Linux 2.6.26-rc1
[cris-mirror.git] / drivers / mtd / nand / fsl_elbc_nand.c
blob4b69aacdf5ca45410207dca1f8908413f166e1c1
1 /* Freescale Enhanced Local Bus Controller NAND driver
3 * Copyright (c) 2006-2007 Freescale Semiconductor
5 * Authors: Nick Spence <nick.spence@freescale.com>,
6 * Scott Wood <scottwood@freescale.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/string.h>
28 #include <linux/ioport.h>
29 #include <linux/of_platform.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
33 #include <linux/mtd/mtd.h>
34 #include <linux/mtd/nand.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/mtd/partitions.h>
38 #include <asm/io.h>
39 #include <asm/fsl_lbc.h>
41 #define MAX_BANKS 8
42 #define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */
43 #define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */
45 struct fsl_elbc_ctrl;
47 /* mtd information per set */
49 struct fsl_elbc_mtd {
50 struct mtd_info mtd;
51 struct nand_chip chip;
52 struct fsl_elbc_ctrl *ctrl;
54 struct device *dev;
55 int bank; /* Chip select bank number */
56 u8 __iomem *vbase; /* Chip select base virtual address */
57 int page_size; /* NAND page size (0=512, 1=2048) */
58 unsigned int fmr; /* FCM Flash Mode Register value */
61 /* overview of the fsl elbc controller */
63 struct fsl_elbc_ctrl {
64 struct nand_hw_control controller;
65 struct fsl_elbc_mtd *chips[MAX_BANKS];
67 /* device info */
68 struct device *dev;
69 struct fsl_lbc_regs __iomem *regs;
70 int irq;
71 wait_queue_head_t irq_wait;
72 unsigned int irq_status; /* status read from LTESR by irq handler */
73 u8 __iomem *addr; /* Address of assigned FCM buffer */
74 unsigned int page; /* Last page written to / read from */
75 unsigned int read_bytes; /* Number of bytes read during command */
76 unsigned int column; /* Saved column from SEQIN */
77 unsigned int index; /* Pointer to next byte to 'read' */
78 unsigned int status; /* status read from LTESR after last op */
79 unsigned int mdr; /* UPM/FCM Data Register value */
80 unsigned int use_mdr; /* Non zero if the MDR is to be set */
81 unsigned int oob; /* Non zero if operating on OOB data */
82 char *oob_poi; /* Place to write ECC after read back */
85 /* These map to the positions used by the FCM hardware ECC generator */
87 /* Small Page FLASH with FMR[ECCM] = 0 */
88 static struct nand_ecclayout fsl_elbc_oob_sp_eccm0 = {
89 .eccbytes = 3,
90 .eccpos = {6, 7, 8},
91 .oobfree = { {0, 5}, {9, 7} },
92 .oobavail = 12,
95 /* Small Page FLASH with FMR[ECCM] = 1 */
96 static struct nand_ecclayout fsl_elbc_oob_sp_eccm1 = {
97 .eccbytes = 3,
98 .eccpos = {8, 9, 10},
99 .oobfree = { {0, 5}, {6, 2}, {11, 5} },
100 .oobavail = 12,
103 /* Large Page FLASH with FMR[ECCM] = 0 */
104 static struct nand_ecclayout fsl_elbc_oob_lp_eccm0 = {
105 .eccbytes = 12,
106 .eccpos = {6, 7, 8, 22, 23, 24, 38, 39, 40, 54, 55, 56},
107 .oobfree = { {1, 5}, {9, 13}, {25, 13}, {41, 13}, {57, 7} },
108 .oobavail = 48,
111 /* Large Page FLASH with FMR[ECCM] = 1 */
112 static struct nand_ecclayout fsl_elbc_oob_lp_eccm1 = {
113 .eccbytes = 12,
114 .eccpos = {8, 9, 10, 24, 25, 26, 40, 41, 42, 56, 57, 58},
115 .oobfree = { {1, 7}, {11, 13}, {27, 13}, {43, 13}, {59, 5} },
116 .oobavail = 48,
119 /*=================================*/
122 * Set up the FCM hardware block and page address fields, and the fcm
123 * structure addr field to point to the correct FCM buffer in memory
125 static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
127 struct nand_chip *chip = mtd->priv;
128 struct fsl_elbc_mtd *priv = chip->priv;
129 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
130 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
131 int buf_num;
133 ctrl->page = page_addr;
135 out_be32(&lbc->fbar,
136 page_addr >> (chip->phys_erase_shift - chip->page_shift));
138 if (priv->page_size) {
139 out_be32(&lbc->fpar,
140 ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) |
141 (oob ? FPAR_LP_MS : 0) | column);
142 buf_num = (page_addr & 1) << 2;
143 } else {
144 out_be32(&lbc->fpar,
145 ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) |
146 (oob ? FPAR_SP_MS : 0) | column);
147 buf_num = page_addr & 7;
