2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
40 * --> Develop a low-power-consumption strategy, and implement it.
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
73 #define DRV_NAME "sata_mv"
74 #define DRV_VERSION "1.20"
77 /* BAR's are enumerated in terms of pci_resource_start() terms */
78 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
79 MV_IO_BAR
= 2, /* offset 0x18: IO space */
80 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
82 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
83 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
86 MV_IRQ_COAL_REG_BASE
= 0x18000, /* 6xxx part only */
87 MV_IRQ_COAL_CAUSE
= (MV_IRQ_COAL_REG_BASE
+ 0x08),
88 MV_IRQ_COAL_CAUSE_LO
= (MV_IRQ_COAL_REG_BASE
+ 0x88),
89 MV_IRQ_COAL_CAUSE_HI
= (MV_IRQ_COAL_REG_BASE
+ 0x8c),
90 MV_IRQ_COAL_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xcc),
91 MV_IRQ_COAL_TIME_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xd0),
93 MV_SATAHC0_REG_BASE
= 0x20000,
94 MV_FLASH_CTL
= 0x1046c,
95 MV_GPIO_PORT_CTL
= 0x104f0,
96 MV_RESET_CFG
= 0x180d8,
98 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
99 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
100 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
101 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
104 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
106 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
107 * CRPB needs alignment on a 256B boundary. Size == 256B
108 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
110 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
111 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
113 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
115 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
116 MV_PORT_HC_SHIFT
= 2,
117 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
118 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
119 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
122 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
123 MV_FLAG_IRQ_COALESCE
= (1 << 29), /* IRQ coalescing capability */
124 /* SoC integrated controllers, no PCI interface */
125 MV_FLAG_SOC
= (1 << 28),
127 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
128 ATA_FLAG_MMIO
| ATA_FLAG_NO_ATAPI
|
129 ATA_FLAG_PIO_POLLING
,
130 MV_6XXX_FLAGS
= MV_FLAG_IRQ_COALESCE
,
132 CRQB_FLAG_READ
= (1 << 0),
134 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
135 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
136 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
137 CRQB_CMD_ADDR_SHIFT
= 8,
138 CRQB_CMD_CS
= (0x2 << 11),
139 CRQB_CMD_LAST
= (1 << 15),
141 CRPB_FLAG_STATUS_SHIFT
= 8,
142 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
143 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
145 EPRD_FLAG_END_OF_TBL
= (1 << 31),
147 /* PCI interface registers */
149 PCI_COMMAND_OFS
= 0xc00,
151 PCI_MAIN_CMD_STS_OFS
= 0xd30,
152 STOP_PCI_MASTER
= (1 << 2),
153 PCI_MASTER_EMPTY
= (1 << 3),
154 GLOB_SFT_RST
= (1 << 4),
157 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
158 MV_PCI_DISC_TIMER
= 0xd04,
159 MV_PCI_MSI_TRIGGER
= 0xc38,
160 MV_PCI_SERR_MASK
= 0xc28,
161 MV_PCI_XBAR_TMOUT
= 0x1d04,
162 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
163 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
164 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
165 MV_PCI_ERR_COMMAND
= 0x1d50,
167 PCI_IRQ_CAUSE_OFS
= 0x1d58,
168 PCI_IRQ_MASK_OFS
= 0x1d5c,
169 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
171 PCIE_IRQ_CAUSE_OFS
= 0x1900,
172 PCIE_IRQ_MASK_OFS
= 0x1910,
173 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
175 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
176 PCI_HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
177 PCI_HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
178 SOC_HC_MAIN_IRQ_CAUSE_OFS
= 0x20020,
179 SOC_HC_MAIN_IRQ_MASK_OFS
= 0x20024,
180 ERR_IRQ
= (1 << 0), /* shift by port # */
181 DONE_IRQ
= (1 << 1), /* shift by port # */
182 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
183 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
185 TRAN_LO_DONE
= (1 << 19), /* 6xxx: IRQ coalescing */
186 TRAN_HI_DONE
= (1 << 20), /* 6xxx: IRQ coalescing */
187 PORTS_0_3_COAL_DONE
= (1 << 8),
188 PORTS_4_7_COAL_DONE
= (1 << 17),
189 PORTS_0_7_COAL_DONE
= (1 << 21), /* 6xxx: IRQ coalescing */
190 GPIO_INT
= (1 << 22),
191 SELF_INT
= (1 << 23),
192 TWSI_INT
= (1 << 24),
193 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
194 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
195 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
196 HC_MAIN_MASKED_IRQS
= (TRAN_LO_DONE
| TRAN_HI_DONE
|
197 PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
198 PORTS_0_7_COAL_DONE
| GPIO_INT
| TWSI_INT
|
200 HC_MAIN_MASKED_IRQS_5
= (PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
202 HC_MAIN_MASKED_IRQS_SOC
= (PORTS_0_3_COAL_DONE
| HC_MAIN_RSVD_SOC
),
204 /* SATAHC registers */
207 HC_IRQ_CAUSE_OFS
= 0x14,
208 DMA_IRQ
= (1 << 0), /* shift by port # */
209 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
210 DEV_IRQ
= (1 << 8), /* shift by port # */
212 /* Shadow block registers */
214 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
217 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
218 SATA_ACTIVE_OFS
= 0x350,
219 SATA_FIS_IRQ_CAUSE_OFS
= 0x364,
222 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
227 SATA_IFCTL_OFS
= 0x344,
228 SATA_IFSTAT_OFS
= 0x34c,
229 VENDOR_UNIQUE_FIS_OFS
= 0x35c,
232 FIS_CFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
237 SATA_INTERFACE_CFG
= 0x050,
239 MV_M2_PREAMP_MASK
= 0x7e0,
243 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
244 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
245 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
246 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
247 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
248 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
249 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
251 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
252 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
253 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
254 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
255 EDMA_ERR_DEV
= (1 << 2), /* device error */
256 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
257 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
258 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
259 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
260 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
261 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
262 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
263 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
264 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
265 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
266 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
268 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
269 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
270 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
271 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
272 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
274 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
276 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
277 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
278 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
279 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
280 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
281 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
283 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
285 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
286 EDMA_ERR_OVERRUN_5
= (1 << 5),
287 EDMA_ERR_UNDERRUN_5
= (1 << 6),
289 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
290 EDMA_ERR_LNK_CTRL_RX_1
|
291 EDMA_ERR_LNK_CTRL_RX_3
|
292 EDMA_ERR_LNK_CTRL_TX
,
294 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
304 EDMA_ERR_LNK_CTRL_RX_2
|
305 EDMA_ERR_LNK_DATA_RX
|
306 EDMA_ERR_LNK_DATA_TX
|
307 EDMA_ERR_TRANS_PROTO
,
309 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
314 EDMA_ERR_UNDERRUN_5
|
315 EDMA_ERR_SELF_DIS_5
|
321 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
322 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
324 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
325 EDMA_REQ_Q_PTR_SHIFT
= 5,
327 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
328 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
329 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
330 EDMA_RSP_Q_PTR_SHIFT
= 3,
332 EDMA_CMD_OFS
= 0x28, /* EDMA command register */
333 EDMA_EN
= (1 << 0), /* enable EDMA */
334 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
335 ATA_RST
= (1 << 2), /* reset trans/link/phy */
337 EDMA_IORDY_TMOUT
= 0x34,
340 GEN_II_NCQ_MAX_SECTORS
= 256, /* max sects/io on Gen2 w/NCQ */
342 /* Host private flags (hp_flags) */
343 MV_HP_FLAG_MSI
= (1 << 0),
344 MV_HP_ERRATA_50XXB0
= (1 << 1),
345 MV_HP_ERRATA_50XXB2
= (1 << 2),
346 MV_HP_ERRATA_60X1B2
= (1 << 3),
347 MV_HP_ERRATA_60X1C0
= (1 << 4),
348 MV_HP_ERRATA_XX42A0
= (1 << 5),
349 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
350 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
351 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
352 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
354 /* Port private flags (pp_flags) */
355 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
356 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
359 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
360 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
361 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
362 #define HAS_PCI(host) (!((host)->ports[0]->flags & MV_FLAG_SOC))
364 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
365 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
368 /* DMA boundary 0xffff is required by the s/g splitting
369 * we need on /length/ in mv_fill-sg().
