.per_user.start;
148 else if (addr == (addr_t) &dummy->cr11)
149 /* End address of the active per set. */
150 return test_thread_flag(TIF_SINGLE_STEP) ?
151 PSW_ADDR_INSN : child->thread.per_user.end;
152 else if (addr == (addr_t) &dummy->bits)
153 /* Single-step bit. */
154 return test_thread_flag(TIF_SINGLE_STEP) ?
155 (1UL << (BITS_PER_LONG - 1)) : 0;
156 else if (addr == (addr_t) &dummy->starting_addr)
157 /* Start address of the user specified per set. */
158 return child->thread.per_user.start;
159 else if (addr == (addr_t) &dummy->ending_addr)
160 /* End address of the user specified per set. */
161 return child->thread.per_user.end;
162 else if (addr == (addr_t) &dummy->perc_atmid)
163 /* PER code, ATMID and AI of the last PER trap */
164 return (unsigned long)
165 child->thread.per_event.cause << (BITS_PER_LONG - 16);
166 else if (addr == (addr_t) &dummy->address)
167 /* Address of the last PER trap */
168 return child->thread.per_event.address;
169 else if (addr == (addr_t) &dummy->access_id)
170 /* Access id of the last PER trap */
171 return (unsigned long)
172 child->thread.per_event.paid << (BITS_PER_LONG - 8);
173 return 0;
177 * Read the word at offset addr from the user area of a process. The
178 * trouble here is that the information is littered over different
179 * locations. The process registers are found on the kernel stack,
180 * the floating point stuff and the trace settings are stored in
181 * the task structure. In addition the different structures in
182 * struct user contain pad bytes that should be read as zeroes.
183 * Lovely...
185 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
187 struct user *dummy = NULL;
188 addr_t offset, tmp;
190 if (addr < (addr_t) &dummy->regs.acrs) {
192 * psw and gprs are stored on the stack
194 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
195 if (addr == (addr_t) &dummy->regs.psw.mask) {
196 /* Return a clean psw mask. */
197 tmp &= PSW_MASK_USER | PSW_MASK_RI;
198 tmp |= PSW_USER_BITS;
201 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
203 * access registers are stored in the thread structure
205 offset = addr - (addr_t) &dummy->regs.acrs;
207 * Very special case: old & broken 64 bit gdb reading
208 * from acrs[15]. Result is a 64 bit value. Read the
209 * 32 bit acrs[15] value and shift it by 32. Sick...
211 if (addr == (addr_t) &dummy->regs.acrs[15])
212 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
213 else
214 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
216 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
218 * orig_gpr2 is stored on the kernel stack
220 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
222 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
224 * prevent reads of padding hole between
225 * orig_gpr2 and fp_regs on s390.
227 tmp = 0;
229 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
231 * floating point control reg. is in the thread structure
233 tmp = child->thread.fpu.fpc;
234 tmp <<= BITS_PER_LONG - 32;
236 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
238 * floating point regs. are either in child->thread.fpu
239 * or the child->thread.fpu.vxrs array
241 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
242 if (is_vx_task(child))
243 tmp = *(addr_t *)
244 ((addr_t) child->thread.fpu.vxrs + 2*offset);
245 else
246 tmp = *(addr_t *)
247 ((addr_t) &child->thread.fpu.fprs + offset);
249 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
251 * Handle access to the per_info structure.
253 addr -= (addr_t) &dummy->regs.per_info;
254 tmp = __peek_user_per(child, addr);
256 } else
257 tmp = 0;
259 return tmp;
262 static int
263 peek_user(struct task_struct *child, addr_t addr, addr_t data)
265 addr_t tmp, mask;
268 * Stupid gdb peeks/pokes the access registers in 64 bit with
269 * an alignment of 4. Programmers from hell...
271 mask = __ADDR_MASK;
272 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
273 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
274 mask = 3;
275 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
276 return -EIO;
278 tmp = __peek_user(child, addr);
279 return put_user(tmp, (addr_t __user *) data);
282 static inline void __poke_user_per(struct task_struct *child,
283 addr_t addr, addr_t data)
285 struct per_struct_kernel *dummy = NULL;
288 * There are only three fields in the per_info struct that the
289 * debugger user can write to.
290 * 1) cr9: the debugger wants to set a new PER event mask
291 * 2) starting_addr: the debugger wants to set a new starting
292 * address to use with the PER event mask.
293 * 3) ending_addr: the debugger wants to set a new ending
294 * address to use with the PER event mask.
295 * The user specified PER event mask and the start and end
296 * addresses are used only if single stepping is not in effect.
297 * Writes to any other field in per_info are ignored.
