2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/pnp.h>
32 #include <linux/interrupt.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <media/rc-core.h>
36 #include <linux/pci_ids.h>
38 #include "nuvoton-cir.h"
40 static char *chip_id
= "w836x7hg";
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
45 outb(reg
, nvt
->cr_efir
);
46 outb(val
, nvt
->cr_efdr
);
49 /* read val from config reg */
50 static inline u8
nvt_cr_read(struct nvt_dev
*nvt
, u8 reg
)
52 outb(reg
, nvt
->cr_efir
);
53 return inb(nvt
->cr_efdr
);
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
59 u8 tmp
= nvt_cr_read(nvt
, reg
) | val
;
60 nvt_cr_write(nvt
, tmp
, reg
);
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev
*nvt
, u8 val
, u8 reg
)
66 u8 tmp
= nvt_cr_read(nvt
, reg
) & ~val
;
67 nvt_cr_write(nvt
, tmp
, reg
);
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev
*nvt
)
73 /* Enabling Extended Function Mode explicitly requires writing 2x */
74 outb(EFER_EFM_ENABLE
, nvt
->cr_efir
);
75 outb(EFER_EFM_ENABLE
, nvt
->cr_efir
);
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev
*nvt
)
81 outb(EFER_EFM_DISABLE
, nvt
->cr_efir
);
85 * When you want to address a specific logical device, write its logical
86 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
89 static inline void nvt_select_logical_dev(struct nvt_dev
*nvt
, u8 ldev
)
91 outb(CR_LOGICAL_DEV_SEL
, nvt
->cr_efir
);
92 outb(ldev
, nvt
->cr_efdr
);
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev
*nvt
, u8 val
, u8 offset
)
98 outb(val
, nvt
->cir_addr
+ offset
);
101 /* read val from cir config register */
102 static u8
nvt_cir_reg_read(struct nvt_dev
*nvt
, u8 offset
)
106 val
= inb(nvt
->cir_addr
+ offset
);
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev
*nvt
,
115 outb(val
, nvt
->cir_wake_addr
+ offset
);
118 /* read val from cir wake config register */
119 static u8
nvt_cir_wake_reg_read(struct nvt_dev
*nvt
, u8 offset
)
123 val
= inb(nvt
->cir_wake_addr
+ offset
);
128 #define pr_reg(text, ...) \
129 printk(KERN_INFO KBUILD_MODNAME ": " text, ## __VA_ARGS__)
131 /* dump current cir register contents */
132 static void cir_dump_regs(struct nvt_dev
*nvt
)
135 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
137 pr_reg("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME
);
138 pr_reg(" * CR CIR ACTIVE : 0x%x\n",
139 nvt_cr_read(nvt
, CR_LOGICAL_DEV_EN
));
140 pr_reg(" * CR CIR BASE ADDR: 0x%x\n",
141 (nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_HI
) << 8) |
142 nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_LO
));
143 pr_reg(" * CR CIR IRQ NUM: 0x%x\n",
144 nvt_cr_read(nvt
, CR_CIR_IRQ_RSRC
));
146 nvt_efm_disable(nvt
);
148 pr_reg("%s: Dump CIR registers:\n", NVT_DRIVER_NAME
);
149 pr_reg(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRCON
));
150 pr_reg(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRSTS
));
151 pr_reg(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IREN
));
152 pr_reg(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_RXFCONT
));
153 pr_reg(" * CP: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_CP
));
154 pr_reg(" * CC: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_CC
));
155 pr_reg(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SLCH
));
156 pr_reg(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SLCL
));
157 pr_reg(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FIFOCON
));
158 pr_reg(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRFIFOSTS
));
159 pr_reg(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_SRXFIFO
));
160 pr_reg(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_TXFCONT
));
161 pr_reg(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_STXFIFO
));
162 pr_reg(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FCCH
));
163 pr_reg(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_FCCL
));
164 pr_reg(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt
, CIR_IRFSM
));
167 /* dump current cir wake register contents */
168 static void cir_wake_dump_regs(struct nvt_dev
*nvt
)
173 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
175 pr_reg("%s: Dump CIR WAKE logical device registers:\n",
177 pr_reg(" * CR CIR WAKE ACTIVE : 0x%x\n",
178 nvt_cr_read(nvt
, CR_LOGICAL_DEV_EN
));
179 pr_reg(" * CR CIR WAKE BASE ADDR: 0x%x\n",