371 MV_DMA_BOUNDARY
= 0xffffU
,
373 /* mask of register bits containing lower 32 bits
374 * of EDMA request queue DMA address
376 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
378 /* ditto, for response queue */
379 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
393 /* Command ReQuest Block: 32B */
409 /* Command ResPonse Block: 8B */
416 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
424 struct mv_port_priv
{
425 struct mv_crqb
*crqb
;
427 struct mv_crpb
*crpb
;
429 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
430 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
432 unsigned int req_idx
;
433 unsigned int resp_idx
;
438 struct mv_port_signal
{
443 struct mv_host_priv
{
445 struct mv_port_signal signal
[8];
446 const struct mv_hw_ops
*ops
;
449 void __iomem
*main_irq_cause_addr
;
450 void __iomem
*main_irq_mask_addr
;
455 * These consistent DMA memory pools give us guaranteed
456 * alignment for hardware-accessed data structures,
457 * and less memory waste in accomplishing the alignment.
459 struct dma_pool
*crqb_pool
;
460 struct dma_pool
*crpb_pool
;
461 struct dma_pool
*sg_tbl_pool
;
465 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
467 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
468 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
470 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
472 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
473 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
476 static int mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
);
477 static int mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
478 static int mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
);
479 static int mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
480 static int mv_port_start(struct ata_port
*ap
);
481 static void mv_port_stop(struct ata_port
*ap
);
482 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
483 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
484 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
485 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
486 unsigned long deadline
);
487 static void mv_eh_freeze(struct ata_port
*ap
);
488 static void mv_eh_thaw(struct ata_port
*ap
);
489 static void mv6_dev_config(struct ata_device
*dev
);
491 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
493 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
494 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
496 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
498 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
499 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
501 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
503 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
504 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
506 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
508 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
509 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
511 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
513 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
514 void __iomem
*mmio
, unsigned int n_hc
);
515 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
517 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
518 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
519 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
520 unsigned int port_no
);
521 static int mv_stop_edma(struct ata_port
*ap
);
522 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
523 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
);
525 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
526 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
527 unsigned long deadline
);
528 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
529 unsigned long deadline
);
531 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
532 * because we have to allow room for worst case splitting of
533 * PRDs for 64K boundaries in mv_fill_sg().
535 static struct scsi_host_template mv5_sht
= {
536 ATA_BASE_SHT(DRV_NAME
),
537 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
538 .dma_boundary
= MV_DMA_BOUNDARY
,
541 static struct scsi_host_template mv6_sht
= {
542 ATA_NCQ_SHT(DRV_NAME
),
543 .can_queue
= MV_MAX_Q_DEPTH
- 1,
544 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
545 .dma_boundary
= MV_DMA_BOUNDARY
,
548 static struct ata_port_operations mv5_ops
= {
549 .inherits
= &ata_sff_port_ops
,
551 .qc_prep
= mv_qc_prep
,
552 .qc_issue
= mv_qc_issue
,
554 .freeze
= mv_eh_freeze
,
556 .hardreset
= mv_hardreset
,
557 .error_handler
= ata_std_error_handler
, /* avoid SFF EH */
558 .post_internal_cmd
= ATA_OP_NULL
,
560 .scr_read
= mv5_scr_read
,
561 .scr_write
= mv5_scr_write
,
563 .port_start
= mv_port_start
,
564 .port_stop
= mv_port_stop
,
567 static struct ata_port_operations mv6_ops
= {
568 .inherits
= &mv5_ops
,
569 .qc_defer
= sata_pmp_qc_defer_cmd_switch
,
570 .dev_config
= mv6_dev_config
,
571 .scr_read
= mv_scr_read
,
572 .scr_write
= mv_scr_write
,
574 .pmp_hardreset
= mv_pmp_hardreset
,
575 .pmp_softreset
= mv_softreset
,
576 .softreset
= mv_softreset
,
577 .error_handler
= sata_pmp_error_handler
,
580 static struct ata_port_operations mv_iie_ops
= {
581 .inherits
= &mv6_ops
,
582 .qc_defer
= ata_std_qc_defer
, /* FIS-based switching */
583 .dev_config
= ATA_OP_NULL
,
584 .qc_prep
= mv_qc_prep_iie
,
587 static const struct ata_port_info mv_port_info
[] = {
589 .flags
= MV_COMMON_FLAGS
,
590 .pio_mask
= 0x1f, /* pio0-4 */
591 .udma_mask
= ATA_UDMA6
,
592 .port_ops
= &mv5_ops
,
595 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
596 .pio_mask
= 0x1f, /* pio0-4 */
597 .udma_mask
= ATA_UDMA6
,
598 .port_ops
= &mv5_ops
,
601 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
602 .pio_mask
= 0x1f, /* pio0-4 */
603 .udma_mask
= ATA_UDMA6
,
604 .port_ops
= &mv5_ops
,
607 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
608 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
610 .pio_mask
= 0x1f, /* pio0-4 */
611 .udma_mask
= ATA_UDMA6
,
612 .port_ops
= &mv6_ops
,
615 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
616 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
617 ATA_FLAG_NCQ
| MV_FLAG_DUAL_HC
,
618 .pio_mask
= 0x1f, /* pio0-4 */
619 .udma_mask
= ATA_UDMA6
,
620 .port_ops
= &mv6_ops
,
623 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
624 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
626 .pio_mask
= 0x1f, /* pio0-4 */
627 .udma_mask
= ATA_UDMA6
,
628 .port_ops
= &mv_iie_ops
,
631 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
632 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
634 .pio_mask
= 0x1f, /* pio0-4 */
635 .udma_mask
= ATA_UDMA6
,
636 .port_ops
= &mv_iie_ops
,
639 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
640 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
641 ATA_FLAG_NCQ
| MV_FLAG_SOC
,
642 .pio_mask
= 0x1f, /* pio0-4 */
643 .udma_mask
= ATA_UDMA6
,
644 .port_ops
= &mv_iie_ops
,
648 static const struct pci_device_id mv_pci_tbl
[] = {
649 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
650 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
651 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
652 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
653 /* RocketRAID 1740/174x have different identifiers */
654 { PCI_VDEVICE(TTI
, 0x1740), chip_508x
},
655 { PCI_VDEVICE(TTI
, 0x1742), chip_508x
},
657 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
658 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
659 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
660 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
661 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
663 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
666 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
668 /* Marvell 7042 support */
669 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
671 /* Highpoint RocketRAID PCIe series */
672 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
673 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
675 { } /* terminate list */
678 static const struct mv_hw_ops mv5xxx_ops
= {
679 .phy_errata
= mv5_phy_errata
,
680 .enable_leds
= mv5_enable_leds
,
681 .read_preamp
= mv5_read_preamp
,
682 .reset_hc
= mv5_reset_hc
,
683 .reset_flash
= mv5_reset_flash
,
684 .reset_bus
= mv5_reset_bus
,
687 static const struct mv_hw_ops mv6xxx_ops
= {
688 .phy_errata
= mv6_phy_errata
,
689 .enable_leds
= mv6_enable_leds
,
690 .read_preamp
= mv6_read_preamp
,
691 .reset_hc
= mv6_reset_hc
,
692 .reset_flash
= mv6_reset_flash
,
693 .reset_bus
= mv_reset_pci_bus
,
696 static const struct mv_hw_ops mv_soc_ops
= {
697 .phy_errata
= mv6_phy_errata
,
698 .enable_leds
= mv_soc_enable_leds
,
699 .read_preamp
= mv_soc_read_preamp
,
700 .reset_hc
= mv_soc_reset_hc
,
701 .reset_flash
= mv_soc_reset_flash
,
702 .reset_bus
= mv_soc_reset_bus
,
709 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
712 (void) readl(addr
); /* flush to avoid PCI posted write */
715 static inline unsigned int mv_hc_from_port(unsigned int port
)
717 return port
>> MV_PORT_HC_SHIFT
;
720 static inline unsigned int mv_hardport_from_port(unsigned int port
)
722 return port
& MV_PORT_MASK
;
726 * Consolidate some rather tricky bit shift calculations.
727 * This is hot-path stuff, so not a function.
728 * Simple code, with two return values, so macro rather than inline.
730 * port is the sole input, in range 0..7.
731 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
732 * hardport is the other output, in range 0..3.
734 * Note that port and hardport may be the same variable in some cases.