299 if (addr == (addr_t) &dummy->cr9)
300 /* PER event mask of the user specified per set. */
301 child->thread.per_user.control =
302 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
303 else if (addr == (addr_t) &dummy->starting_addr)
304 /* Starting address of the user specified per set. */
305 child->thread.per_user.start = data;
306 else if (addr == (addr_t) &dummy->ending_addr)
307 /* Ending address of the user specified per set. */
308 child->thread.per_user.end = data;
312 * Write a word to the user area of a process at location addr. This
313 * operation does have an additional problem compared to peek_user.
314 * Stores to the program status word and on the floating point
315 * control register needs to get checked for validity.
317 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
319 struct user *dummy = NULL;
320 addr_t offset;
322 if (addr < (addr_t) &dummy->regs.acrs) {
324 * psw and gprs are stored on the stack
326 if (addr == (addr_t) &dummy->regs.psw.mask) {
327 unsigned long mask = PSW_MASK_USER;
329 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
330 if ((data ^ PSW_USER_BITS) & ~mask)
331 /* Invalid psw mask. */
332 return -EINVAL;
333 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
334 /* Invalid address-space-control bits */
335 return -EINVAL;
336 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
337 /* Invalid addressing mode bits */
338 return -EINVAL;
340 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
342 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
344 * access registers are stored in the thread structure
346 offset = addr - (addr_t) &dummy->regs.acrs;
348 * Very special case: old & broken 64 bit gdb writing
349 * to acrs[15] with a 64 bit value. Ignore the lower
350 * half of the value and write the upper 32 bit to
351 * acrs[15]. Sick...
353 if (addr == (addr_t) &dummy->regs.acrs[15])
354 child->thread.acrs[15] = (unsigned int) (data >> 32);
355 else
356 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
358 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
360 * orig_gpr2 is stored on the kernel stack
362 task_pt_regs(child)->orig_gpr2 = data;
364 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
366 * prevent writes of padding hole between
367 * orig_gpr2 and fp_regs on s390.
369 return 0;
371 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
373 * floating point control reg. is in the thread structure
375 if ((unsigned int) data != 0 ||
376 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
377 return -EINVAL;
378 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
380 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
382 * floating point regs. are either in child->thread.fpu
383 * or the child->thread.fpu.vxrs array
385 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
386 if (is_vx_task(child))
387 *(addr_t *)((addr_t)
388 child->thread.fpu.vxrs + 2*offset) = data;
389 else
390 *(addr_t *)((addr_t)
391 &child->thread.fpu.fprs + offset) = data;
393 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
395 * Handle access to the per_info structure.
397 addr -= (addr_t) &dummy->regs.per_info;
398 __poke_user_per(child, addr, data);
402 return 0;
405 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
407 addr_t mask;
410 * Stupid gdb peeks/pokes the access registers in 64 bit with
411 * an alignment of 4. Programmers from hell indeed...
413 mask = __ADDR_MASK;
414 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
415 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
416 mask = 3;
417 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418 return -EIO;
420 return __poke_user(child, addr, data);
423 long arch_ptrace(struct task_struct *child, long request,
424 unsigned long addr, unsigned long data)
426 ptrace_area parea;
427 int copied, ret;
429 switch (request) {
430 case PTRACE_PEEKUSR:
431 /* read the word at location addr in the USER area. */
432 return peek_user(child, addr, data);
434 case PTRACE_POKEUSR:
435 /* write the word at location addr in the USER area */
436 return poke_user(child, addr, data);
438 case PTRACE_PEEKUSR_AREA:
439 case PTRACE_POKEUSR_AREA:
440 if (copy_from_user(&parea, (void __force __user *) addr,
441 sizeof(parea)))
442 return -EFAULT;
443 addr = parea.kernel_addr;
444 data = parea.process_addr;
445 copied = 0;
446 while (copied < parea.len) {
447 if (request == PTRACE_PEEKUSR_AREA)
448 ret = peek_user(child, addr, data);
449 else {
450 addr_t utmp;
451 if (get_user(utmp,
452 (addr_t __force __user *) data))
453 return -EFAULT;
454 ret = poke_user(child, addr, utmp);
456 if (ret)
457 return ret;
458 addr += sizeof(unsigned long);
459 data += sizeof(unsigned long);
460 copied += sizeof(unsigned long);
462 return 0;
463 case PTRACE_GET_LAST_BREAK:
464 put_user(task_thread_info(child)->last_break,
465 (unsigned long __user *) data);
466 return 0;
467 case PTRACE_ENABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags &= ~PER_FLAG_NO_TE;
471 return 0;
472 case PTRACE_DISABLE_TE:
473 if (!MACHINE_HAS_TE)
474 return -EIO;
475 child->thread.per_flags |= PER_FLAG_NO_TE;
476 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477 return 0;
478 case PTRACE_TE_ABORT_RAND:
479 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480 return -EIO;
481 switch (data) {
482 case 0UL:
483 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484 break;
485 case 1UL:
486 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488 break;
489 case 2UL:
490 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492 break;
493 default:
494 return -EINVAL;
496 return 0;
497 default:
498 /* Removing high order bit from addr (only for 31 bit). */
499 addr &= PSW_ADDR_INSN;
500 return ptrace_request(child, request, addr, data);
504 #ifdef CONFIG_COMPAT
506 * Now the fun part starts... a 31 bit program running in the
507 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
508 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
509 * to handle, the difference to the 64 bit versions of the requests
510 * is that the access is done in multiples of 4 byte instead of
511 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
512 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
513 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
514 * is a 31 bit program too, the content of struct user can be
515 * emulated. A 31 bit program peeking into the struct user of
516 * a 64 bit program is a no-no.