180 (nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_HI
) << 8) |
181 nvt_cr_read(nvt
, CR_CIR_BASE_ADDR_LO
));
182 pr_reg(" * CR CIR WAKE IRQ NUM: 0x%x\n",
183 nvt_cr_read(nvt
, CR_CIR_IRQ_RSRC
));
185 nvt_efm_disable(nvt
);
187 pr_reg("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME
);
188 pr_reg(" * IRCON: 0x%x\n",
189 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRCON
));
190 pr_reg(" * IRSTS: 0x%x\n",
191 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRSTS
));
192 pr_reg(" * IREN: 0x%x\n",
193 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IREN
));
194 pr_reg(" * FIFO CMP DEEP: 0x%x\n",
195 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_CMP_DEEP
));
196 pr_reg(" * FIFO CMP TOL: 0x%x\n",
197 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_CMP_TOL
));
198 pr_reg(" * FIFO COUNT: 0x%x\n",
199 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_COUNT
));
200 pr_reg(" * SLCH: 0x%x\n",
201 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SLCH
));
202 pr_reg(" * SLCL: 0x%x\n",
203 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SLCL
));
204 pr_reg(" * FIFOCON: 0x%x\n",
205 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFOCON
));
206 pr_reg(" * SRXFSTS: 0x%x\n",
207 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SRXFSTS
));
208 pr_reg(" * SAMPLE RX FIFO: 0x%x\n",
209 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_SAMPLE_RX_FIFO
));
210 pr_reg(" * WR FIFO DATA: 0x%x\n",
211 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_WR_FIFO_DATA
));
212 pr_reg(" * RD FIFO ONLY: 0x%x\n",
213 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
));
214 pr_reg(" * RD FIFO ONLY IDX: 0x%x\n",
215 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY_IDX
));
216 pr_reg(" * FIFO IGNORE: 0x%x\n",
217 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_IGNORE
));
218 pr_reg(" * IRFSM: 0x%x\n",
219 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRFSM
));
221 fifo_len
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFO_COUNT
);
222 pr_reg("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME
, fifo_len
);
223 pr_reg("* Contents = ");
224 for (i
= 0; i
< fifo_len
; i
++)
225 printk(KERN_CONT
"%02x ",
226 nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
));
227 printk(KERN_CONT
"\n");
230 /* detect hardware features */
231 static int nvt_hw_detect(struct nvt_dev
*nvt
)
234 u8 chip_major
, chip_minor
;
239 /* Check if we're wired for the alternate EFER setup */
240 chip_major
= nvt_cr_read(nvt
, CR_CHIP_ID_HI
);
241 if (chip_major
== 0xff) {
242 nvt
->cr_efir
= CR_EFIR2
;
243 nvt
->cr_efdr
= CR_EFDR2
;
245 chip_major
= nvt_cr_read(nvt
, CR_CHIP_ID_HI
);
248 chip_minor
= nvt_cr_read(nvt
, CR_CHIP_ID_LO
);
249 nvt_dbg("%s: chip id: 0x%02x 0x%02x", chip_id
, chip_major
, chip_minor
);
251 if (chip_major
!= CHIP_ID_HIGH
||
252 (chip_minor
!= CHIP_ID_LOW
&& chip_minor
!= CHIP_ID_LOW2
)) {
253 nvt_pr(KERN_ERR
, "%s: unsupported chip, id: 0x%02x 0x%02x",
254 chip_id
, chip_major
, chip_minor
);
258 nvt_efm_disable(nvt
);
260 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
261 nvt
->chip_major
= chip_major
;
262 nvt
->chip_minor
= chip_minor
;
263 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
268 static void nvt_cir_ldev_init(struct nvt_dev
*nvt
)
272 /* output pin selection (Pin95=CIRRX, Pin96=CIRTX1, WB enabled */
273 val
= nvt_cr_read(nvt
, CR_OUTPUT_PIN_SEL
);
274 val
&= OUTPUT_PIN_SEL_MASK
;
275 val
|= (OUTPUT_ENABLE_CIR
| OUTPUT_ENABLE_CIRWB
);
276 nvt_cr_write(nvt
, val
, CR_OUTPUT_PIN_SEL
);
278 /* Select CIR logical device and enable */
279 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
280 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
282 nvt_cr_write(nvt
, nvt
->cir_addr
>> 8, CR_CIR_BASE_ADDR_HI
);
283 nvt_cr_write(nvt
, nvt
->cir_addr
& 0xff, CR_CIR_BASE_ADDR_LO
);
285 nvt_cr_write(nvt
, nvt
->cir_irq
, CR_CIR_IRQ_RSRC
);
287 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
288 nvt
->cir_addr
, nvt
->cir_irq
);
291 static void nvt_cir_wake_ldev_init(struct nvt_dev
*nvt
)
293 /* Select ACPI logical device, enable it and CIR Wake */
294 nvt_select_logical_dev(nvt
, LOGICAL_DEV_ACPI
);
295 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
297 /* Enable CIR Wake via PSOUT# (Pin60) */
298 nvt_set_reg_bit(nvt