736 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
738 shift = mv_hc_from_port(port) * HC_SHIFT; \
739 hardport = mv_hardport_from_port(port); \
740 shift += hardport * 2; \
743 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
745 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
748 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
751 return mv_hc_base(base
, mv_hc_from_port(port
));
754 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
756 return mv_hc_base_from_port(base
, port
) +
757 MV_SATAHC_ARBTR_REG_SZ
+
758 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
761 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
763 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
764 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
766 return hc_mmio
+ ofs
;
769 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
771 struct mv_host_priv
*hpriv
= host
->private_data
;
775 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
777 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
780 static inline int mv_get_hc_count(unsigned long port_flags
)
782 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
785 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
786 struct mv_host_priv
*hpriv
,
787 struct mv_port_priv
*pp
)
792 * initialize request queue
794 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
795 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
797 WARN_ON(pp
->crqb_dma
& 0x3ff);
798 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
799 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
800 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
802 if (hpriv
->hp_flags
& MV_HP_ERRATA_XX42A0
)
803 writelfl((pp
->crqb_dma
& 0xffffffff) | index
,
804 port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
806 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
809 * initialize response queue
811 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
812 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
814 WARN_ON(pp
->crpb_dma
& 0xff);
815 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
817 if (hpriv
->hp_flags
& MV_HP_ERRATA_XX42A0
)
818 writelfl((pp
->crpb_dma
& 0xffffffff) | index
,
819 port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
821 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
823 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
824 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
828 * mv_start_dma - Enable eDMA engine
829 * @base: port base address
830 * @pp: port private data
832 * Verify the local cache of the eDMA state is accurate with a
836 * Inherited from caller.
838 static void mv_start_dma(struct ata_port
*ap
, void __iomem
*port_mmio
,
839 struct mv_port_priv
*pp
, u8 protocol
)
841 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
843 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
844 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
845 if (want_ncq
!= using_ncq
)
848 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
849 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
850 int hardport
= mv_hardport_from_port(ap
->port_no
);
851 void __iomem
*hc_mmio
= mv_hc_base_from_port(
852 mv_host_base(ap
->host
), hardport
);
853 u32 hc_irq_cause
, ipending
;
855 /* clear EDMA event indicators, if any */
856 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
858 /* clear EDMA interrupt indicator, if any */
859 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
860 ipending
= (DEV_IRQ
| DMA_IRQ
) << hardport
;
861 if (hc_irq_cause
& ipending
) {
862 writelfl(hc_irq_cause
& ~ipending
,
863 hc_mmio
+ HC_IRQ_CAUSE_OFS
);
866 mv_edma_cfg(ap
, want_ncq
);
868 /* clear FIS IRQ Cause */
869 writelfl(0, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
871 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
873 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD_OFS
);
874 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
879 * mv_stop_edma_engine - Disable eDMA engine
880 * @port_mmio: io base address
883 * Inherited from caller.
885 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
889 /* Disable eDMA. The disable bit auto clears. */
890 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
892 /* Wait for the chip to confirm eDMA is off. */
893 for (i
= 10000; i
> 0; i
--) {
894 u32 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
895 if (!(reg
& EDMA_EN
))
902 static int mv_stop_edma(struct ata_port
*ap
)
904 void __iomem
*port_mmio
= mv_ap_base(ap
);
905 struct mv_port_priv
*pp
= ap
->private_data
;
907 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
909 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
910 if (mv_stop_edma_engine(port_mmio
)) {
911 ata_port_printk(ap
, KERN_ERR
, "Unable to stop eDMA\n");
918 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
921 for (b
= 0; b
< bytes
; ) {
922 DPRINTK("%p: ", start
+ b
);
923 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
924 printk("%08x ", readl(start
+ b
));
932 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
937 for (b
= 0; b
< bytes
; ) {
938 DPRINTK("%02x: ", b
);
939 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
940 (void) pci_read_config_dword(pdev
, b
, &dw
);
948 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
949 struct pci_dev
*pdev
)
952 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
953 port
>> MV_PORT_HC_SHIFT
);
954 void __iomem
*port_base
;
955 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
958 start_hc
= start_port
= 0;
959 num_ports
= 8; /* shld be benign for 4 port devs */
962 start_hc
= port
>> MV_PORT_HC_SHIFT
;
964 num_ports
= num_hcs
= 1;
966 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
967 num_ports
> 1 ? num_ports
- 1 : start_port
);
970 DPRINTK("PCI config space regs:\n");
971 mv_dump_pci_cfg(pdev
, 0x68);
973 DPRINTK("PCI regs:\n");
974 mv_dump_mem(mmio_base
+0xc00, 0x3c);
975 mv_dump_mem(mmio_base
+0xd00, 0x34);
976 mv_dump_mem(mmio_base
+0xf00, 0x4);
977 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
978 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
979 hc_base
= mv_hc_base(mmio_base
, hc
);
980 DPRINTK("HC regs (HC %i):\n", hc
);
981 mv_dump_mem(hc_base
, 0x1c);
983 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
984 port_base
= mv_port_base(mmio_base
, p
);
985 DPRINTK("EDMA regs (port %i):\n", p
);
986 mv_dump_mem(port_base
, 0x54);
987 DPRINTK("SATA regs (port %i):\n", p
);
988 mv_dump_mem(port_base
+0x300, 0x60);
993 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1001 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
1004 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
1013 static int mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
)
1015 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1017 if (ofs
!= 0xffffffffU
) {
1018 *val
= readl(mv_ap_base(ap
) + ofs
);
1024 static int mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
1026 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1028 if (ofs
!= 0xffffffffU
) {
1029 writelfl(val
, mv_ap_base(ap
) + ofs
);
1035 static void mv6_dev_config(struct ata_device
*adev
)
1038 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1040 * Gen-II does not support NCQ over a port multiplier
1041 * (no FIS-based switching).
1043 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1044 * See mv_qc_prep() for more info.
1046 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1047 if (sata_pmp_attached(adev
->link
->ap
)) {
1048 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1049 ata_dev_printk(adev
, KERN_INFO
,
1050 "NCQ disabled for command-based switching\n");
1051 } else if (adev
->max_sectors
> GEN_II_NCQ_MAX_SECTORS
) {
1052 adev
->max_sectors
= GEN_II_NCQ_MAX_SECTORS
;
1053 ata_dev_printk(adev
, KERN_INFO
,
1054 "max_sectors limited to %u for NCQ\n",
1060 static void mv_config_fbs(void __iomem
*port_mmio
, int enable_fbs
)
1062 u32 old_fcfg
, new_fcfg
, old_ltmode
, new_ltmode
;
1064 * Various bit settings required for operation
1065 * in FIS-based switching (fbs) mode on GenIIe:
1067 old_fcfg
= readl(port_mmio
+ FIS_CFG_OFS
);
1068 old_ltmode
= readl(port_mmio
+ LTMODE_OFS
);
1070 new_fcfg
= old_fcfg
| FIS_CFG_SINGLE_SYNC
;
1071 new_ltmode
= old_ltmode
| LTMODE_BIT8
;
1072 } else { /* disable fbs */
1073 new_fcfg
= old_fcfg
& ~FIS_CFG_SINGLE_SYNC
;
1074 new_ltmode
= old_ltmode
& ~LTMODE_BIT8
;
1076 if (new_fcfg
!= old_fcfg
)
1077 writelfl(new_fcfg
, port_mmio
+ FIS_CFG_OFS
);
1078 if (new_ltmode
!= old_ltmode
)
1079 writelfl(new_ltmode
, port_mmio
+ LTMODE_OFS
);
1082 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
)
1085 struct mv_port_priv
*pp
= ap
->private_data
;
1086 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1087 void __iomem
*port_mmio
= mv_ap_base(ap
);
1089 /* set up non-NCQ EDMA configuration */
1090 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1092 if (IS_GEN_I(hpriv
))
1093 cfg
|= (1 << 8); /* enab config burst size mask */
1095 else if (IS_GEN_II(hpriv
))
1096 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1098 else if (IS_GEN_IIE(hpriv
)) {
1099 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1100 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1101 cfg
|= (1 << 18); /* enab early completion */
1102 cfg
|= (1 << 17); /* enab cut-through (dis stor&forwrd) */
1104 if (want_ncq
&& sata_pmp_attached(ap
)) {
1105 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1106 mv_config_fbs(port_mmio
, 1);
1108 mv_config_fbs(port_mmio
, 0);
1113 cfg
|= EDMA_CFG_NCQ
;
1114 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1116 pp
->pp_flags
&= ~MV_PP_FLAG_NCQ_EN
;
1118 writelfl(cfg
, port_mmio
+ EDMA_CFG_OFS
);
1121 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1123 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1124 struct mv_port_priv
*pp
= ap
->private_data
;
1128 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1132 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1136 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1137 * For later hardware, we have one unique sg_tbl per NCQ tag.
1139 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1140 if (pp
->sg_tbl
[tag
]) {
1141 if (tag
== 0 || !IS_GEN_I(hpriv
))
1142 dma_pool_free(hpriv
->sg_tbl_pool
,
1144 pp
->sg_tbl_dma
[tag
]);
1145 pp
->sg_tbl
[tag
] = NULL
;
1151 * mv_port_start - Port specific init/start routine.
1152 * @ap: ATA channel to manipulate
1154 * Allocate and point to DMA memory, init port private memory,
1158 * Inherited from caller.