520 * Same as peek_user_per but for a 31 bit program.
522 static inline __u32 __peek_user_per_compat(struct task_struct *child,
523 addr_t addr)
525 struct compat_per_struct_kernel *dummy32 = NULL;
527 if (addr == (addr_t) &dummy32->cr9)
528 /* Control bits of the active per set. */
529 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
530 PER_EVENT_IFETCH : child->thread.per_user.control;
531 else if (addr == (addr_t) &dummy32->cr10)
532 /* Start address of the active per set. */
533 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
534 0 : child->thread.per_user.start;
535 else if (addr == (addr_t) &dummy32->cr11)
536 /* End address of the active per set. */
537 return test_thread_flag(TIF_SINGLE_STEP) ?
538 PSW32_ADDR_INSN : child->thread.per_user.end;
539 else if (addr == (addr_t) &dummy32->bits)
540 /* Single-step bit. */
541 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
542 0x80000000 : 0;
543 else if (addr == (addr_t) &dummy32->starting_addr)
544 /* Start address of the user specified per set. */
545 return (__u32) child->thread.per_user.start;
546 else if (addr == (addr_t) &dummy32->ending_addr)
547 /* End address of the user specified per set. */
548 return (__u32) child->thread.per_user.end;
549 else if (addr == (addr_t) &dummy32->perc_atmid)
550 /* PER code, ATMID and AI of the last PER trap */
551 return (__u32) child->thread.per_event.cause << 16;
552 else if (addr == (addr_t) &dummy32->address)
553 /* Address of the last PER trap */
554 return (__u32) child->thread.per_event.address;
555 else if (addr == (addr_t) &dummy32->access_id)
556 /* Access id of the last PER trap */
557 return (__u32) child->thread.per_event.paid << 24;
558 return 0;
562 * Same as peek_user but for a 31 bit program.
564 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
566 struct compat_user *dummy32 = NULL;
567 addr_t offset;
568 __u32 tmp;
570 if (addr < (addr_t) &dummy32->regs.acrs) {
571 struct pt_regs *regs = task_pt_regs(child);
573 * psw and gprs are stored on the stack
575 if (addr == (addr_t) &dummy32->regs.psw.mask) {
576 /* Fake a 31 bit psw mask. */
577 tmp = (__u32)(regs->psw.mask >> 32);
578 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
579 tmp |= PSW32_USER_BITS;
580 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
581 /* Fake a 31 bit psw address. */
582 tmp = (__u32) regs->psw.addr |
583 (__u32)(regs->psw.mask & PSW_MASK_BA);
584 } else {
585 /* gpr 0-15 */
586 tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
588 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
590 * access registers are stored in the thread structure
592 offset = addr - (addr_t) &dummy32->regs.acrs;
593 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
595 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
597 * orig_gpr2 is stored on the kernel stack
599 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
601 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
603 * prevent reads of padding hole between
604 * orig_gpr2 and fp_regs on s390.
606 tmp = 0;
608 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
610 * floating point control reg. is in the thread structure
612 tmp = child->thread.fpu.fpc;
614 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
616 * floating point regs. are either in child->thread.fpu
617 * or the child->thread.fpu.vxrs array
619 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
620 if (is_vx_task(child))
621 tmp = *(__u32 *)
622 ((addr_t) child->thread.fpu.vxrs + 2*offset);
623 else
624 tmp = *(__u32 *)
625 ((addr_t) &child->thread.fpu.fprs + offset);
627 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
629 * Handle access to the per_info structure.
631 addr -= (addr_t) &dummy32->regs.per_info;
632 tmp = __peek_user_per_compat(child, addr);
634 } else
635 tmp = 0;
637 return tmp;
640 static int peek_user_compat(struct task_struct *child,
641 addr_t addr, addr_t data)
643 __u32 tmp;
645 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
646 return -EIO;
648 tmp = __peek_user_compat(child, addr);
649 return put_user(tmp, (__u32 __user *) data);
653 * Same as poke_user_per but for a 31 bit program.