, CIR_WAKE_ENABLE_BIT
, CR_ACPI_CIR_WAKE
);
300 /* enable cir interrupt of mouse/keyboard IRQ event */
301 nvt_set_reg_bit(nvt
, CIR_INTR_MOUSE_IRQ_BIT
, CR_ACPI_IRQ_EVENTS
);
303 /* enable pme interrupt of cir wakeup event */
304 nvt_set_reg_bit(nvt
, PME_INTR_CIR_PASS_BIT
, CR_ACPI_IRQ_EVENTS2
);
306 /* Select CIR Wake logical device and enable */
307 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
308 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
310 nvt_cr_write(nvt
, nvt
->cir_wake_addr
>> 8, CR_CIR_BASE_ADDR_HI
);
311 nvt_cr_write(nvt
, nvt
->cir_wake_addr
& 0xff, CR_CIR_BASE_ADDR_LO
);
313 nvt_cr_write(nvt
, nvt
->cir_wake_irq
, CR_CIR_IRQ_RSRC
);
315 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
316 nvt
->cir_wake_addr
, nvt
->cir_wake_irq
);
319 /* clear out the hardware's cir rx fifo */
320 static void nvt_clear_cir_fifo(struct nvt_dev
*nvt
)
324 val
= nvt_cir_reg_read(nvt
, CIR_FIFOCON
);
325 nvt_cir_reg_write(nvt
, val
| CIR_FIFOCON_RXFIFOCLR
, CIR_FIFOCON
);
328 /* clear out the hardware's cir wake rx fifo */
329 static void nvt_clear_cir_wake_fifo(struct nvt_dev
*nvt
)
333 val
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_FIFOCON
);
334 nvt_cir_wake_reg_write(nvt
, val
| CIR_WAKE_FIFOCON_RXFIFOCLR
,
338 /* clear out the hardware's cir tx fifo */
339 static void nvt_clear_tx_fifo(struct nvt_dev
*nvt
)
343 val
= nvt_cir_reg_read(nvt
, CIR_FIFOCON
);
344 nvt_cir_reg_write(nvt
, val
| CIR_FIFOCON_TXFIFOCLR
, CIR_FIFOCON
);
347 /* enable RX Trigger Level Reach and Packet End interrupts */
348 static void nvt_set_cir_iren(struct nvt_dev
*nvt
)
352 iren
= CIR_IREN_RTR
| CIR_IREN_PE
;
353 nvt_cir_reg_write(nvt
, iren
, CIR_IREN
);
356 static void nvt_cir_regs_init(struct nvt_dev
*nvt
)
358 /* set sample limit count (PE interrupt raised when reached) */
359 nvt_cir_reg_write(nvt
, CIR_RX_LIMIT_COUNT
>> 8, CIR_SLCH
);
360 nvt_cir_reg_write(nvt
, CIR_RX_LIMIT_COUNT
& 0xff, CIR_SLCL
);
362 /* set fifo irq trigger levels */
363 nvt_cir_reg_write(nvt
, CIR_FIFOCON_TX_TRIGGER_LEV
|
364 CIR_FIFOCON_RX_TRIGGER_LEV
, CIR_FIFOCON
);
367 * Enable TX and RX, specify carrier on = low, off = high, and set
368 * sample period (currently 50us)
370 nvt_cir_reg_write(nvt
,
371 CIR_IRCON_TXEN
| CIR_IRCON_RXEN
|
372 CIR_IRCON_RXINV
| CIR_IRCON_SAMPLE_PERIOD_SEL
,
375 /* clear hardware rx and tx fifos */
376 nvt_clear_cir_fifo(nvt
);
377 nvt_clear_tx_fifo(nvt
);
379 /* clear any and all stray interrupts */
380 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
382 /* and finally, enable interrupts */
383 nvt_set_cir_iren(nvt
);
386 static void nvt_cir_wake_regs_init(struct nvt_dev
*nvt
)
388 /* set number of bytes needed for wake key comparison (default 67) */
389 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_FIFO_LEN
, CIR_WAKE_FIFO_CMP_DEEP
);
391 /* set tolerance/variance allowed per byte during wake compare */
392 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_CMP_TOLERANCE
,
393 CIR_WAKE_FIFO_CMP_TOL
);
395 /* set sample limit count (PE interrupt raised when reached) */
396 nvt_cir_wake_reg_write(nvt
, CIR_RX_LIMIT_COUNT
>> 8, CIR_WAKE_SLCH
);
397 nvt_cir_wake_reg_write(nvt
, CIR_RX_LIMIT_COUNT
& 0xff, CIR_WAKE_SLCL
);
399 /* set cir wake fifo rx trigger level (currently 67) */
400 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV
,
404 * Enable TX and RX, specific carrier on = low, off = high, and set
405 * sample period (currently 50us)
407 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_IRCON_MODE0
| CIR_WAKE_IRCON_RXEN
|
408 CIR_WAKE_IRCON_R
| CIR_WAKE_IRCON_RXINV
|
409 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL
,
412 /* clear cir wake rx fifo */
413 nvt_clear_cir_wake_fifo(nvt
);
415 /* clear any and all stray interrupts */
416 nvt_cir_wake_reg_write(nvt
, 0xff, CIR_WAKE_IRSTS
);
419 static void nvt_enable_wake(struct nvt_dev
*nvt
)
423 nvt_select_logical_dev(nvt
, LOGICAL_DEV_ACPI
);
424 nvt_set_reg_bit(nvt
, CIR_WAKE_ENABLE_BIT
, CR_ACPI_CIR_WAKE
);
425 nvt_set_reg_bit(nvt
, CIR_INTR_MOUSE_IRQ_BIT
, CR_ACPI_IRQ_EVENTS
);
426 nvt_set_reg_bit(nvt
, PME_INTR_CIR_PASS_BIT
, CR_ACPI_IRQ_EVENTS2
);
428 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR_WAKE
);
429 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
431 nvt_efm_disable(nvt
);