1160 static int mv_port_start(struct ata_port
*ap
)
1162 struct device
*dev
= ap
->host
->dev
;
1163 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1164 struct mv_port_priv
*pp
;
1167 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1170 ap
->private_data
= pp
;
1172 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1175 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1177 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1179 goto out_port_free_dma_mem
;
1180 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1183 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1184 * For later hardware, we need one unique sg_tbl per NCQ tag.
1186 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1187 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1188 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1189 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1190 if (!pp
->sg_tbl
[tag
])
1191 goto out_port_free_dma_mem
;
1193 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1194 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1199 out_port_free_dma_mem
:
1200 mv_port_free_dma_mem(ap
);
1205 * mv_port_stop - Port specific cleanup/stop routine.
1206 * @ap: ATA channel to manipulate
1208 * Stop DMA, cleanup port memory.
1211 * This routine uses the host lock to protect the DMA stop.
1213 static void mv_port_stop(struct ata_port
*ap
)
1216 mv_port_free_dma_mem(ap
);
1220 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1221 * @qc: queued command whose SG list to source from
1223 * Populate the SG list and mark the last entry.
1226 * Inherited from caller.
1228 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1230 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1231 struct scatterlist
*sg
;
1232 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1235 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1236 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1237 dma_addr_t addr
= sg_dma_address(sg
);
1238 u32 sg_len
= sg_dma_len(sg
);
1241 u32 offset
= addr
& 0xffff;
1244 if ((offset
+ sg_len
> 0x10000))
1245 len
= 0x10000 - offset
;
1247 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1248 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1249 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1259 if (likely(last_sg
))
1260 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1263 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1265 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1266 (last
? CRQB_CMD_LAST
: 0);
1267 *cmdw
= cpu_to_le16(tmp
);
1271 * mv_qc_prep - Host specific command preparation.
1272 * @qc: queued command to prepare
1274 * This routine simply redirects to the general purpose routine
1275 * if command is not DMA. Else, it handles prep of the CRQB
1276 * (command request block), does some sanity checking, and calls
1277 * the SG load routine.
1280 * Inherited from caller.
1282 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1284 struct ata_port
*ap
= qc
->ap
;
1285 struct mv_port_priv
*pp
= ap
->private_data
;
1287 struct ata_taskfile
*tf
;
1291 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1292 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1295 /* Fill in command request block
1297 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1298 flags
|= CRQB_FLAG_READ
;
1299 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1300 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1301 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1303 /* get current queue index from software */
1304 in_index
= pp
->req_idx
;
1306 pp
->crqb
[in_index
].sg_addr
=
1307 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1308 pp
->crqb
[in_index
].sg_addr_hi
=
1309 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1310 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
1312 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
1315 /* Sadly, the CRQB cannot accomodate all registers--there are
1316 * only 11 bytes...so we must pick and choose required
1317 * registers based on the command. So, we drop feature and
1318 * hob_feature for [RW] DMA commands, but they are needed for
1319 * NCQ. NCQ will drop hob_nsect.
1321 switch (tf
->command
) {
1323 case ATA_CMD_READ_EXT
:
1325 case ATA_CMD_WRITE_EXT
:
1326 case ATA_CMD_WRITE_FUA_EXT
:
1327 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
1329 case ATA_CMD_FPDMA_READ
:
1330 case ATA_CMD_FPDMA_WRITE
:
1331 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1332 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1335 /* The only other commands EDMA supports in non-queued and
1336 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1337 * of which are defined/used by Linux. If we get here, this
1338 * driver needs work.
1340 * FIXME: modify libata to give qc_prep a return value and
1341 * return error here.
1343 BUG_ON(tf
->command
);
1346 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1347 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1348 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1349 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1350 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1351 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1352 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1353 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1354 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1356 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1362 * mv_qc_prep_iie - Host specific command preparation.
1363 * @qc: queued command to prepare
1365 * This routine simply redirects to the general purpose routine
1366 * if command is not DMA. Else, it handles prep of the CRQB
1367 * (command request block), does some sanity checking, and calls
1368 * the SG load routine.
1371 * Inherited from caller.
1373 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
1375 struct ata_port
*ap
= qc
->ap
;
1376 struct mv_port_priv
*pp
= ap
->private_data
;
1377 struct mv_crqb_iie
*crqb
;
1378 struct ata_taskfile
*tf
;
1382 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1383 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1386 /* Fill in Gen IIE command request block */
1387 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1388 flags
|= CRQB_FLAG_READ
;
1390 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1391 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1392 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
1393 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1395 /* get current queue index from software */
1396 in_index
= pp
->req_idx
;
1398 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
1399 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1400 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1401 crqb
->flags
= cpu_to_le32(flags
);
1404 crqb
->ata_cmd
[0] = cpu_to_le32(
1405 (tf
->command
<< 16) |
1408 crqb
->ata_cmd
[1] = cpu_to_le32(
1414 crqb
->ata_cmd
[2] = cpu_to_le32(
1415 (tf
->hob_lbal
<< 0) |
1416 (tf
->hob_lbam
<< 8) |
1417 (tf
->hob_lbah
<< 16) |
1418 (tf
->hob_feature
<< 24)
1420 crqb
->ata_cmd
[3] = cpu_to_le32(
1422 (tf
->hob_nsect
<< 8)
1425 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1431 * mv_qc_issue - Initiate a command to the host
1432 * @qc: queued command to start
1434 * This routine simply redirects to the general purpose routine
1435 * if command is not DMA. Else, it sanity checks our local
1436 * caches of the request producer/consumer indices then enables
1437 * DMA and bumps the request producer index.
1440 * Inherited from caller.
1442 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
1444 struct ata_port
*ap
= qc
->ap
;
1445 void __iomem
*port_mmio
= mv_ap_base(ap
);
1446 struct mv_port_priv
*pp
= ap
->private_data
;
1449 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1450 (qc
->tf
.protocol
!= ATA_PROT_NCQ
)) {
1452 * We're about to send a non-EDMA capable command to the
1453 * port. Turn off EDMA so there won't be problems accessing
1454 * shadow block, etc registers.
1457 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
1458 return ata_sff_qc_issue(qc
);
1461 mv_start_dma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
1463 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1464 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
1466 /* and write the request in pointer to kick the EDMA to life */
1467 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
1468 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1473 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
1475 struct mv_port_priv
*pp
= ap
->private_data
;
1476 struct ata_queued_cmd
*qc
;
1478 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1480 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1481 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1486 static void mv_unexpected_intr(struct ata_port
*ap
)
1488 struct mv_port_priv
*pp
= ap
->private_data
;
1489 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1493 * We got a device interrupt from something that
1494 * was supposed to be using EDMA or polling.
1496 ata_ehi_clear_desc(ehi
);
1497 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1498 when
= " while EDMA enabled";
1500 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1501 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1502 when
= " while polling";
1504 ata_ehi_push_desc(ehi
, "unexpected device interrupt%s", when
);
1505 ehi
->err_mask
|= AC_ERR_OTHER
;
1506 ehi
->action
|= ATA_EH_RESET
;
1507 ata_port_freeze(ap
);
1511 * mv_err_intr - Handle error interrupts on the port
1512 * @ap: ATA channel to manipulate
1513 * @qc: affected command (non-NCQ), or NULL
1515 * Most cases require a full reset of the chip's state machine,
1516 * which also performs a COMRESET.
1517 * Also, if the port disabled DMA, update our cached copy to match.
1520 * Inherited from caller.
1522 static void mv_err_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1524 void __iomem
*port_mmio
= mv_ap_base(ap
);
1525 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
1526 struct mv_port_priv
*pp
= ap
->private_data
;
1527 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1528 unsigned int action
= 0, err_mask
= 0;
1529 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1531 ata_ehi_clear_desc(ehi
);
1534 * Read and clear the err_cause bits. This won't actually
1535 * clear for some errors (eg. SError), but we will be doing
1536 * a hard reset in those cases regardless, which *will* clear it.