655 static inline void __poke_user_per_compat(struct task_struct *child,
656 addr_t addr, __u32 data)
658 struct compat_per_struct_kernel *dummy32 = NULL;
660 if (addr == (addr_t) &dummy32->cr9)
661 /* PER event mask of the user specified per set. */
662 child->thread.per_user.control =
663 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
664 else if (addr == (addr_t) &dummy32->starting_addr)
665 /* Starting address of the user specified per set. */
666 child->thread.per_user.start = data;
667 else if (addr == (addr_t) &dummy32->ending_addr)
668 /* Ending address of the user specified per set. */
669 child->thread.per_user.end = data;
673 * Same as poke_user but for a 31 bit program.
675 static int __poke_user_compat(struct task_struct *child,
676 addr_t addr, addr_t data)
678 struct compat_user *dummy32 = NULL;
679 __u32 tmp = (__u32) data;
680 addr_t offset;
682 if (addr < (addr_t) &dummy32->regs.acrs) {
683 struct pt_regs *regs = task_pt_regs(child);
685 * psw, gprs, acrs and orig_gpr2 are stored on the stack
687 if (addr == (addr_t) &dummy32->regs.psw.mask) {
688 __u32 mask = PSW32_MASK_USER;
690 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
691 /* Build a 64 bit psw mask from 31 bit mask. */
692 if ((tmp ^ PSW32_USER_BITS) & ~mask)
693 /* Invalid psw mask. */
694 return -EINVAL;
695 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
696 /* Invalid address-space-control bits */
697 return -EINVAL;
698 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
699 (regs->psw.mask & PSW_MASK_BA) |
700 (__u64)(tmp & mask) << 32;
701 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
702 /* Build a 64 bit psw address from 31 bit address. */
703 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
704 /* Transfer 31 bit amode bit to psw mask. */
705 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
706 (__u64)(tmp & PSW32_ADDR_AMODE);
707 } else {
708 /* gpr 0-15 */
709 *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
711 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
713 * access registers are stored in the thread structure
715 offset = addr - (addr_t) &dummy32->regs.acrs;
716 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
718 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
720 * orig_gpr2 is stored on the kernel stack
722 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
724 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
726 * prevent writess of padding hole between
727 * orig_gpr2 and fp_regs on s390.
729 return 0;
731 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
733 * floating point control reg. is in the thread structure
735 if (test_fp_ctl(tmp))
736 return -EINVAL;
737 child->thread.fpu.fpc = data;
739 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
741 * floating point regs. are either in child->thread.fpu
742 * or the child->thread.fpu.vxrs array
744 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
745 if (is_vx_task(child))
746 *(__u32 *)((addr_t)
747 child->thread.fpu.vxrs + 2*offset) = tmp;
748 else
749 *(__u32 *)((addr_t)
750 &child->thread.fpu.fprs + offset) = tmp;
752 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
754 * Handle access to the per_info structure.
756 addr -= (addr_t) &dummy32->regs.per_info;
757 __poke_user_per_compat(child, addr, data);
760 return 0;
763 static int poke_user_compat(struct task_struct *child,
764 addr_t addr, addr_t data)
766 if (!is_compat_task() || (addr & 3) ||
767 addr > sizeof(struct compat_user) - 3)
768 return -EIO;
770 return __poke_user_compat(child, addr, data);
773 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
774 compat_ulong_t caddr, compat_ulong_t cdata)
776 unsigned long addr = caddr;
777 unsigned long data = cdata;
778 compat_ptrace_area parea;
779 int copied, ret;
781 switch (request) {
782 case PTRACE_PEEKUSR:
783 /* read the word at location addr in the USER area. */
784 return peek_user_compat(child, addr, data);
786 case PTRACE_POKEUSR:
787 /* write the word at location addr in the USER area */
788 return poke_user_compat(child, addr, data);
790 case PTRACE_PEEKUSR_AREA:
791 case PTRACE_POKEUSR_AREA:
792 if (copy_from_user(&parea, (void __force __user *) addr,
793 sizeof(parea)))
794 return -EFAULT;
795 addr = parea.kernel_addr;
796 data = parea.process_addr;
797 copied = 0;
798 while (copied < parea.len) {
799 if (request == PTRACE_PEEKUSR_AREA)
800 ret = peek_user_compat(child, addr, data);
801 else {
802 __u32 utmp;
803 if (get_user(utmp,
804 (__u32 __force __user *) data))
805 return -EFAULT;
806 ret = poke_user_compat(child, addr, utmp);
808 if (ret)
809 return ret;
810 addr += sizeof(unsigned int);
811 data += sizeof(unsigned int);
812 copied += sizeof(unsigned int);
814 return 0;
815 case PTRACE_GET_LAST_BREAK:
816 put_user(task_thread_info(child)->last_break,
817 (unsigned int __user *) data);
818 return 0;
820 return compat_ptrace_request(child, request, addr, data);
822 #endif
824 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
826 long ret = 0;
828 /* Do the secure computing check first. */
829 if (secure_computing()) {
830 /* seccomp failures shouldn't expose any additional code. */
831 ret = -1;
832 goto out;
836 * The sysc_tracesys code in entry.S stored the system
837 * call number to gprs[2].