433 nvt_cir_wake_reg_write(nvt
, CIR_WAKE_IRCON_MODE0
| CIR_WAKE_IRCON_RXEN
|
434 CIR_WAKE_IRCON_R
| CIR_WAKE_IRCON_RXINV
|
435 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL
,
437 nvt_cir_wake_reg_write(nvt
, 0xff, CIR_WAKE_IRSTS
);
438 nvt_cir_wake_reg_write(nvt
, 0, CIR_WAKE_IREN
);
441 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
442 static u32
nvt_rx_carrier_detect(struct nvt_dev
*nvt
)
444 u32 count
, carrier
, duration
= 0;
447 count
= nvt_cir_reg_read(nvt
, CIR_FCCL
) |
448 nvt_cir_reg_read(nvt
, CIR_FCCH
) << 8;
450 for (i
= 0; i
< nvt
->pkts
; i
++) {
451 if (nvt
->buf
[i
] & BUF_PULSE_BIT
)
452 duration
+= nvt
->buf
[i
] & BUF_LEN_MASK
;
455 duration
*= SAMPLE_PERIOD
;
457 if (!count
|| !duration
) {
458 nvt_pr(KERN_NOTICE
, "Unable to determine carrier! (c:%u, d:%u)",
463 carrier
= (count
* 1000000) / duration
;
465 if ((carrier
> MAX_CARRIER
) || (carrier
< MIN_CARRIER
))
466 nvt_dbg("WTF? Carrier frequency out of range!");
468 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
469 carrier
, count
, duration
);
475 * set carrier frequency
477 * set carrier on 2 registers: CP & CC
478 * always set CP as 0x81
479 * set CC by SPEC, CC = 3MHz/carrier - 1
481 static int nvt_set_tx_carrier(struct rc_dev
*dev
, u32 carrier
)
483 struct nvt_dev
*nvt
= dev
->priv
;
486 nvt_cir_reg_write(nvt
, 1, CIR_CP
);
487 val
= 3000000 / (carrier
) - 1;
488 nvt_cir_reg_write(nvt
, val
& 0xff, CIR_CC
);
490 nvt_dbg("cp: 0x%x cc: 0x%x\n",
491 nvt_cir_reg_read(nvt
, CIR_CP
), nvt_cir_reg_read(nvt
, CIR_CC
));
499 * 1) clean TX fifo first (handled by AP)
500 * 2) copy data from user space
501 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
502 * 4) send 9 packets to TX FIFO to open TTR
503 * in interrupt_handler:
504 * 5) send all data out
505 * go back to write():
506 * 6) disable TX interrupts, re-enable RX interupts
508 * The key problem of this function is user space data may larger than
509 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
510 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
511 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
512 * set TXFCONT as 0xff, until buf_count less than 0xff.
514 static int nvt_tx_ir(struct rc_dev
*dev
, int *txbuf
, u32 n
)
516 struct nvt_dev
*nvt
= dev
->priv
;
523 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
525 if (n
>= TX_BUF_LEN
) {
526 nvt
->tx
.buf_count
= cur_count
= TX_BUF_LEN
;
529 nvt
->tx
.buf_count
= cur_count
= n
;
533 memcpy(nvt
->tx
.buf
, txbuf
, nvt
->tx
.buf_count
);
535 nvt
->tx
.cur_buf_num
= 0;
537 /* save currently enabled interrupts */
538 iren
= nvt_cir_reg_read(nvt
, CIR_IREN
);
540 /* now disable all interrupts, save TFU & TTR */
541 nvt_cir_reg_write(nvt
, CIR_IREN_TFU
| CIR_IREN_TTR
, CIR_IREN
);
543 nvt
->tx
.tx_state
= ST_TX_REPLY
;
545 nvt_cir_reg_write(nvt
, CIR_FIFOCON_TX_TRIGGER_LEV_8
|
546 CIR_FIFOCON_RXFIFOCLR
, CIR_FIFOCON
);
548 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
549 for (i
= 0; i
< 9; i
++)
550 nvt_cir_reg_write(nvt
, 0x01, CIR_STXFIFO
);
552 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
554 wait_event(nvt
->tx
.queue
, nvt
->tx
.tx_state
== ST_TX_REQUEST
);
556 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
557 nvt
->tx
.tx_state
= ST_TX_NONE
;
558 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
560 /* restore enabled interrupts to prior state */
561 nvt_cir_reg_write(nvt
, iren
, CIR_IREN
);
566 /* dump contents of the last rx buffer we got from the hw rx fifo */
567 static void nvt_dump_rx_buf(struct nvt_dev
*nvt
)
571 printk(KERN_DEBUG
"%s (len %d): ", __func__
, nvt
->pkts
);
572 for (i
= 0; (i
< nvt
->pkts
) && (i
< RX_BUF_LEN
); i
++)
573 printk(KERN_CONT
"0x%02x ", nvt
->buf
[i
]);
574 printk(KERN_CONT
"\n");
578 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
579 * trigger decode when appropriate.
581 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
582 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
583 * (default 50us) intervals for that pulse/space. A discrete signal is
584 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
585 * to signal more IR coming (repeats) or end of IR, respectively. We store
586 * sample data in the raw event kfifo until we see 0x7<something> (except f)
587 * or 0x80, at which time, we trigger a decode operation.