1538 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1539 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1541 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x", edma_err_cause
);
1544 * All generations share these EDMA error cause bits:
1546 if (edma_err_cause
& EDMA_ERR_DEV
)
1547 err_mask
|= AC_ERR_DEV
;
1548 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
1549 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
1550 EDMA_ERR_INTRL_PAR
)) {
1551 err_mask
|= AC_ERR_ATA_BUS
;
1552 action
|= ATA_EH_RESET
;
1553 ata_ehi_push_desc(ehi
, "parity error");
1555 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
1556 ata_ehi_hotplugged(ehi
);
1557 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
1558 "dev disconnect" : "dev connect");
1559 action
|= ATA_EH_RESET
;
1563 * Gen-I has a different SELF_DIS bit,
1564 * different FREEZE bits, and no SERR bit:
1566 if (IS_GEN_I(hpriv
)) {
1567 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
1568 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
1569 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1570 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1573 eh_freeze_mask
= EDMA_EH_FREEZE
;
1574 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1575 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1576 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1578 if (edma_err_cause
& EDMA_ERR_SERR
) {
1580 * Ensure that we read our own SCR, not a pmp link SCR:
1582 ap
->ops
->scr_read(ap
, SCR_ERROR
, &serr
);
1584 * Don't clear SError here; leave it for libata-eh:
1586 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
1587 err_mask
|= AC_ERR_ATA_BUS
;
1588 action
|= ATA_EH_RESET
;
1593 err_mask
= AC_ERR_OTHER
;
1594 action
|= ATA_EH_RESET
;
1597 ehi
->serror
|= serr
;
1598 ehi
->action
|= action
;
1601 qc
->err_mask
|= err_mask
;
1603 ehi
->err_mask
|= err_mask
;
1605 if (edma_err_cause
& eh_freeze_mask
)
1606 ata_port_freeze(ap
);
1611 static void mv_process_crpb_response(struct ata_port
*ap
,
1612 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
1614 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, tag
);
1618 u16 edma_status
= le16_to_cpu(response
->flags
);
1620 * edma_status from a response queue entry:
1621 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1622 * MSB is saved ATA status from command completion.
1625 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
1628 * Error will be seen/handled by mv_err_intr().
1629 * So do nothing at all here.
1634 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
1635 qc
->err_mask
|= ac_err_mask(ata_status
);
1636 ata_qc_complete(qc
);
1638 ata_port_printk(ap
, KERN_ERR
, "%s: no qc for tag=%d\n",
1643 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
1645 void __iomem
*port_mmio
= mv_ap_base(ap
);
1646 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1648 bool work_done
= false;
1649 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
1651 /* Get the hardware queue position index */
1652 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
)
1653 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1655 /* Process new responses from since the last time we looked */
1656 while (in_index
!= pp
->resp_idx
) {
1658 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
1660 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1662 if (IS_GEN_I(hpriv
)) {
1663 /* 50xx: no NCQ, only one command active at a time */
1664 tag
= ap
->link
.active_tag
;
1666 /* Gen II/IIE: get command tag from CRPB entry */
1667 tag
= le16_to_cpu(response
->id
) & 0x1f;
1669 mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
);
1673 /* Update the software queue position index in hardware */
1675 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
1676 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
1677 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
1681 * mv_host_intr - Handle all interrupts on the given host controller
1682 * @host: host specific structure
1683 * @main_irq_cause: Main interrupt cause register for the chip.
1686 * Inherited from caller.
1688 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
1690 struct mv_host_priv
*hpriv
= host
->private_data
;
1691 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
= NULL
;
1692 u32 hc_irq_cause
= 0;
1693 unsigned int handled
= 0, port
;
1695 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
1696 struct ata_port
*ap
= host
->ports
[port
];
1697 struct mv_port_priv
*pp
;
1698 unsigned int shift
, hardport
, port_cause
;
1700 * When we move to the second hc, flag our cached
1701 * copies of hc_mmio (and hc_irq_cause) as invalid again.
1703 if (port
== MV_PORTS_PER_HC
)
1706 * Do nothing if port is not interrupting or is disabled:
1708 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
1709 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
1710 if (!port_cause
|| !ap
|| (ap
->flags
& ATA_FLAG_DISABLED
))
1713 * Each hc within the host has its own hc_irq_cause register.
1714 * We defer reading it until we know we need it, right now:
1716 * FIXME later: we don't really need to read this register
1717 * (some logic changes required below if we go that way),
1718 * because it doesn't tell us anything new. But we do need
1719 * to write to it, outside the top of this loop,
1720 * to reset the interrupt triggers for next time.
1723 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
1724 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1725 writelfl(~hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1729 * Process completed CRPB response(s) before other events.
1731 pp
= ap
->private_data
;
1732 if (hc_irq_cause
& (DMA_IRQ
<< hardport
)) {
1733 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)
1734 mv_process_crpb_entries(ap
, pp
);
1737 * Handle chip-reported errors, or continue on to handle PIO.
1739 if (unlikely(port_cause
& ERR_IRQ
)) {
1740 mv_err_intr(ap
, mv_get_active_qc(ap
));
1741 } else if (hc_irq_cause
& (DEV_IRQ
<< hardport
)) {
1742 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
1743 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
1745 ata_sff_host_intr(ap
, qc
);
1749 mv_unexpected_intr(ap
);
1755 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
1757 struct mv_host_priv
*hpriv
= host
->private_data
;
1758 struct ata_port
*ap
;
1759 struct ata_queued_cmd
*qc
;
1760 struct ata_eh_info
*ehi
;
1761 unsigned int i
, err_mask
, printed
= 0;
1764 err_cause
= readl(mmio
+ hpriv
->irq_cause_ofs
);
1766 dev_printk(KERN_ERR
, host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n",
1769 DPRINTK("All regs @ PCI error\n");
1770 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
1772 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
1774 for (i
= 0; i
< host
->n_ports
; i
++) {
1775 ap
= host
->ports
[i
];
1776 if (!ata_link_offline(&ap
->link
)) {
1777 ehi
= &ap
->link
.eh_info
;
1778 ata_ehi_clear_desc(ehi
);
1780 ata_ehi_push_desc(ehi
,
1781 "PCI err cause 0x%08x", err_cause
);
1782 err_mask
= AC_ERR_HOST_BUS
;
1783 ehi
->action
= ATA_EH_RESET
;
1784 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1786 qc
->err_mask
|= err_mask
;
1788 ehi
->err_mask
|= err_mask
;
1790 ata_port_freeze(ap
);
1793 return 1; /* handled */
1797 * mv_interrupt - Main interrupt event handler
1799 * @dev_instance: private data; in this case the host structure
1801 * Read the read only register to determine if any host
1802 * controllers have pending interrupts. If so, call lower level
1803 * routine to handle. Also check for PCI errors which are only
1807 * This routine holds the host lock while processing pending
1810 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
1812 struct ata_host
*host
= dev_instance
;
1813 struct mv_host_priv
*hpriv
= host
->private_data
;
1814 unsigned int handled
= 0;
1815 u32 main_irq_cause
, main_irq_mask
;
1817 spin_lock(&host
->lock
);
1818 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
1819 main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
1821 * Deal with cases where we either have nothing pending, or have read
1822 * a bogus register value which can indicate HW removal or PCI fault.
1824 if ((main_irq_cause
& main_irq_mask
) && (main_irq_cause
!= 0xffffffffU
)) {
1825 if (unlikely((main_irq_cause
& PCI_ERR
) && HAS_PCI(host
)))
1826 handled
= mv_pci_error(host
, hpriv
->base
);
1828 handled
= mv_host_intr(host
, main_irq_cause
);
1830 spin_unlock(&host
->lock
);
1831 return IRQ_RETVAL(handled
);
1834 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
1838 switch (sc_reg_in
) {
1842 ofs
= sc_reg_in
* sizeof(u32
);
1851 static int mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
, u32
*val
)
1853 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1854 void __iomem
*mmio
= hpriv
->base
;
1855 void __iomem
*addr
= mv5_phy_base(mmio
, ap
->port_no
);
1856 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
1858 if (ofs
!= 0xffffffffU
) {
1859 *val
= readl(addr
+ ofs
);
1865 static int mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
1867 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1868 void __iomem
*mmio
= hpriv
->base
;
1869 void __iomem
*addr
= mv5_phy_base(mmio
, ap
->port_no
);
1870 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
1872 if (ofs
!= 0xffffffffU
) {
1873 writelfl(val
, addr
+ ofs
);
1879 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
1881 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
1884 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
1887 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1889 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1892 mv_reset_pci_bus(host
, mmio
);
1895 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1897 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL
);
1900 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
1903 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
1906 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
1908 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
1909 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
1912 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1916 writel(0, mmio
+ MV_GPIO_PORT_CTL
);
1918 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1920 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1922 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1925 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1928 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
1929 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1931 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
1934 tmp
= readl(phy_mmio
+ MV5_LT_MODE
);
1936 writel(tmp
, phy_mmio
+ MV5_LT_MODE
);
1938 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
1941 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
1944 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
1946 tmp
|= hpriv
->signal
[port
].pre
;
1947 tmp
|= hpriv
->signal
[port
].amps
;
1948 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
1953 #define ZERO(reg) writel(0, port_mmio + (reg))
1954 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1957 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
1960 * The datasheet warns against setting ATA_RST when EDMA is active
1961 * (but doesn't say what the problem might be). So we first try
1962 * to disable the EDMA engine before doing the ATA_RST operation.