839 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
840 (tracehook_report_syscall_entry(regs) ||
841 regs->gprs[2] >= NR_syscalls)) {
843 * Tracing decided this syscall should not happen or the
844 * debugger stored an invalid system call number. Skip
845 * the system call and the system call restart handling.
847 clear_pt_regs_flag(regs, PIF_SYSCALL);
848 ret = -1;
851 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
852 trace_sys_enter(regs, regs->gprs[2]);
854 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
855 regs->gprs[3], regs->gprs[4],
856 regs->gprs[5]);
857 out:
858 return ret ?: regs->gprs[2];
861 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
863 audit_syscall_exit(regs);
865 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
866 trace_sys_exit(regs, regs->gprs[2]);
868 if (test_thread_flag(TIF_SYSCALL_TRACE))
869 tracehook_report_syscall_exit(regs, 0);
873 * user_regset definitions.
876 static int s390_regs_get(struct task_struct *target,
877 const struct user_regset *regset,
878 unsigned int pos, unsigned int count,
879 void *kbuf, void __user *ubuf)
881 if (target == current)
882 save_access_regs(target->thread.acrs);
884 if (kbuf) {
885 unsigned long *k = kbuf;
886 while (count > 0) {
887 *k++ = __peek_user(target, pos);
888 count -= sizeof(*k);
889 pos += sizeof(*k);
891 } else {
892 unsigned long __user *u = ubuf;
893 while (count > 0) {
894 if (__put_user(__peek_user(target, pos), u++))
895 return -EFAULT;
896 count -= sizeof(*u);
897 pos += sizeof(*u);
900 return 0;
903 static int s390_regs_set(struct task_struct *target,
904 const struct user_regset *regset,
905 unsigned int pos, unsigned int count,
906 const void *kbuf, const void __user *ubuf)
908 int rc = 0;
910 if (target == current)
911 save_access_regs(target->thread.acrs);
913 if (kbuf) {
914 const unsigned long *k = kbuf;
915 while (count > 0 && !rc) {
916 rc = __poke_user(target, pos, *k++);
917 count -= sizeof(*k);
918 pos += sizeof(*k);
920 } else {
921 const unsigned long __user *u = ubuf;
922 while (count > 0 && !rc) {
923 unsigned long word;
924 rc = __get_user(word, u++);
925 if (rc)
926 break;
927 rc = __poke_user(target, pos, word);
928 count -= sizeof(*u);
929 pos += sizeof(*u);
933 if (rc == 0 && target == current)
934 restore_access_regs(target->thread.acrs);
936 return rc;
939 static int s390_fpregs_get(struct task_struct *target,
940 const struct user_regset *regset, unsigned int pos,
941 unsigned int count, void *kbuf, void __user *ubuf)
943 _s390_fp_regs fp_regs;
945 if (target == current)
946 save_fpu_regs();
948 fp_regs.fpc = target->thread.fpu.fpc;
949 fpregs_store(&fp_regs, &target->thread.fpu);
951 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
952 &fp_regs, 0, -1);
955 static int s390_fpregs_set(struct task_struct *target,
956 const struct user_regset *regset, unsigned int pos,
957 unsigned int count, const void *kbuf,
958 const void __user *ubuf)
960 int rc = 0;
961 freg_t fprs[__NUM_FPRS];
963 if (target == current)
964 save_fpu_regs();
966 /* If setting FPC, must validate it first. */
967 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
968 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
969 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
970 0, offsetof(s390_fp_regs, fprs));
971 if (rc)
972 return rc;
973 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
974 return -EINVAL;
975 target->thread.fpu.fpc = ufpc[0];
978 if (rc == 0 && count > 0)
979 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
980 fprs, offsetof(s390_fp_regs, fprs), -1);
981 if (rc)
982 return rc;
984 if (is_vx_task(target))
985 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
986 else
987 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
989 return rc;
992 static int s390_last_break_get(struct task_struct *target,
993 const struct user_regset *regset,
994 unsigned int pos, unsigned int count,
995 void *kbuf, void __user *ubuf)
997 if (count > 0) {
998 if (kbuf) {
999 unsigned long *k = kbuf;
1000 *k = task_thread_info(target)->last_break;
1001 } else {
1002 unsigned long __user *u = ubuf;
1003 if (__put_user(task_thread_info(target)->last_break, u))