589 static void nvt_process_rx_ir_data(struct nvt_dev
*nvt
)
591 DEFINE_IR_RAW_EVENT(rawir
);
597 nvt_dbg_verbose("%s firing", __func__
);
600 nvt_dump_rx_buf(nvt
);
602 if (nvt
->carrier_detect_enabled
)
603 carrier
= nvt_rx_carrier_detect(nvt
);
606 nvt_dbg_verbose("Processing buffer of len %d", count
);
608 init_ir_raw_event(&rawir
);
610 for (i
= 0; i
< count
; i
++) {
612 sample
= nvt
->buf
[i
];
614 rawir
.pulse
= ((sample
& BUF_PULSE_BIT
) != 0);
615 rawir
.duration
= (sample
& BUF_LEN_MASK
)
616 * SAMPLE_PERIOD
* 1000;
618 if ((sample
& BUF_LEN_MASK
) == BUF_LEN_MASK
) {
619 if (nvt
->rawir
.pulse
== rawir
.pulse
)
620 nvt
->rawir
.duration
+= rawir
.duration
;
622 nvt
->rawir
.duration
= rawir
.duration
;
623 nvt
->rawir
.pulse
= rawir
.pulse
;
628 rawir
.duration
+= nvt
->rawir
.duration
;
630 init_ir_raw_event(&nvt
->rawir
);
631 nvt
->rawir
.duration
= 0;
632 nvt
->rawir
.pulse
= rawir
.pulse
;
634 if (sample
== BUF_PULSE_BIT
)
637 if (rawir
.duration
) {
638 nvt_dbg("Storing %s with duration %d",
639 rawir
.pulse
? "pulse" : "space",
642 ir_raw_event_store(nvt
->rdev
, &rawir
);
646 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
647 * indicates end of IR signal, but new data incoming. In both
648 * cases, it means we're ready to call ir_raw_event_handle
650 if ((sample
== BUF_PULSE_BIT
) && nvt
->pkts
) {
651 nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
652 ir_raw_event_handle(nvt
->rdev
);
656 nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
657 ir_raw_event_handle(nvt
->rdev
);
660 nvt_dbg("Odd, pkts should be 0 now... (its %u)", nvt
->pkts
);
664 nvt_dbg_verbose("%s done", __func__
);
667 static void nvt_handle_rx_fifo_overrun(struct nvt_dev
*nvt
)
669 nvt_pr(KERN_WARNING
, "RX FIFO overrun detected, flushing data!");
672 nvt_clear_cir_fifo(nvt
);
673 ir_raw_event_reset(nvt
->rdev
);
676 /* copy data from hardware rx fifo into driver buffer */
677 static void nvt_get_rx_ir_data(struct nvt_dev
*nvt
)
682 bool overrun
= false;
685 /* Get count of how many bytes to read from RX FIFO */
686 fifocount
= nvt_cir_reg_read(nvt
, CIR_RXFCONT
);
687 /* if we get 0xff, probably means the logical dev is disabled */
688 if (fifocount
== 0xff)
690 /* watch out for a fifo overrun condition */
691 else if (fifocount
> RX_BUF_LEN
) {
693 fifocount
= RX_BUF_LEN
;
696 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount
);
698 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
702 /* This should never happen, but lets check anyway... */
703 if (b_idx
+ fifocount
> RX_BUF_LEN
) {
704 nvt_process_rx_ir_data(nvt
);
708 /* Read fifocount bytes from CIR Sample RX FIFO register */
709 for (i
= 0; i
< fifocount
; i
++) {
710 val
= nvt_cir_reg_read(nvt
, CIR_SRXFIFO
);
711 nvt
->buf
[b_idx
+ i
] = val
;
714 nvt
->pkts
+= fifocount
;
715 nvt_dbg("%s: pkts now %d", __func__
, nvt
->pkts
);
717 nvt_process_rx_ir_data(nvt
);
720 nvt_handle_rx_fifo_overrun(nvt
);
722 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
725 static void nvt_cir_log_irqs(u8 status
, u8 iren
)
727 nvt_pr(KERN_INFO
, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
729 status
& CIR_IRSTS_RDR
? " RDR" : "",
730 status
& CIR_IRSTS_RTR
? " RTR" : "",
731 status
& CIR_IRSTS_PE
? " PE" : "",
732 status
& CIR_IRSTS_RFO
? " RFO" : "",
733 status
& CIR_IRSTS_TE
? " TE" : "",
734 status
& CIR_IRSTS_TTR
? " TTR" : "",
735 status
& CIR_IRSTS_TFU
? " TFU" : "",
736 status
& CIR_IRSTS_GH
? " GH" : "",
737 status
& ~(CIR_IRSTS_RDR
| CIR_IRSTS_RTR
| CIR_IRSTS_PE
|
738 CIR_IRSTS_RFO
| CIR_IRSTS_TE
| CIR_IRSTS_TTR
|
739 CIR_IRSTS_TFU
| CIR_IRSTS_GH
) ? " ?" : "");
742 static bool nvt_cir_tx_inactive(struct nvt_dev
*nvt
)
748 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
749 tx_state
= nvt
->tx
.tx_state
;
750 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
752 tx_inactive
= (tx_state
== ST_TX_NONE
);
757 /* interrupt service routine for incoming and outgoing CIR data */
758 static irqreturn_t
nvt_cir_isr(int irq
, void *data
)