1964 mv_reset_channel(hpriv
, mmio
, port
);
1966 ZERO(0x028); /* command */
1967 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
1968 ZERO(0x004); /* timer */
1969 ZERO(0x008); /* irq err cause */
1970 ZERO(0x00c); /* irq err mask */
1971 ZERO(0x010); /* rq bah */
1972 ZERO(0x014); /* rq inp */
1973 ZERO(0x018); /* rq outp */
1974 ZERO(0x01c); /* respq bah */
1975 ZERO(0x024); /* respq outp */
1976 ZERO(0x020); /* respq inp */
1977 ZERO(0x02c); /* test control */
1978 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
1982 #define ZERO(reg) writel(0, hc_mmio + (reg))
1983 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1986 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
1994 tmp
= readl(hc_mmio
+ 0x20);
1997 writel(tmp
, hc_mmio
+ 0x20);
2001 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2004 unsigned int hc
, port
;
2006 for (hc
= 0; hc
< n_hc
; hc
++) {
2007 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
2008 mv5_reset_hc_port(hpriv
, mmio
,
2009 (hc
* MV_PORTS_PER_HC
) + port
);
2011 mv5_reset_one_hc(hpriv
, mmio
, hc
);
2018 #define ZERO(reg) writel(0, mmio + (reg))
2019 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
2021 struct mv_host_priv
*hpriv
= host
->private_data
;
2024 tmp
= readl(mmio
+ MV_PCI_MODE
);
2026 writel(tmp
, mmio
+ MV_PCI_MODE
);
2028 ZERO(MV_PCI_DISC_TIMER
);
2029 ZERO(MV_PCI_MSI_TRIGGER
);
2030 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
2031 ZERO(PCI_HC_MAIN_IRQ_MASK_OFS
);
2032 ZERO(MV_PCI_SERR_MASK
);
2033 ZERO(hpriv
->irq_cause_ofs
);
2034 ZERO(hpriv
->irq_mask_ofs
);
2035 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
2036 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
2037 ZERO(MV_PCI_ERR_ATTRIBUTE
);
2038 ZERO(MV_PCI_ERR_COMMAND
);
2042 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2046 mv5_reset_flash(hpriv
, mmio
);
2048 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL
);
2050 tmp
|= (1 << 5) | (1 << 6);
2051 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL
);
2055 * mv6_reset_hc - Perform the 6xxx global soft reset
2056 * @mmio: base address of the HBA
2058 * This routine only applies to 6xxx parts.
2061 * Inherited from caller.
2063 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2066 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
2070 /* Following procedure defined in PCI "main command and status
2074 writel(t
| STOP_PCI_MASTER
, reg
);
2076 for (i
= 0; i
< 1000; i
++) {
2079 if (PCI_MASTER_EMPTY
& t
)
2082 if (!(PCI_MASTER_EMPTY
& t
)) {
2083 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
2091 writel(t
| GLOB_SFT_RST
, reg
);
2094 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
2096 if (!(GLOB_SFT_RST
& t
)) {
2097 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
2102 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2105 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
2108 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
2110 if (GLOB_SFT_RST
& t
) {
2111 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
2118 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2121 void __iomem
*port_mmio
;
2124 tmp
= readl(mmio
+ MV_RESET_CFG
);
2125 if ((tmp
& (1 << 0)) == 0) {
2126 hpriv
->signal
[idx
].amps
= 0x7 << 8;
2127 hpriv
->signal
[idx
].pre
= 0x1 << 5;
2131 port_mmio
= mv_port_base(mmio
, idx
);
2132 tmp
= readl(port_mmio
+ PHY_MODE2
);
2134 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2135 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2138 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2140 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL
);
2143 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2146 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2148 u32 hp_flags
= hpriv
->hp_flags
;
2150 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2152 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2155 if (fix_phy_mode2
) {
2156 m2
= readl(port_mmio
+ PHY_MODE2
);
2159 writel(m2
, port_mmio
+ PHY_MODE2
);
2163 m2
= readl(port_mmio
+ PHY_MODE2
);
2164 m2
&= ~((1 << 16) | (1 << 31));
2165 writel(m2
, port_mmio
+ PHY_MODE2
);
2170 /* who knows what this magic does */
2171 tmp
= readl(port_mmio
+ PHY_MODE3
);
2174 writel(tmp
, port_mmio
+ PHY_MODE3
);
2176 if (fix_phy_mode4
) {
2179 m4
= readl(port_mmio
+ PHY_MODE4
);
2181 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
2182 tmp
= readl(port_mmio
+ PHY_MODE3
);
2184 /* workaround for errata FEr SATA#10 (part 1) */
2185 m4
= (m4
& ~(1 << 1)) | (1 << 0);
2187 writel(m4
, port_mmio
+ PHY_MODE4
);
2189 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
2190 writel(tmp
, port_mmio
+ PHY_MODE3
);
2193 /* Revert values of pre-emphasis and signal amps to the saved ones */
2194 m2
= readl(port_mmio
+ PHY_MODE2
);
2196 m2
&= ~MV_M2_PREAMP_MASK
;
2197 m2
|= hpriv
->signal
[port
].amps
;
2198 m2
|= hpriv
->signal
[port
].pre
;
2201 /* according to mvSata 3.6.1, some IIE values are fixed */
2202 if (IS_GEN_IIE(hpriv
)) {
2207 writel(m2
, port_mmio
+ PHY_MODE2
);
2210 /* TODO: use the generic LED interface to configure the SATA Presence */
2211 /* & Acitivy LEDs on the board */
2212 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
2218 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2221 void __iomem
*port_mmio
;
2224 port_mmio
= mv_port_base(mmio
, idx
);
2225 tmp
= readl(port_mmio
+ PHY_MODE2
);
2227 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2228 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2232 #define ZERO(reg) writel(0, port_mmio + (reg))
2233 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
2234 void __iomem
*mmio
, unsigned int port
)
2236 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2239 * The datasheet warns against setting ATA_RST when EDMA is active
2240 * (but doesn't say what the problem might be). So we first try
2241 * to disable the EDMA engine before doing the ATA_RST operation.
2243 mv_reset_channel(hpriv
, mmio
, port
);
2245 ZERO(0x028); /* command */
2246 writel(0x101f, port_mmio
+ EDMA_CFG_OFS
);
2247 ZERO(0x004); /* timer */
2248 ZERO(0x008); /* irq err cause */
2249 ZERO(0x00c); /* irq err mask */
2250 ZERO(0x010); /* rq bah */
2251 ZERO(0x014); /* rq inp */
2252 ZERO(0x018); /* rq outp */
2253 ZERO(0x01c); /* respq bah */
2254 ZERO(0x024); /* respq outp */
2255 ZERO(0x020); /* respq inp */
2256 ZERO(0x02c); /* test control */
2257 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
2262 #define ZERO(reg) writel(0, hc_mmio + (reg))
2263 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
2266 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
2276 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
2277 void __iomem
*mmio
, unsigned int n_hc
)
2281 for (port
= 0; port
< hpriv
->n_ports
; port
++)
2282 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
2284 mv_soc_reset_one_hc(hpriv
, mmio
);
2289 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
2295 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2300 static void mv_setup_ifctl(void __iomem
*port_mmio
, int want_gen2i
)
2302 u32 ifctl
= readl(port_mmio
+ SATA_INTERFACE_CFG
);
2304 ifctl
= (ifctl
& 0xf7f) | 0x9b1000; /* from chip spec */
2306 ifctl
|= (1 << 7); /* enable gen2i speed */
2307 writelfl(ifctl
, port_mmio
+ SATA_INTERFACE_CFG
);
2311 * Caller must ensure that EDMA is not active,
2312 * by first doing mv_stop_edma() where needed.
