Merge branch 'media_fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[cris-mirror.git] / net / sunrpc / sched.c
blob243fc09b164e81865a902015f18bd87313413167
1 /*
2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
22 #include <linux/sunrpc/clnt.h>
24 #include "sunrpc.h"
26 #ifdef RPC_DEBUG
27 #define RPCDBG_FACILITY RPCDBG_SCHED
28 #endif
31 * RPC slabs and memory pools
33 #define RPC_BUFFER_MAXSIZE (2048)
34 #define RPC_BUFFER_POOLSIZE (8)
35 #define RPC_TASK_POOLSIZE (8)
36 static struct kmem_cache *rpc_task_slabp __read_mostly;
37 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
38 static mempool_t *rpc_task_mempool __read_mostly;
39 static mempool_t *rpc_buffer_mempool __read_mostly;
41 static void rpc_async_schedule(struct work_struct *);
42 static void rpc_release_task(struct rpc_task *task);
43 static void __rpc_queue_timer_fn(unsigned long ptr);
46 * RPC tasks sit here while waiting for conditions to improve.
48 static struct rpc_wait_queue delay_queue;
51 * rpciod-related stuff
53 struct workqueue_struct *rpciod_workqueue;
56 * Disable the timer for a given RPC task. Should be called with
57 * queue->lock and bh_disabled in order to avoid races within
58 * rpc_run_timer().
60 static void
61 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
63 if (task->tk_timeout == 0)
64 return;
65 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
66 task->tk_timeout = 0;
67 list_del(&task->u.tk_wait.timer_list);
68 if (list_empty(&queue->timer_list.list))
69 del_timer(&queue->timer_list.timer);
72 static void
73 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
75 queue->timer_list.expires = expires;
76 mod_timer(&queue->timer_list.timer, expires);
80 * Set up a timer for the current task.
82 static void
83 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
85 if (!task->tk_timeout)
86 return;
88 dprintk("RPC: %5u setting alarm for %lu ms\n",
89 task->tk_pid, task->tk_timeout * 1000 / HZ);
91 task->u.tk_wait.expires = jiffies + task->tk_timeout;
92 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
93 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
94 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
98 * Add new request to a priority queue.
100 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue, struct rpc_task *task)
102 struct list_head *q;
103 struct rpc_task *t;
105 INIT_LIST_HEAD(&task->u.tk_wait.links);
106 q = &queue->tasks[task->tk_priority];
107 if (unlikely(task->tk_priority > queue->maxpriority))
108 q = &queue->tasks[queue->maxpriority];
109 list_for_each_entry(t, q, u.tk_wait.list) {
110 if (t->tk_owner == task->tk_owner) {
111 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
112 return;
115 list_add_tail(&task->u.tk_wait.list, q);
119 * Add new request to wait queue.
121 * Swapper tasks always get inserted at the head of the queue.
122 * This should avoid many nasty memory deadlocks and hopefully
123 * improve overall performance.
124 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
126 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
128 BUG_ON (RPC_IS_QUEUED(task));
130 if (RPC_IS_PRIORITY(queue))
131 __rpc_add_wait_queue_priority(queue, task);
132 else if (RPC_IS_SWAPPER(task))
133 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
134 else
135 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
136 task->tk_waitqueue = queue;
137 queue->qlen++;
138 rpc_set_queued(task);
140 dprintk("RPC: %5u added to queue %p \"%s\"\n",
141 task->tk_pid, queue, rpc_qname(queue));
145 * Remove request from a priority queue.
147 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
149 struct rpc_task *t;
151 if (!list_empty(&task->u.tk_wait.links)) {
152 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
153 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
154 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
159 * Remove request from queue.
160 * Note: must be called with spin lock held.