760 struct nvt_dev
*nvt
= data
;
761 u8 status
, iren
, cur_state
;
764 nvt_dbg_verbose("%s firing", __func__
);
767 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
768 nvt_efm_disable(nvt
);
771 * Get IR Status register contents. Write 1 to ack/clear
773 * bit: reg name - description
774 * 7: CIR_IRSTS_RDR - RX Data Ready
775 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
776 * 5: CIR_IRSTS_PE - Packet End
777 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
778 * 3: CIR_IRSTS_TE - TX FIFO Empty
779 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
780 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
781 * 0: CIR_IRSTS_GH - Min Length Detected
783 status
= nvt_cir_reg_read(nvt
, CIR_IRSTS
);
785 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__
);
786 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
787 return IRQ_RETVAL(IRQ_NONE
);
790 /* ack/clear all irq flags we've got */
791 nvt_cir_reg_write(nvt
, status
, CIR_IRSTS
);
792 nvt_cir_reg_write(nvt
, 0, CIR_IRSTS
);
794 /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
795 iren
= nvt_cir_reg_read(nvt
, CIR_IREN
);
797 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__
);
798 return IRQ_RETVAL(IRQ_NONE
);
802 nvt_cir_log_irqs(status
, iren
);
804 if (status
& CIR_IRSTS_RTR
) {
805 /* FIXME: add code for study/learn mode */
806 /* We only do rx if not tx'ing */
807 if (nvt_cir_tx_inactive(nvt
))
808 nvt_get_rx_ir_data(nvt
);
811 if (status
& CIR_IRSTS_PE
) {
812 if (nvt_cir_tx_inactive(nvt
))
813 nvt_get_rx_ir_data(nvt
);
815 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
817 cur_state
= nvt
->study_state
;
819 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
821 if (cur_state
== ST_STUDY_NONE
)
822 nvt_clear_cir_fifo(nvt
);
825 if (status
& CIR_IRSTS_TE
)
826 nvt_clear_tx_fifo(nvt
);
828 if (status
& CIR_IRSTS_TTR
) {
829 unsigned int pos
, count
;
832 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
834 pos
= nvt
->tx
.cur_buf_num
;
835 count
= nvt
->tx
.buf_count
;
837 /* Write data into the hardware tx fifo while pos < count */
839 nvt_cir_reg_write(nvt
, nvt
->tx
.buf
[pos
], CIR_STXFIFO
);
840 nvt
->tx
.cur_buf_num
++;
841 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
843 tmp
= nvt_cir_reg_read(nvt
, CIR_IREN
);
844 nvt_cir_reg_write(nvt
, tmp
& ~CIR_IREN_TTR
, CIR_IREN
);
847 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
851 if (status
& CIR_IRSTS_TFU
) {
852 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
853 if (nvt
->tx
.tx_state
== ST_TX_REPLY
) {
854 nvt
->tx
.tx_state
= ST_TX_REQUEST
;
855 wake_up(&nvt
->tx
.queue
);
857 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
860 nvt_dbg_verbose("%s done", __func__
);
861 return IRQ_RETVAL(IRQ_HANDLED
);
864 /* Interrupt service routine for CIR Wake */
865 static irqreturn_t
nvt_cir_wake_isr(int irq
, void *data
)
867 u8 status
, iren
, val
;
868 struct nvt_dev
*nvt
= data
;
871 nvt_dbg_wake("%s firing", __func__
);
873 status
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IRSTS
);
875 return IRQ_RETVAL(IRQ_NONE
);
877 if (status
& CIR_WAKE_IRSTS_IR_PENDING
)
878 nvt_clear_cir_wake_fifo(nvt
);
880 nvt_cir_wake_reg_write(nvt
, status
, CIR_WAKE_IRSTS
);
881 nvt_cir_wake_reg_write(nvt
, 0, CIR_WAKE_IRSTS
);
883 /* Interrupt may be shared with CIR, bail if Wake not enabled */
884 iren
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_IREN
);
886 nvt_dbg_wake("%s exiting, wake not enabled", __func__
);
887 return IRQ_RETVAL(IRQ_HANDLED
);
890 if ((status
& CIR_WAKE_IRSTS_PE
) &&
891 (nvt
->wake_state
== ST_WAKE_START
)) {
892 while (nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY_IDX
)) {
893 val
= nvt_cir_wake_reg_read(nvt
, CIR_WAKE_RD_FIFO_ONLY
);
894 nvt_dbg("setting wake up key: 0x%x", val
);
897 nvt_cir_wake_reg_write(nvt
, 0, CIR_WAKE_IREN
);
898 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
899 nvt
->wake_state
= ST_WAKE_FINISH
;
900 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
903 nvt_dbg_wake("%s done", __func__