2314 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2315 unsigned int port_no
)
2317 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
2319 mv_stop_edma_engine(port_mmio
);
2320 writelfl(ATA_RST
, port_mmio
+ EDMA_CMD_OFS
);
2322 if (!IS_GEN_I(hpriv
)) {
2323 /* Enable 3.0gb/s link speed */
2324 mv_setup_ifctl(port_mmio
, 1);
2327 * Strobing ATA_RST here causes a hard reset of the SATA transport,
2328 * link, and physical layers. It resets all SATA interface registers
2329 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2331 writelfl(ATA_RST
, port_mmio
+ EDMA_CMD_OFS
);
2332 udelay(25); /* allow reset propagation */
2333 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
2335 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
2337 if (IS_GEN_I(hpriv
))
2341 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
2343 if (sata_pmp_supported(ap
)) {
2344 void __iomem
*port_mmio
= mv_ap_base(ap
);
2345 u32 reg
= readl(port_mmio
+ SATA_IFCTL_OFS
);
2346 int old
= reg
& 0xf;
2349 reg
= (reg
& ~0xf) | pmp
;
2350 writelfl(reg
, port_mmio
+ SATA_IFCTL_OFS
);
2355 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
2356 unsigned long deadline
)
2358 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2359 return sata_std_hardreset(link
, class, deadline
);
2362 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
2363 unsigned long deadline
)
2365 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2366 return ata_sff_softreset(link
, class, deadline
);
2369 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
2370 unsigned long deadline
)
2372 struct ata_port
*ap
= link
->ap
;
2373 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2374 struct mv_port_priv
*pp
= ap
->private_data
;
2375 void __iomem
*mmio
= hpriv
->base
;
2376 int rc
, attempts
= 0, extra
= 0;
2380 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
2381 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2383 /* Workaround for errata FEr SATA#10 (part 2) */
2385 const unsigned long *timing
=
2386 sata_ehc_deb_timing(&link
->eh_context
);
2388 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
2392 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2393 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
2394 /* Force 1.5gb/s link speed and try again */
2395 mv_setup_ifctl(mv_ap_base(ap
), 0);
2396 if (time_after(jiffies
+ HZ
, deadline
))
2397 extra
= HZ
; /* only extend it once, max */
2399 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
2404 static void mv_eh_freeze(struct ata_port
*ap
)
2406 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2407 unsigned int shift
, hardport
, port
= ap
->port_no
;
2410 /* FIXME: handle coalescing completion events properly */
2413 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2415 /* disable assertion of portN err, done events */
2416 main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
2417 main_irq_mask
&= ~((DONE_IRQ
| ERR_IRQ
) << shift
);
2418 writelfl(main_irq_mask
, hpriv
->main_irq_mask_addr
);
2421 static void mv_eh_thaw(struct ata_port
*ap
)
2423 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2424 unsigned int shift
, hardport
, port
= ap
->port_no
;
2425 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
2426 void __iomem
*port_mmio
= mv_ap_base(ap
);
2427 u32 main_irq_mask
, hc_irq_cause
;
2429 /* FIXME: handle coalescing completion events properly */
2431 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2433 /* clear EDMA errors on this port */
2434 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2436 /* clear pending irq events */
2437 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2438 hc_irq_cause
&= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
2439 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2441 /* enable assertion of portN err, done events */
2442 main_irq_mask
= readl(hpriv
->main_irq_mask_addr
);
2443 main_irq_mask
|= ((DONE_IRQ
| ERR_IRQ
) << shift
);
2444 writelfl(main_irq_mask
, hpriv
->main_irq_mask_addr
);
2448 * mv_port_init - Perform some early initialization on a single port.
2449 * @port: libata data structure storing shadow register addresses
2450 * @port_mmio: base address of the port
2452 * Initialize shadow register mmio addresses, clear outstanding
2453 * interrupts on the port, and unmask interrupts for the future
2454 * start of the port.
2457 * Inherited from caller.
2459 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
2461 void __iomem
*shd_base
= port_mmio
+ SHD_BLK_OFS
;
2464 /* PIO related setup
2466 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
2468 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
2469 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
2470 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
2471 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
2472 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
2473 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
2475 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
2476 /* special case: control/altstatus doesn't have ATA_REG_ address */
2477 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
2480 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= NULL
;
2482 /* Clear any currently outstanding port interrupt conditions */
2483 serr_ofs
= mv_scr_offset(SCR_ERROR
);
2484 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
2485 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2487 /* unmask all non-transient EDMA error interrupts */
2488 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
2490 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2491 readl(port_mmio
+ EDMA_CFG_OFS
),
2492 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
2493 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
2496 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
2498 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2499 struct mv_host_priv
*hpriv
= host
->private_data
;
2500 u32 hp_flags
= hpriv
->hp_flags
;
2502 switch (board_idx
) {
2504 hpriv
->ops
= &mv5xxx_ops
;
2505 hp_flags
|= MV_HP_GEN_I
;
2507 switch (pdev
->revision
) {
2509 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2512 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2515 dev_printk(KERN_WARNING
, &pdev
->dev
,
2516 "Applying 50XXB2 workarounds to unknown rev\n");
2517 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2524 hpriv
->ops
= &mv5xxx_ops
;
2525 hp_flags
|= MV_HP_GEN_I
;
2527 switch (pdev
->revision
) {
2529 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2532 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2535 dev_printk(KERN_WARNING
, &pdev
->dev
,
2536 "Applying B2 workarounds to unknown rev\n");
2537 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2544 hpriv
->ops
= &mv6xxx_ops
;
2545 hp_flags
|= MV_HP_GEN_II
;
2547 switch (pdev
->revision
) {
2549 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2552 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2555 dev_printk(KERN_WARNING
, &pdev
->dev
,
2556 "Applying B2 workarounds to unknown rev\n");
2557 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2563 hp_flags
|= MV_HP_PCIE
;
2564 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
2565 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
2568 * Highpoint RocketRAID PCIe 23xx series cards:
2570 * Unconfigured drives are treated as "Legacy"
2571 * by the BIOS, and it overwrites sector 8 with
2572 * a "Lgcy" metadata block prior to Linux boot.
2574 * Configured drives (RAID or JBOD) leave sector 8
2575 * alone, but instead overwrite a high numbered
2576 * sector for the RAID metadata. This sector can
2577 * be determined exactly, by truncating the physical
2578 * drive capacity to a nice even GB value.
2580 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2582 * Warn the user, lest they think we're just buggy.
2584 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
2585 " BIOS CORRUPTS DATA on all attached drives,"
2586 " regardless of if/how they are configured."
2588 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
2589 " use sectors 8-9 on \"Legacy\" drives,"
2590 " and avoid the final two gigabytes on"
2591 " all RocketRAID BIOS initialized drives.\n");
2594 hpriv
->ops
= &mv6xxx_ops
;
2595 hp_flags
|= MV_HP_GEN_IIE
;
2597 switch (pdev
->revision
) {
2599 hp_flags
|= MV_HP_ERRATA_XX42A0
;
2602 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2605 dev_printk(KERN_WARNING
, &pdev
->dev
,
2606 "Applying 60X1C0 workarounds to unknown rev\n");
2607 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2612 hpriv
->ops
= &mv_soc_ops
;
2613 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2617 dev_printk(KERN_ERR
, host
->dev
,
2618 "BUG: invalid board index %u\n", board_idx
);
2622 hpriv
->hp_flags
= hp_flags
;
2623 if (hp_flags
& MV_HP_PCIE
) {
2624 hpriv
->irq_cause_ofs
= PCIE_IRQ_CAUSE_OFS
;
2625 hpriv
->irq_mask_ofs
= PCIE_IRQ_MASK_OFS
;
2626 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
2628 hpriv
->irq_cause_ofs
= PCI_IRQ_CAUSE_OFS
;
2629 hpriv
->irq_mask_ofs
= PCI_IRQ_MASK_OFS
;
2630 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
2637 * mv_init_host - Perform some early initialization of the host.
2638 * @host: ATA host to initialize
2639 * @board_idx: controller index
2641 * If possible, do an early global reset of the host. Then do
2642 * our port init and clear/unmask all/relevant host interrupts.
2645 * Inherited from caller.