162 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
164 __rpc_disable_timer(queue, task);
165 if (RPC_IS_PRIORITY(queue))
166 __rpc_remove_wait_queue_priority(task);
167 list_del(&task->u.tk_wait.list);
168 queue->qlen--;
169 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
170 task->tk_pid, queue, rpc_qname(queue));
173 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
175 queue->priority = priority;
176 queue->count = 1 << (priority * 2);
179 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
181 queue->owner = pid;
182 queue->nr = RPC_BATCH_COUNT;
185 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
187 rpc_set_waitqueue_priority(queue, queue->maxpriority);
188 rpc_set_waitqueue_owner(queue, 0);
191 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
193 int i;
195 spin_lock_init(&queue->lock);
196 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
197 INIT_LIST_HEAD(&queue->tasks[i]);
198 queue->maxpriority = nr_queues - 1;
199 rpc_reset_waitqueue_priority(queue);
200 queue->qlen = 0;
201 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
202 INIT_LIST_HEAD(&queue->timer_list.list);
203 #ifdef RPC_DEBUG
204 queue->name = qname;
205 #endif
208 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
210 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
212 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
214 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
216 __rpc_init_priority_wait_queue(queue, qname, 1);
218 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
220 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
222 del_timer_sync(&queue->timer_list.timer);
224 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
226 static int rpc_wait_bit_killable(void *word)
228 if (fatal_signal_pending(current))
229 return -ERESTARTSYS;
230 schedule();
231 return 0;
234 #ifdef RPC_DEBUG
235 static void rpc_task_set_debuginfo(struct rpc_task *task)
237 static atomic_t rpc_pid;
239 task->tk_pid = atomic_inc_return(&rpc_pid);
241 #else
242 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
245 #endif
247 static void rpc_set_active(struct rpc_task *task)
249 rpc_task_set_debuginfo(task);
250 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
254 * Mark an RPC call as having completed by clearing the 'active' bit
256 static void rpc_mark_complete_task(struct rpc_task *task)
258 smp_mb__before_clear_bit();
259 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
260 smp_mb__after_clear_bit();
261 wake_up_bit(&task->tk_runstate, RPC_TASK_ACTIVE);
265 * Allow callers to wait for completion of an RPC call
267 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
269 if (action == NULL)
270 action = rpc_wait_bit_killable;
271 return wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
272 action, TASK_KILLABLE);
274 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
277 * Make an RPC task runnable.
279 * Note: If the task is ASYNC, this must be called with
280 * the spinlock held to protect the wait queue operation.
282 static void rpc_make_runnable(struct rpc_task *task)
284 rpc_clear_queued(task);
285 if (rpc_test_and_set_running(task))
286 return;
287 if (RPC_IS_ASYNC(task)) {
288 int status;
290 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
291 status = queue_work(rpciod_workqueue, &task->u.tk_work);
292 if (status < 0) {
293 printk(KERN_WARNING "RPC: failed to add task to queue: error: %d!\n", status);
294 task->tk_status = status;
295 return;
297 } else
298 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
302 * Prepare for sleeping on a wait queue.
303 * By always appending tasks to the list we ensure FIFO behavior.
304 * NB: An RPC task will only receive interrupt-driven events as long
305 * as it's on a wait queue.
307 static void __rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
308 rpc_action action)
310 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
311 task->tk_pid, rpc_qname(q), jiffies);
313 __rpc_add_wait_queue(q, task);
315 BUG_ON(task->tk_callback != NULL);
316 task->tk_callback = action;
317 __rpc_add_timer(q, task);
320 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
321 rpc_action action)
323 /* We shouldn't ever put an inactive task to sleep */
324 BUG_ON(!RPC_IS_ACTIVATED(task));
327 * Protect the queue operations.
329 spin_lock_bh(&q->lock);
330 __rpc_sleep_on(q, task, action);
331 spin_unlock_bh(&q->lock);
333 EXPORT_SYMBOL_GPL(rpc_sleep_on);
336 * __rpc_do_wake_up_task - wake up a single rpc_task
337 * @queue: wait queue
338 * @task: task to be woken up
340 * Caller must hold queue->lock, and have cleared the task queued flag.