);
904 return IRQ_RETVAL(IRQ_HANDLED
);
907 static void nvt_enable_cir(struct nvt_dev
*nvt
)
909 /* set function enable flags */
910 nvt_cir_reg_write(nvt
, CIR_IRCON_TXEN
| CIR_IRCON_RXEN
|
911 CIR_IRCON_RXINV
| CIR_IRCON_SAMPLE_PERIOD_SEL
,
916 /* enable the CIR logical device */
917 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
918 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
920 nvt_efm_disable(nvt
);
922 /* clear all pending interrupts */
923 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
925 /* enable interrupts */
926 nvt_set_cir_iren(nvt
);
929 static void nvt_disable_cir(struct nvt_dev
*nvt
)
931 /* disable CIR interrupts */
932 nvt_cir_reg_write(nvt
, 0, CIR_IREN
);
934 /* clear any and all pending interrupts */
935 nvt_cir_reg_write(nvt
, 0xff, CIR_IRSTS
);
937 /* clear all function enable flags */
938 nvt_cir_reg_write(nvt
, 0, CIR_IRCON
);
940 /* clear hardware rx and tx fifos */
941 nvt_clear_cir_fifo(nvt
);
942 nvt_clear_tx_fifo(nvt
);
946 /* disable the CIR logical device */
947 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
948 nvt_cr_write(nvt
, LOGICAL_DEV_DISABLE
, CR_LOGICAL_DEV_EN
);
950 nvt_efm_disable(nvt
);
953 static int nvt_open(struct rc_dev
*dev
)
955 struct nvt_dev
*nvt
= dev
->priv
;
958 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
961 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
966 static void nvt_close(struct rc_dev
*dev
)
968 struct nvt_dev
*nvt
= dev
->priv
;
971 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
973 nvt_disable_cir(nvt
);
974 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
977 /* Allocate memory, probe hardware, and initialize everything */
978 static int nvt_probe(struct pnp_dev
*pdev
, const struct pnp_device_id
*dev_id
)
984 nvt
= kzalloc(sizeof(struct nvt_dev
), GFP_KERNEL
);
988 /* input device for IR remote (and tx) */
989 rdev
= rc_allocate_device();
994 /* validate pnp resources */
995 if (!pnp_port_valid(pdev
, 0) ||
996 pnp_port_len(pdev
, 0) < CIR_IOREG_LENGTH
) {
997 dev_err(&pdev
->dev
, "IR PNP Port not valid!\n");
1001 if (!pnp_irq_valid(pdev
, 0)) {
1002 dev_err(&pdev
->dev
, "PNP IRQ not valid!\n");
1006 if (!pnp_port_valid(pdev
, 1) ||
1007 pnp_port_len(pdev
, 1) < CIR_IOREG_LENGTH
) {
1008 dev_err(&pdev
->dev
, "Wake PNP Port not valid!\n");
1012 nvt
->cir_addr
= pnp_port_start(pdev
, 0);
1013 nvt
->cir_irq
= pnp_irq(pdev
, 0);
1015 nvt
->cir_wake_addr
= pnp_port_start(pdev
, 1);
1016 /* irq is always shared between cir and cir wake */
1017 nvt
->cir_wake_irq
= nvt
->cir_irq
;
1019 nvt
->cr_efir
= CR_EFIR
;
1020 nvt
->cr_efdr
= CR_EFDR
;
1022 spin_lock_init(&nvt
->nvt_lock
);
1023 spin_lock_init(&nvt
->tx
.lock
);
1024 init_ir_raw_event(&nvt
->rawir
);
1027 /* now claim resources */
1028 if (!request_region(nvt
->cir_addr
,
1029 CIR_IOREG_LENGTH
, NVT_DRIVER_NAME
))
1032 if (request_irq(nvt
->cir_irq
, nvt_cir_isr
, IRQF_SHARED
,
1033 NVT_DRIVER_NAME
, (void *)nvt
))
1036 if (!request_region(nvt
->cir_wake_addr
,
1037 CIR_IOREG_LENGTH
, NVT_DRIVER_NAME
))
1040 if (request_irq(nvt
->cir_wake_irq
, nvt_cir_wake_isr
, IRQF_SHARED
,
1041 NVT_DRIVER_NAME
, (void *)nvt
))
1044 pnp_set_drvdata(pdev
, nvt
);
1047 init_waitqueue_head(&nvt
->tx
.queue
);
1049 ret
= nvt_hw_detect(nvt
);
1053 /* Initialize CIR & CIR Wake Logical Devices */
1054 nvt_efm_enable(nvt
);
1055 nvt_cir_ldev_init(nvt
);
1056 nvt_cir_wake_ldev_init(nvt
);
1057 nvt_efm_disable(nvt
);
1059 /* Initialize CIR & CIR Wake Config Registers */
1060 nvt_cir_regs_init(nvt
);
1061 nvt_cir_wake_regs_init(nvt
);
1063 /* Set up the rc device */
1065 rdev
->driver_type
= RC_DRIVER_IR_RAW
;
1066 rdev
->allowed_protos
= RC_TYPE_ALL
;
1067 rdev
->open
= nvt_open
;
1068 rdev
->close
= nvt_close
;
1069 rdev
->tx_ir
= nvt_tx_ir
;
1070 rdev
->s_tx_carrier
= nvt_set_tx_carrier
;
1071 rdev
->input_name
= "Nuvoton w836x7hg Infrared Remote Transceiver";
1072 rdev
->input_id
.bustype
= BUS_HOST
;
1073 rdev
->input_id
.vendor
= PCI_VENDOR_ID_WINBOND2