1004 return -EFAULT;
1007 return 0;
1010 static int s390_last_break_set(struct task_struct *target,
1011 const struct user_regset *regset,
1012 unsigned int pos, unsigned int count,
1013 const void *kbuf, const void __user *ubuf)
1015 return 0;
1018 static int s390_tdb_get(struct task_struct *target,
1019 const struct user_regset *regset,
1020 unsigned int pos, unsigned int count,
1021 void *kbuf, void __user *ubuf)
1023 struct pt_regs *regs = task_pt_regs(target);
1024 unsigned char *data;
1026 if (!(regs->int_code & 0x200))
1027 return -ENODATA;
1028 data = target->thread.trap_tdb;
1029 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1032 static int s390_tdb_set(struct task_struct *target,
1033 const struct user_regset *regset,
1034 unsigned int pos, unsigned int count,
1035 const void *kbuf, const void __user *ubuf)
1037 return 0;
1040 static int s390_vxrs_low_get(struct task_struct *target,
1041 const struct user_regset *regset,
1042 unsigned int pos, unsigned int count,
1043 void *kbuf, void __user *ubuf)
1045 __u64 vxrs[__NUM_VXRS_LOW];
1046 int i;
1048 if (!MACHINE_HAS_VX)
1049 return -ENODEV;
1050 if (is_vx_task(target)) {
1051 if (target == current)
1052 save_fpu_regs();
1053 for (i = 0; i < __NUM_VXRS_LOW; i++)
1054 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1055 } else
1056 memset(vxrs, 0, sizeof(vxrs));
1057 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1060 static int s390_vxrs_low_set(struct task_struct *target,
1061 const struct user_regset *regset,
1062 unsigned int pos, unsigned int count,
1063 const void *kbuf, const void __user *ubuf)
1065 __u64 vxrs[__NUM_VXRS_LOW];
1066 int i, rc;
1068 if (!MACHINE_HAS_VX)
1069 return -ENODEV;
1070 if (!is_vx_task(target)) {
1071 rc = alloc_vector_registers(target);
1072 if (rc)
1073 return rc;
1074 } else if (target == current)
1075 save_fpu_regs();
1077 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1078 if (rc == 0)
1079 for (i = 0; i < __NUM_VXRS_LOW; i++)
1080 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1082 return rc;
1085 static int s390_vxrs_high_get(struct task_struct *target,
1086 const struct user_regset *regset,
1087 unsigned int pos, unsigned int count,
1088 void *kbuf, void __user *ubuf)
1090 __vector128 vxrs[__NUM_VXRS_HIGH];
1092 if (!MACHINE_HAS_VX)
1093 return -ENODEV;
1094 if (is_vx_task(target)) {
1095 if (target == current)
1096 save_fpu_regs();
1097 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1098 sizeof(vxrs));
1099 } else
1100 memset(vxrs, 0, sizeof(vxrs));
1101 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1104 static int s390_vxrs_high_set(struct task_struct *target,
1105 const struct user_regset *regset,
1106 unsigned int pos, unsigned int count,
1107 const void *kbuf, const void __user *ubuf)
1109 int rc;
1111 if (!MACHINE_HAS_VX)
1112 return -ENODEV;
1113 if (!is_vx_task(target)) {
1114 rc = alloc_vector_registers(target);
1115 if (rc)
1116 return rc;
1117 } else if (target == current)
1118 save_fpu_regs();
1120 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1121 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1122 return rc;
1125 static int s390_system_call_get(struct task_struct *target,
1126 const struct user_regset *regset,
1127 unsigned int pos, unsigned int count,
1128 void *kbuf, void __user *ubuf)
1130 unsigned int *data = &task_thread_info(target)->system_call;
1131 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1132 data, 0, sizeof(unsigned int));
1135 static int s390_system_call_set(struct task_struct *target,
1136 const struct user_regset *regset,
1137 unsigned int pos, unsigned int count,
1138 const void *kbuf, const void __user *ubuf)
1140 unsigned int *data = &task_thread_info(target)->system_call;
1141 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1142 data, 0, sizeof(unsigned int));
1145 static const struct user_regset s390_regsets[] = {
1147 .core_note_type = NT_PRSTATUS,
1148 .n = sizeof(s390_regs) / sizeof(long),
1149 .size = sizeof(long),
1150 .align = sizeof(long),
1151 .get = s390_regs_get,
1152 .set = s390_regs_set,
1155 .core_note_type = NT_PRFPREG,
1156 .n = sizeof(s390_fp_regs) / sizeof(long),