342 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
344 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
345 task->tk_pid, jiffies);
347 /* Has the task been executed yet? If not, we cannot wake it up! */
348 if (!RPC_IS_ACTIVATED(task)) {
349 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
350 return;
353 __rpc_remove_wait_queue(queue, task);
355 rpc_make_runnable(task);
357 dprintk("RPC: __rpc_wake_up_task done\n");
361 * Wake up a queued task while the queue lock is being held
363 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
365 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
366 __rpc_do_wake_up_task(queue, task);
370 * Tests whether rpc queue is empty
372 int rpc_queue_empty(struct rpc_wait_queue *queue)
374 int res;
376 spin_lock_bh(&queue->lock);
377 res = queue->qlen;
378 spin_unlock_bh(&queue->lock);
379 return res == 0;
381 EXPORT_SYMBOL_GPL(rpc_queue_empty);
384 * Wake up a task on a specific queue
386 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
388 spin_lock_bh(&queue->lock);
389 rpc_wake_up_task_queue_locked(queue, task);
390 spin_unlock_bh(&queue->lock);
392 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
395 * Wake up the next task on a priority queue.
397 static struct rpc_task * __rpc_wake_up_next_priority(struct rpc_wait_queue *queue)
399 struct list_head *q;
400 struct rpc_task *task;
403 * Service a batch of tasks from a single owner.
405 q = &queue->tasks[queue->priority];
406 if (!list_empty(q)) {
407 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
408 if (queue->owner == task->tk_owner) {
409 if (--queue->nr)
410 goto out;
411 list_move_tail(&task->u.tk_wait.list, q);
414 * Check if we need to switch queues.
416 if (--queue->count)
417 goto new_owner;
421 * Service the next queue.
423 do {
424 if (q == &queue->tasks[0])
425 q = &queue->tasks[queue->maxpriority];
426 else
427 q = q - 1;
428 if (!list_empty(q)) {
429 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
430 goto new_queue;
432 } while (q != &queue->tasks[queue->priority]);
434 rpc_reset_waitqueue_priority(queue);
435 return NULL;
437 new_queue:
438 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
439 new_owner:
440 rpc_set_waitqueue_owner(queue, task->tk_owner);
441 out:
442 rpc_wake_up_task_queue_locked(queue, task);
443 return task;
447 * Wake up the next task on the wait queue.
449 struct rpc_task * rpc_wake_up_next(struct rpc_wait_queue *queue)
451 struct rpc_task *task = NULL;
453 dprintk("RPC: wake_up_next(%p \"%s\")\n",
454 queue, rpc_qname(queue));
455 spin_lock_bh(&queue->lock);
456 if (RPC_IS_PRIORITY(queue))
457 task = __rpc_wake_up_next_priority(queue);
458 else {
459 task_for_first(task, &queue->tasks[0])
460 rpc_wake_up_task_queue_locked(queue, task);
462 spin_unlock_bh(&queue->lock);
464 return task;
466 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
469 * rpc_wake_up - wake up all rpc_tasks
470 * @queue: rpc_wait_queue on which the tasks are sleeping
472 * Grabs queue->lock
474 void rpc_wake_up(struct rpc_wait_queue *queue)
476 struct rpc_task *task, *next;
477 struct list_head *head;
479 spin_lock_bh(&queue->lock);
480 head = &queue->tasks[queue->maxpriority];
481 for (;;) {
482 list_for_each_entry_safe(task, next, head, u.tk_wait.list)
483 rpc_wake_up_task_queue_locked(queue, task);
484 if (head == &queue->tasks[0])
485 break;
486 head--;
488 spin_unlock_bh(&queue->lock);
490 EXPORT_SYMBOL_GPL(rpc_wake_up);
493 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
494 * @queue: rpc_wait_queue on which the tasks are sleeping
495 * @status: status value to set
497 * Grabs queue->lock
499 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
501 struct rpc_task *task, *next;
502 struct list_head *head;
504 spin_lock_bh(&queue->lock);
505 head = &queue->tasks[queue->maxpriority];
506 for (;;) {
507 list_for_each_entry_safe(task, next, head, u.tk_wait.list) {
508 task->tk_status = status;
509 rpc_wake_up_task_queue_locked(queue, task);
511 if (head == &queue->tasks[0])
512 break;