;
1074 rdev
->input_id
.product
= nvt
->chip_major
;
1075 rdev
->input_id
.version
= nvt
->chip_minor
;
1076 rdev
->driver_name
= NVT_DRIVER_NAME
;
1077 rdev
->map_name
= RC_MAP_RC6_MCE
;
1079 rdev
->min_timeout
= XYZ
;
1080 rdev
->max_timeout
= XYZ
;
1081 rdev
->timeout
= XYZ
;
1082 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1083 rdev
->rx_resolution
= XYZ
;
1085 rdev
->tx_resolution
= XYZ
;
1088 ret
= rc_register_device(rdev
);
1092 device_set_wakeup_capable(&pdev
->dev
, 1);
1093 device_set_wakeup_enable(&pdev
->dev
, 1);
1095 nvt_pr(KERN_NOTICE
, "driver has been successfully loaded\n");
1098 cir_wake_dump_regs(nvt
);
1105 free_irq(nvt
->cir_irq
, nvt
);
1107 release_region(nvt
->cir_addr
, CIR_IOREG_LENGTH
);
1109 if (nvt
->cir_wake_irq
)
1110 free_irq(nvt
->cir_wake_irq
, nvt
);
1111 if (nvt
->cir_wake_addr
)
1112 release_region(nvt
->cir_wake_addr
, CIR_IOREG_LENGTH
);
1114 rc_free_device(rdev
);
1120 static void __devexit
nvt_remove(struct pnp_dev
*pdev
)
1122 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1123 unsigned long flags
;
1125 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
1127 nvt_cir_reg_write(nvt
, 0, CIR_IREN
);
1128 nvt_disable_cir(nvt
);
1129 /* enable CIR Wake (for IR power-on) */
1130 nvt_enable_wake(nvt
);
1131 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
1133 /* free resources */
1134 free_irq(nvt
->cir_irq
, nvt
);
1135 free_irq(nvt
->cir_wake_irq
, nvt
);
1136 release_region(nvt
->cir_addr
, CIR_IOREG_LENGTH
);
1137 release_region(nvt
->cir_wake_addr
, CIR_IOREG_LENGTH
);
1139 rc_unregister_device(nvt
->rdev
);
1144 static int nvt_suspend(struct pnp_dev
*pdev
, pm_message_t state
)
1146 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1147 unsigned long flags
;
1149 nvt_dbg("%s called", __func__
);
1151 /* zero out misc state tracking */
1152 spin_lock_irqsave(&nvt
->nvt_lock
, flags
);
1153 nvt
->study_state
= ST_STUDY_NONE
;
1154 nvt
->wake_state
= ST_WAKE_NONE
;
1155 spin_unlock_irqrestore(&nvt
->nvt_lock
, flags
);
1157 spin_lock_irqsave(&nvt
->tx
.lock
, flags
);
1158 nvt
->tx
.tx_state
= ST_TX_NONE
;
1159 spin_unlock_irqrestore(&nvt
->tx
.lock
, flags
);
1161 /* disable all CIR interrupts */
1162 nvt_cir_reg_write(nvt
, 0, CIR_IREN
);
1164 nvt_efm_enable(nvt
);
1166 /* disable cir logical dev */
1167 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
1168 nvt_cr_write(nvt
, LOGICAL_DEV_DISABLE
, CR_LOGICAL_DEV_EN
);
1170 nvt_efm_disable(nvt
);
1172 /* make sure wake is enabled */
1173 nvt_enable_wake(nvt
);
1178 static int nvt_resume(struct pnp_dev
*pdev
)
1181 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1183 nvt_dbg("%s called", __func__
);
1185 /* open interrupt */
1186 nvt_set_cir_iren(nvt
);
1188 /* Enable CIR logical device */
1189 nvt_efm_enable(nvt
);
1190 nvt_select_logical_dev(nvt
, LOGICAL_DEV_CIR
);
1191 nvt_cr_write(nvt
, LOGICAL_DEV_ENABLE
, CR_LOGICAL_DEV_EN
);
1193 nvt_efm_disable(nvt
);
1195 nvt_cir_regs_init(nvt
);
1196 nvt_cir_wake_regs_init(nvt
);
1201 static void nvt_shutdown(struct pnp_dev
*pdev
)
1203 struct nvt_dev
*nvt
= pnp_get_drvdata(pdev
);
1204 nvt_enable_wake(nvt
);
1207 static const struct pnp_device_id nvt_ids
[] = {
1208 { "WEC0530", 0 }, /* CIR */
1209 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1213 static struct pnp_driver nvt_driver
= {
1214 .name
= NVT_DRIVER_NAME
,
1215 .id_table
= nvt_ids
,
1216 .flags
= PNP_DRIVER_RES_DO_NOT_CHANGE
,
1218 .remove
= __devexit_p(nvt_remove
),
1219 .suspend
= nvt_suspend
,
1220 .resume
= nvt_resume
,
1221 .shutdown
= nvt_shutdown
,
1226 return pnp_register_driver(&nvt_driver
);
1231 pnp_unregister_driver(&nvt_driver
);
1234 module_param(debug
, int, S_IRUGO
| S_IWUSR
);
1235 MODULE_PARM_DESC(debug
, "Enable debugging output");
1237 MODULE_DEVICE_TABLE(pnp
, nvt_ids
);
1238 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1240 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1241 MODULE_LICENSE("GPL");
1243 module_init(nvt_init
);
1244 module_exit(nvt_exit
);