1157 .size = sizeof(long),
1158 .align = sizeof(long),
1159 .get = s390_fpregs_get,
1160 .set = s390_fpregs_set,
1163 .core_note_type = NT_S390_SYSTEM_CALL,
1164 .n = 1,
1165 .size = sizeof(unsigned int),
1166 .align = sizeof(unsigned int),
1167 .get = s390_system_call_get,
1168 .set = s390_system_call_set,
1171 .core_note_type = NT_S390_LAST_BREAK,
1172 .n = 1,
1173 .size = sizeof(long),
1174 .align = sizeof(long),
1175 .get = s390_last_break_get,
1176 .set = s390_last_break_set,
1179 .core_note_type = NT_S390_TDB,
1180 .n = 1,
1181 .size = 256,
1182 .align = 1,
1183 .get = s390_tdb_get,
1184 .set = s390_tdb_set,
1187 .core_note_type = NT_S390_VXRS_LOW,
1188 .n = __NUM_VXRS_LOW,
1189 .size = sizeof(__u64),
1190 .align = sizeof(__u64),
1191 .get = s390_vxrs_low_get,
1192 .set = s390_vxrs_low_set,
1195 .core_note_type = NT_S390_VXRS_HIGH,
1196 .n = __NUM_VXRS_HIGH,
1197 .size = sizeof(__vector128),
1198 .align = sizeof(__vector128),
1199 .get = s390_vxrs_high_get,
1200 .set = s390_vxrs_high_set,
1204 static const struct user_regset_view user_s390_view = {
1205 .name = UTS_MACHINE,
1206 .e_machine = EM_S390,
1207 .regsets = s390_regsets,
1208 .n = ARRAY_SIZE(s390_regsets)
1211 #ifdef CONFIG_COMPAT
1212 static int s390_compat_regs_get(struct task_struct *target,
1213 const struct user_regset *regset,
1214 unsigned int pos, unsigned int count,
1215 void *kbuf, void __user *ubuf)
1217 if (target == current)
1218 save_access_regs(target->thread.acrs);
1220 if (kbuf) {
1221 compat_ulong_t *k = kbuf;
1222 while (count > 0) {
1223 *k++ = __peek_user_compat(target, pos);
1224 count -= sizeof(*k);
1225 pos += sizeof(*k);
1227 } else {
1228 compat_ulong_t __user *u = ubuf;
1229 while (count > 0) {
1230 if (__put_user(__peek_user_compat(target, pos), u++))
1231 return -EFAULT;
1232 count -= sizeof(*u);
1233 pos += sizeof(*u);
1236 return 0;
1239 static int s390_compat_regs_set(struct task_struct *target,
1240 const struct user_regset *regset,
1241 unsigned int pos, unsigned int count,
1242 const void *kbuf, const void __user *ubuf)
1244 int rc = 0;
1246 if (target == current)
1247 save_access_regs(target->thread.acrs);
1249 if (kbuf) {
1250 const compat_ulong_t *k = kbuf;
1251 while (count > 0 && !rc) {
1252 rc = __poke_user_compat(target, pos, *k++);
1253 count -= sizeof(*k);
1254 pos += sizeof(*k);
1256 } else {
1257 const compat_ulong_t __user *u = ubuf;
1258 while (count > 0 && !rc) {
1259 compat_ulong_t word;
1260 rc = __get_user(word, u++);
1261 if (rc)
1262 break;
1263 rc = __poke_user_compat(target, pos, word);
1264 count -= sizeof(*u);
1265 pos += sizeof(*u);
1269 if (rc == 0 && target == current)
1270 restore_access_regs(target->thread.acrs);
1272 return rc;
1275 static int s390_compat_regs_high_get(struct task_struct *target,
1276 const struct user_regset *regset,
1277 unsigned int pos, unsigned int count,
1278 void *kbuf, void __user *ubuf)
1280 compat_ulong_t *gprs_high;
1282 gprs_high = (compat_ulong_t *)
1283 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1284 if (kbuf) {
1285 compat_ulong_t *k = kbuf;
1286 while (count > 0) {
1287 *k++ = *gprs_high;
1288 gprs_high += 2;
1289 count -= sizeof(*k);
1291 } else {
1292 compat_ulong_t __user *u = ubuf;
1293 while (count > 0) {
1294 if (__put_user(*gprs_high, u++))
1295 return -EFAULT;
1296 gprs_high += 2;
1297 count -= sizeof(*u);
1300 return 0;
1303 static int s390_compat_regs_high_set(struct task_struct *target,
1304 const struct user_regset *regset,
1305 unsigned int pos, unsigned int count,
1306 const void *kbuf, const void __user *ubuf)
1308 compat_ulong_t *gprs_high;
1309 int rc = 0;
1311 gprs_high = (compat_ulong_t *)
1312 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1313 if (kbuf) {
1314 const compat_ulong_t *k = kbuf;
1315 while (count > 0) {
1316 *gprs_high = *k++;
1317 *gprs_high += 2;
1318 count -= sizeof(*k);
1320 } else {
1321 const compat_ulong_t __user *u = ubuf;
1322 while (count > 0 && !rc) {
1323 unsigned long word;
1324 rc = __get_user(word, u++);
1325 if (rc)
1326 break;
1327 *gprs_high = word;
1328 *gprs_high += 2;
1329 count -= sizeof(*u);
1333 return rc;
1336 static int s390_compat_last_break_get(struct task_struct *target,