513 head--;
515 spin_unlock_bh(&queue->lock);
517 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
519 static void __rpc_queue_timer_fn(unsigned long ptr)
521 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
522 struct rpc_task *task, *n;
523 unsigned long expires, now, timeo;
525 spin_lock(&queue->lock);
526 expires = now = jiffies;
527 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
528 timeo = task->u.tk_wait.expires;
529 if (time_after_eq(now, timeo)) {
530 dprintk("RPC: %5u timeout\n", task->tk_pid);
531 task->tk_status = -ETIMEDOUT;
532 rpc_wake_up_task_queue_locked(queue, task);
533 continue;
535 if (expires == now || time_after(expires, timeo))
536 expires = timeo;
538 if (!list_empty(&queue->timer_list.list))
539 rpc_set_queue_timer(queue, expires);
540 spin_unlock(&queue->lock);
543 static void __rpc_atrun(struct rpc_task *task)
545 task->tk_status = 0;
549 * Run a task at a later time
551 void rpc_delay(struct rpc_task *task, unsigned long delay)
553 task->tk_timeout = delay;
554 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
556 EXPORT_SYMBOL_GPL(rpc_delay);
559 * Helper to call task->tk_ops->rpc_call_prepare
561 void rpc_prepare_task(struct rpc_task *task)
563 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
567 * Helper that calls task->tk_ops->rpc_call_done if it exists
569 void rpc_exit_task(struct rpc_task *task)
571 task->tk_action = NULL;
572 if (task->tk_ops->rpc_call_done != NULL) {
573 task->tk_ops->rpc_call_done(task, task->tk_calldata);
574 if (task->tk_action != NULL) {
575 WARN_ON(RPC_ASSASSINATED(task));
576 /* Always release the RPC slot and buffer memory */
577 xprt_release(task);
582 void rpc_exit(struct rpc_task *task, int status)
584 task->tk_status = status;
585 task->tk_action = rpc_exit_task;
586 if (RPC_IS_QUEUED(task))
587 rpc_wake_up_queued_task(task->tk_waitqueue, task);
589 EXPORT_SYMBOL_GPL(rpc_exit);
591 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
593 if (ops->rpc_release != NULL)
594 ops->rpc_release(calldata);
598 * This is the RPC `scheduler' (or rather, the finite state machine).
600 static void __rpc_execute(struct rpc_task *task)
602 struct rpc_wait_queue *queue;
603 int task_is_async = RPC_IS_ASYNC(task);
604 int status = 0;
606 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
607 task->tk_pid, task->tk_flags);
609 BUG_ON(RPC_IS_QUEUED(task));
611 for (;;) {
614 * Execute any pending callback.
616 if (task->tk_callback) {
617 void (*save_callback)(struct rpc_task *);
620 * We set tk_callback to NULL before calling it,
621 * in case it sets the tk_callback field itself:
623 save_callback = task->tk_callback;
624 task->tk_callback = NULL;
625 save_callback(task);
629 * Perform the next FSM step.
630 * tk_action may be NULL when the task has been killed
631 * by someone else.
633 if (!RPC_IS_QUEUED(task)) {
634 if (task->tk_action == NULL)
635 break;
636 task->tk_action(task);
640 * Lockless check for whether task is sleeping or not.
642 if (!RPC_IS_QUEUED(task))
643 continue;
645 * The queue->lock protects against races with
646 * rpc_make_runnable().
648 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
649 * rpc_task, rpc_make_runnable() can assign it to a
650 * different workqueue. We therefore cannot assume that the
651 * rpc_task pointer may still be dereferenced.
653 queue = task->tk_waitqueue;
654 spin_lock_bh(&queue->lock);
655 if (!RPC_IS_QUEUED(task)) {
656 spin_unlock_bh(&queue->lock);
657 continue;
659 rpc_clear_running(task);
660 spin_unlock_bh(&queue->lock);
661 if (task_is_async)
662 return;
664 /* sync task: sleep here */
665 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
666 status = out_of_line_wait_on_bit(&task->tk_runstate,
667 RPC_TASK_QUEUED, rpc_wait_bit_killable,
668 TASK_KILLABLE);
669 if (status == -ERESTARTSYS) {
671 * When a sync task receives a signal, it exits with
672 * -ERESTARTSYS. In order to catch any callbacks that
673 * clean up after sleeping on some queue, we don't
674 * break the loop here, but go around once more.