2647 static int mv_init_host(struct ata_host
*host
, unsigned int board_idx
)
2649 int rc
= 0, n_hc
, port
, hc
;
2650 struct mv_host_priv
*hpriv
= host
->private_data
;
2651 void __iomem
*mmio
= hpriv
->base
;
2653 rc
= mv_chip_id(host
, board_idx
);
2657 if (HAS_PCI(host
)) {
2658 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE_OFS
;
2659 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK_OFS
;
2661 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE_OFS
;
2662 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK_OFS
;
2665 /* global interrupt mask: 0 == mask everything */
2666 writel(0, hpriv
->main_irq_mask_addr
);
2668 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
2670 for (port
= 0; port
< host
->n_ports
; port
++)
2671 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
2673 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
2677 hpriv
->ops
->reset_flash(hpriv
, mmio
);
2678 hpriv
->ops
->reset_bus(host
, mmio
);
2679 hpriv
->ops
->enable_leds(hpriv
, mmio
);
2681 for (port
= 0; port
< host
->n_ports
; port
++) {
2682 struct ata_port
*ap
= host
->ports
[port
];
2683 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2685 mv_port_init(&ap
->ioaddr
, port_mmio
);
2688 if (HAS_PCI(host
)) {
2689 unsigned int offset
= port_mmio
- mmio
;
2690 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
2691 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
2696 for (hc
= 0; hc
< n_hc
; hc
++) {
2697 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
2699 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2700 "(before clear)=0x%08x\n", hc
,
2701 readl(hc_mmio
+ HC_CFG_OFS
),
2702 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
2704 /* Clear any currently outstanding hc interrupt conditions */
2705 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2708 if (HAS_PCI(host
)) {
2709 /* Clear any currently outstanding host interrupt conditions */
2710 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
2712 /* and unmask interrupt generation for host regs */
2713 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_ofs
);
2714 if (IS_GEN_I(hpriv
))
2715 writelfl(~HC_MAIN_MASKED_IRQS_5
,
2716 hpriv
->main_irq_mask_addr
);
2718 writelfl(~HC_MAIN_MASKED_IRQS
,
2719 hpriv
->main_irq_mask_addr
);
2721 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2722 "PCI int cause/mask=0x%08x/0x%08x\n",
2723 readl(hpriv
->main_irq_cause_addr
),
2724 readl(hpriv
->main_irq_mask_addr
),
2725 readl(mmio
+ hpriv
->irq_cause_ofs
),
2726 readl(mmio
+ hpriv
->irq_mask_ofs
));
2728 writelfl(~HC_MAIN_MASKED_IRQS_SOC
,
2729 hpriv
->main_irq_mask_addr
);
2730 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x\n",
2731 readl(hpriv
->main_irq_cause_addr
),
2732 readl(hpriv
->main_irq_mask_addr
));
2738 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
2740 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
2742 if (!hpriv
->crqb_pool
)
2745 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
2747 if (!hpriv
->crpb_pool
)
2750 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
2752 if (!hpriv
->sg_tbl_pool
)
2758 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
2759 struct mbus_dram_target_info
*dram
)
2763 for (i
= 0; i
< 4; i
++) {
2764 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
2765 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
2768 for (i
= 0; i
< dram
->num_cs
; i
++) {
2769 struct mbus_dram_window
*cs
= dram
->cs
+ i
;
2771 writel(((cs
->size
- 1) & 0xffff0000) |
2772 (cs
->mbus_attr
<< 8) |
2773 (dram
->mbus_dram_target_id
<< 4) | 1,
2774 hpriv
->base
+ WINDOW_CTRL(i
));
2775 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
2780 * mv_platform_probe - handle a positive probe of an soc Marvell
2782 * @pdev: platform device found
2785 * Inherited from caller.
2787 static int mv_platform_probe(struct platform_device
*pdev
)
2789 static int printed_version
;
2790 const struct mv_sata_platform_data
*mv_platform_data
;
2791 const struct ata_port_info
*ppi
[] =
2792 { &mv_port_info
[chip_soc
], NULL
};
2793 struct ata_host
*host
;
2794 struct mv_host_priv
*hpriv
;
2795 struct resource
*res
;
2798 if (!printed_version
++)
2799 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
2802 * Simple resource validation ..
2804 if (unlikely(pdev
->num_resources
!= 2)) {
2805 dev_err(&pdev
->dev
, "invalid number of resources\n");
2810 * Get the register base first
2812 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2817 mv_platform_data
= pdev
->dev
.platform_data
;
2818 n_ports
= mv_platform_data
->n_ports
;
2820 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
2821 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
2823 if (!host
|| !hpriv
)
2825 host
->private_data
= hpriv
;
2826 hpriv
->n_ports
= n_ports
;
2829 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
2830 res
->end
- res
->start
+ 1);
2831 hpriv
->base
-= MV_SATAHC0_REG_BASE
;
2834 * (Re-)program MBUS remapping windows if we are asked to.
2836 if (mv_platform_data
->dram
!= NULL
)
2837 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
2839 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
2843 /* initialize adapter */
2844 rc
= mv_init_host(host
, chip_soc
);
2848 dev_printk(KERN_INFO
, &pdev
->dev
,
2849 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH
,
2852 return ata_host_activate(host
, platform_get_irq(pdev
, 0), mv_interrupt
,
2853 IRQF_SHARED
, &mv6_sht
);
2858 * mv_platform_remove - unplug a platform interface
2859 * @pdev: platform device
2861 * A platform bus SATA device has been unplugged. Perform the needed
2862 * cleanup. Also called on module unload for any active devices.
2864 static int __devexit
mv_platform_remove(struct platform_device
*pdev
)
2866 struct device
*dev
= &pdev
->dev
;
2867 struct ata_host
*host
= dev_get_drvdata(dev
);
2869 ata_host_detach(host
);
2873 static struct platform_driver mv_platform_driver
= {
2874 .probe
= mv_platform_probe
,
2875 .remove
= __devexit_p(mv_platform_remove
),
2878 .owner
= THIS_MODULE
,
2884 static int mv_pci_init_one(struct pci_dev
*pdev
,
2885 const struct pci_device_id
*ent
);
2888 static struct pci_driver mv_pci_driver
= {
2890 .id_table
= mv_pci_tbl
,
2891 .probe
= mv_pci_init_one
,
2892 .remove
= ata_pci_remove_one
,
2898 static int msi
; /* Use PCI msi; either zero (off, default) or non-zero */
2901 /* move to PCI layer or libata core? */
2902 static int pci_go_64(struct pci_dev
*pdev
)
2906 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
2907 rc
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
2909 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
2911 dev_printk(KERN_ERR
, &pdev
->dev
,
2912 "64-bit DMA enable failed\n");
2917 rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
2919 dev_printk(KERN_ERR
, &pdev
->dev
,
2920 "32-bit DMA enable failed\n");
2923 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
2925 dev_printk(KERN_ERR
, &pdev
->dev
,
2926 "32-bit consistent DMA enable failed\n");
2935 * mv_print_info - Dump key info to kernel log for perusal.
2936 * @host: ATA host to print info about
2938 * FIXME: complete this.
2941 * Inherited from caller.
2943 static void mv_print_info(struct ata_host
*host
)
2945 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2946 struct mv_host_priv
*hpriv
= host
->private_data
;
2948 const char *scc_s
, *gen
;
2950 /* Use this to determine the HW stepping of the chip so we know
2951 * what errata to workaround
2953 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
2956 else if (scc
== 0x01)
2961 if (IS_GEN_I(hpriv
))
2963 else if (IS_GEN_II(hpriv
))
2965 else if (IS_GEN_IIE(hpriv
))
2970 dev_printk(KERN_INFO
, &pdev
->dev
,
2971 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
2972 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
2973 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
2977 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
2978 * @pdev: PCI device found
2979 * @ent: PCI device ID entry for the matched host
2982 * Inherited from caller.
2984 static int mv_pci_init_one(struct pci_dev
*pdev
,
2985 const struct pci_device_id
*ent
)
2987 static int printed_version
;
2988 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
2989 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
2990 struct ata_host
*host
;
2991 struct mv_host_priv
*hpriv
;
2994 if (!printed_version
++)
2995 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
2998 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
3000 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3001 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3002 if (!host
|| !hpriv
)
3004 host
->private_data
= hpriv
;
3005 hpriv
->n_ports
= n_ports
;
3007 /* acquire resources */
3008 rc
= pcim_enable_device(pdev
);
3012 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
3014 pcim_pin_device(pdev
);
3017 host
->iomap
= pcim_iomap_table(pdev
);
3018 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
3020 rc
= pci_go_64(pdev
);
3024 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3028 /* initialize adapter */
3029 rc
= mv_init_host(host
, board_idx
);
3033 /* Enable interrupts */
3034 if (msi
&& pci_enable_msi(pdev
))
3037 mv_dump_pci_cfg(pdev
, 0x68);
3038 mv_print_info(host
);
3040 pci_set_master(pdev
);
3041 pci_try_set_mwi(pdev
);
3042 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
3043 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
3047 static int mv_platform_probe(struct platform_device
*pdev
);
3048 static int __devexit
mv_platform_remove(struct platform_device
*pdev
);
3050 static int __init
mv_init(void)
3054 rc
= pci_register_driver(&mv_pci_driver
);
3058 rc
= platform_driver_register(&mv_platform_driver
);
3062 pci_unregister_driver(&mv_pci_driver
);
3067 static void __exit
mv_exit(void)
3070 pci_unregister_driver(&mv_pci_driver
);
3072 platform_driver_unregister(&mv_platform_driver
);
3075 MODULE_AUTHOR("Brett Russ");
3076 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3077 MODULE_LICENSE("GPL");
3078 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
3079 MODULE_VERSION(DRV_VERSION
);
3080 MODULE_ALIAS("platform:" DRV_NAME
);
3083 module_param(msi
, int, 0444);
3084 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
3087 module_init(mv_init
);
3088 module_exit(mv_exit
);