1337 const struct user_regset *regset,
1338 unsigned int pos, unsigned int count,
1339 void *kbuf, void __user *ubuf)
1341 compat_ulong_t last_break;
1343 if (count > 0) {
1344 last_break = task_thread_info(target)->last_break;
1345 if (kbuf) {
1346 unsigned long *k = kbuf;
1347 *k = last_break;
1348 } else {
1349 unsigned long __user *u = ubuf;
1350 if (__put_user(last_break, u))
1351 return -EFAULT;
1354 return 0;
1357 static int s390_compat_last_break_set(struct task_struct *target,
1358 const struct user_regset *regset,
1359 unsigned int pos, unsigned int count,
1360 const void *kbuf, const void __user *ubuf)
1362 return 0;
1365 static const struct user_regset s390_compat_regsets[] = {
1367 .core_note_type = NT_PRSTATUS,
1368 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1369 .size = sizeof(compat_long_t),
1370 .align = sizeof(compat_long_t),
1371 .get = s390_compat_regs_get,
1372 .set = s390_compat_regs_set,
1375 .core_note_type = NT_PRFPREG,
1376 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1377 .size = sizeof(compat_long_t),
1378 .align = sizeof(compat_long_t),
1379 .get = s390_fpregs_get,
1380 .set = s390_fpregs_set,
1383 .core_note_type = NT_S390_SYSTEM_CALL,
1384 .n = 1,
1385 .size = sizeof(compat_uint_t),
1386 .align = sizeof(compat_uint_t),
1387 .get = s390_system_call_get,
1388 .set = s390_system_call_set,
1391 .core_note_type = NT_S390_LAST_BREAK,
1392 .n = 1,
1393 .size = sizeof(long),
1394 .align = sizeof(long),
1395 .get = s390_compat_last_break_get,
1396 .set = s390_compat_last_break_set,
1399 .core_note_type = NT_S390_TDB,
1400 .n = 1,
1401 .size = 256,
1402 .align = 1,
1403 .get = s390_tdb_get,
1404 .set = s390_tdb_set,
1407 .core_note_type = NT_S390_VXRS_LOW,
1408 .n = __NUM_VXRS_LOW,
1409 .size = sizeof(__u64),
1410 .align = sizeof(__u64),
1411 .get = s390_vxrs_low_get,
1412 .set = s390_vxrs_low_set,
1415 .core_note_type = NT_S390_VXRS_HIGH,
1416 .n = __NUM_VXRS_HIGH,
1417 .size = sizeof(__vector128),
1418 .align = sizeof(__vector128),
1419 .get = s390_vxrs_high_get,
1420 .set = s390_vxrs_high_set,
1423 .core_note_type = NT_S390_HIGH_GPRS,
1424 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1425 .size = sizeof(compat_long_t),
1426 .align = sizeof(compat_long_t),
1427 .get = s390_compat_regs_high_get,
1428 .set = s390_compat_regs_high_set,
1432 static const struct user_regset_view user_s390_compat_view = {
1433 .name = "s390",
1434 .e_machine = EM_S390,
1435 .regsets = s390_compat_regsets,
1436 .n = ARRAY_SIZE(s390_compat_regsets)
1438 #endif
1440 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1442 #ifdef CONFIG_COMPAT
1443 if (test_tsk_thread_flag(task, TIF_31BIT))
1444 return &user_s390_compat_view;
1445 #endif
1446 return &user_s390_view;
1449 static const char *gpr_names[NUM_GPRS] = {
1450 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1451 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1454 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1456 if (offset >= NUM_GPRS)
1457 return 0;
1458 return regs->gprs[offset];
1461 int regs_query_register_offset(const char *name)
1463 unsigned long offset;
1465 if (!name || *name != 'r')
1466 return -EINVAL;
1467 if (kstrtoul(name + 1, 10, &offset))
1468 return -EINVAL;
1469 if (offset >= NUM_GPRS)
1470 return -EINVAL;
1471 return offset;
1474 const char *regs_query_register_name(unsigned int offset)
1476 if (offset >= NUM_GPRS)
1477 return NULL;
1478 return gpr_names[offset];
1481 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1483 unsigned long ksp = kernel_stack_pointer(regs);
1485 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1489 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1490 * @regs:pt_regs which contains kernel stack pointer.
1491 * @n:stack entry number.
1493 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1494 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1495 * this returns 0.
1497 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1499 unsigned long addr;
1501 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1502 if (!regs_within_kernel_stack(regs, addr))
1503 return 0;
1504 return *(unsigned long *)addr;