676 dprintk("RPC: %5u got signal\n", task->tk_pid);
677 task->tk_flags |= RPC_TASK_KILLED;
678 rpc_exit(task, -ERESTARTSYS);
680 rpc_set_running(task);
681 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
684 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
685 task->tk_status);
686 /* Release all resources associated with the task */
687 rpc_release_task(task);
691 * User-visible entry point to the scheduler.
693 * This may be called recursively if e.g. an async NFS task updates
694 * the attributes and finds that dirty pages must be flushed.
695 * NOTE: Upon exit of this function the task is guaranteed to be
696 * released. In particular note that tk_release() will have
697 * been called, so your task memory may have been freed.
699 void rpc_execute(struct rpc_task *task)
701 rpc_set_active(task);
702 rpc_make_runnable(task);
703 if (!RPC_IS_ASYNC(task))
704 __rpc_execute(task);
707 static void rpc_async_schedule(struct work_struct *work)
709 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
713 * rpc_malloc - allocate an RPC buffer
714 * @task: RPC task that will use this buffer
715 * @size: requested byte size
717 * To prevent rpciod from hanging, this allocator never sleeps,
718 * returning NULL if the request cannot be serviced immediately.
719 * The caller can arrange to sleep in a way that is safe for rpciod.
721 * Most requests are 'small' (under 2KiB) and can be serviced from a
722 * mempool, ensuring that NFS reads and writes can always proceed,
723 * and that there is good locality of reference for these buffers.
725 * In order to avoid memory starvation triggering more writebacks of
726 * NFS requests, we avoid using GFP_KERNEL.
728 void *rpc_malloc(struct rpc_task *task, size_t size)
730 struct rpc_buffer *buf;
731 gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
733 size += sizeof(struct rpc_buffer);
734 if (size <= RPC_BUFFER_MAXSIZE)
735 buf = mempool_alloc(rpc_buffer_mempool, gfp);
736 else
737 buf = kmalloc(size, gfp);
739 if (!buf)
740 return NULL;
742 buf->len = size;
743 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
744 task->tk_pid, size, buf);
745 return &buf->data;
747 EXPORT_SYMBOL_GPL(rpc_malloc);
750 * rpc_free - free buffer allocated via rpc_malloc
751 * @buffer: buffer to free
754 void rpc_free(void *buffer)
756 size_t size;
757 struct rpc_buffer *buf;
759 if (!buffer)
760 return;
762 buf = container_of(buffer, struct rpc_buffer, data);
763 size = buf->len;
765 dprintk("RPC: freeing buffer of size %zu at %p\n",
766 size, buf);
768 if (size <= RPC_BUFFER_MAXSIZE)
769 mempool_free(buf, rpc_buffer_mempool);
770 else
771 kfree(buf);
773 EXPORT_SYMBOL_GPL(rpc_free);
776 * Creation and deletion of RPC task structures
778 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
780 memset(task, 0, sizeof(*task));
781 atomic_set(&task->tk_count, 1);
782 task->tk_flags = task_setup_data->flags;
783 task->tk_ops = task_setup_data->callback_ops;
784 task->tk_calldata = task_setup_data->callback_data;
785 INIT_LIST_HEAD(&task->tk_task);
787 /* Initialize retry counters */
788 task->tk_garb_retry = 2;
789 task->tk_cred_retry = 2;
791 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
792 task->tk_owner = current->tgid;
794 /* Initialize workqueue for async tasks */
795 task->tk_workqueue = task_setup_data->workqueue;
797 if (task->tk_ops->rpc_call_prepare != NULL)
798 task->tk_action = rpc_prepare_task;
800 /* starting timestamp */
801 task->tk_start = ktime_get();
803 dprintk("RPC: new task initialized, procpid %u\n",
804 task_pid_nr(current));
807 static struct rpc_task *
808 rpc_alloc_task(void)
810 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
814 * Create a new task for the specified client.
816 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
818 struct rpc_task *task = setup_data->task;
819 unsigned short flags = 0;
821 if (task == NULL) {
822 task = rpc_alloc_task();
823 if (task == NULL) {
824 rpc_release_calldata(setup_data->callback_ops,
825 setup_data->callback_data);
826 return ERR_PTR(-ENOMEM);
828 flags = RPC_TASK_DYNAMIC;
831 rpc_init_task(task, setup_data);
832 if (task->tk_status < 0) {
833 int err = task->tk_status;
834 rpc_put_task(task);
835 return ERR_PTR(err);
838 task->tk_flags |= flags;
839 dprintk("RPC: allocated task %p\n", task);
840 return task;
843 static void rpc_free_task(struct rpc_task *task)
845 const struct rpc_call_ops *tk_ops = task->tk_ops;
846 void *calldata = task->tk_calldata;
848 if (task->tk_flags & RPC_TASK_DYNAMIC) {
849 dprintk("RPC: %5u freeing task\n", task->tk_pid);
850 mempool_free(task, rpc_task_mempool);
852 rpc_release_calldata(tk_ops, calldata);
855 static void rpc_async_release(struct work_struct *work)
857 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
860 void rpc_put_task(struct rpc_task *task)
862 if (!atomic_dec_and_test(&task->tk_count))
863 return;
864 /* Release resources */
865 if (task->tk_rqstp)
866 xprt_release(task);
867 if (task->tk_msg.rpc_cred)
868 put_rpccred(task->tk_msg.rpc_cred);
869 rpc_task_release_client(task);
870 if (task->tk_workqueue != NULL) {
871 INIT_WORK(&task->u.tk_work, rpc_async_release);
872 queue_work(task->tk_workqueue, &task->u.tk_work);
873 } else
874 rpc_free_task(task);
876 EXPORT_SYMBOL_GPL(rpc_put_task);
878 static void rpc_release_task(struct rpc_task *task)
880 dprintk("RPC: %5u release task\n", task->tk_pid);
882 BUG_ON (RPC_IS_QUEUED(task));
884 /* Wake up anyone who is waiting for task completion */
885 rpc_mark_complete_task(task);
887 rpc_put_task(task);
890 int rpciod_up(void)
892 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
895 void rpciod_down(void)
897 module_put(THIS_MODULE);
901 * Start up the rpciod workqueue.
903 static int rpciod_start(void)
905 struct workqueue_struct *wq;
908 * Create the rpciod thread and wait for it to start.
910 dprintk("RPC: creating workqueue rpciod\n");
911 wq = alloc_workqueue("rpciod", WQ_RESCUER, 0);
912 rpciod_workqueue = wq;
913 return rpciod_workqueue != NULL;
916 static void rpciod_stop(void)
918 struct workqueue_struct *wq = NULL;
920 if (rpciod_workqueue == NULL)
921 return;
922 dprintk("RPC: destroying workqueue rpciod\n");
924 wq = rpciod_workqueue;
925 rpciod_workqueue = NULL;
926 destroy_workqueue(wq);
929 void
930 rpc_destroy_mempool(void)
932 rpciod_stop();
933 if (rpc_buffer_mempool)
934 mempool_destroy(rpc_buffer_mempool);
935 if (rpc_task_mempool)
936 mempool_destroy(rpc_task_mempool);
937 if (rpc_task_slabp)
938 kmem_cache_destroy(rpc_task_slabp);
939 if (rpc_buffer_slabp)
940 kmem_cache_destroy(rpc_buffer_slabp);
941 rpc_destroy_wait_queue(&delay_queue);
945 rpc_init_mempool(void)
948 * The following is not strictly a mempool initialisation,
949 * but there is no harm in doing it here
951 rpc_init_wait_queue(&delay_queue, "delayq");
952 if (!rpciod_start())
953 goto err_nomem;
955 rpc_task_slabp = kmem_cache_create("rpc_tasks",
956 sizeof(struct rpc_task),
957 0, SLAB_HWCACHE_ALIGN,
958 NULL);
959 if (!rpc_task_slabp)
960 goto err_nomem;
961 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
962 RPC_BUFFER_MAXSIZE,
963 0, SLAB_HWCACHE_ALIGN,
964 NULL);
965 if (!rpc_buffer_slabp)
966 goto err_nomem;
967 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
968 rpc_task_slabp);
969 if (!rpc_task_mempool)
970 goto err_nomem;
971 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
972 rpc_buffer_slabp);
973 if (!rpc_buffer_mempool)
974 goto err_nomem;
975 return 0;
976 err_nomem:
977 rpc_destroy_mempool();
978 return -ENOMEM;