150 ctrl->addr = priv->vbase + buf_num * 1024;
151 ctrl->index = column;
153 /* for OOB data point to the second half of the buffer */
154 if (oob)
155 ctrl->index += priv->page_size ? 2048 : 512;
157 dev_vdbg(ctrl->dev, "set_addr: bank=%d, ctrl->addr=0x%p (0x%p), "
158 "index %x, pes %d ps %d\n",
159 buf_num, ctrl->addr, priv->vbase, ctrl->index,
160 chip->phys_erase_shift, chip->page_shift);
164 * execute FCM command and wait for it to complete
166 static int fsl_elbc_run_command(struct mtd_info *mtd)
168 struct nand_chip *chip = mtd->priv;
169 struct fsl_elbc_mtd *priv = chip->priv;
170 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
171 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
173 /* Setup the FMR[OP] to execute without write protection */
174 out_be32(&lbc->fmr, priv->fmr | 3);
175 if (ctrl->use_mdr)
176 out_be32(&lbc->mdr, ctrl->mdr);
178 dev_vdbg(ctrl->dev,
179 "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n",
180 in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr));
181 dev_vdbg(ctrl->dev,
182 "fsl_elbc_run_command: fbar=%08x fpar=%08x "
183 "fbcr=%08x bank=%d\n",
184 in_be32(&lbc->fbar), in_be32(&lbc->fpar),
185 in_be32(&lbc->fbcr), priv->bank);
187 ctrl->irq_status = 0;
188 /* execute special operation */
189 out_be32(&lbc->lsor, priv->bank);
191 /* wait for FCM complete flag or timeout */
192 wait_event_timeout(ctrl->irq_wait, ctrl->irq_status,
193 FCM_TIMEOUT_MSECS * HZ/1000);
194 ctrl->status = ctrl->irq_status;
196 /* store mdr value in case it was needed */
197 if (ctrl->use_mdr)
198 ctrl->mdr = in_be32(&lbc->mdr);
200 ctrl->use_mdr = 0;
202 dev_vdbg(ctrl->dev,
203 "fsl_elbc_run_command: stat=%08x mdr=%08x fmr=%08x\n",
204 ctrl->status, ctrl->mdr, in_be32(&lbc->fmr));
206 /* returns 0 on success otherwise non-zero) */
207 return ctrl->status == LTESR_CC ? 0 : -EIO;
210 static void fsl_elbc_do_read(struct nand_chip *chip, int oob)
212 struct fsl_elbc_mtd *priv = chip->priv;
213 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
214 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
216 if (priv->page_size) {
217 out_be32(&lbc->fir,
218 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
219 (FIR_OP_CA << FIR_OP1_SHIFT) |
220 (FIR_OP_PA << FIR_OP2_SHIFT) |
221 (FIR_OP_CW1 << FIR_OP3_SHIFT) |
222 (FIR_OP_RBW << FIR_OP4_SHIFT));
224 out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) |
225 (NAND_CMD_READSTART << FCR_CMD1_SHIFT));
226 } else {
227 out_be32(&lbc->fir,
228 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
229 (FIR_OP_CA << FIR_OP1_SHIFT) |
230 (FIR_OP_PA << FIR_OP2_SHIFT) |
231 (FIR_OP_RBW << FIR_OP3_SHIFT));
233 if (oob)
234 out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT);
235 else
236 out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT);
240 /* cmdfunc send commands to the FCM */
241 static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command,
242 int column, int page_addr)
244 struct nand_chip *chip = mtd->priv;
245 struct fsl_elbc_mtd *priv = chip->priv;
246 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
247 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
249 ctrl->use_mdr = 0;
251 /* clear the read buffer */
252 ctrl->read_bytes = 0;
253 if (command != NAND_CMD_PAGEPROG)
254 ctrl->index = 0;
256 switch (command) {
257 /* READ0 and READ1 read the entire buffer to use hardware ECC. */
258 case NAND_CMD_READ1:
259 column += 256;
261 /* fall-through */
262 case NAND_CMD_READ0:
263 dev_dbg(ctrl->dev,
264 "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:"
265 " 0x%x, column: 0x%x.\n", page_addr, column);
268 out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */
269 set_addr(mtd, 0, page_addr, 0);
271 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
272 ctrl->index += column;
274 fsl_elbc_do_read(chip, 0);
275 fsl_elbc_run_command(mtd);
276 return;
278 /* READOOB reads only the OOB because no ECC is performed. */
279 case NAND_CMD_READOOB:
280 dev_vdbg(ctrl->dev,
281 "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:"
282 " 0x%x, column: 0x%x.\n", page_addr, column);
284 out_be32(&lbc->fbcr, mtd->oobsize - column);
285 set_addr(mtd, column, page_addr, 1);
287 ctrl->read_bytes = mtd->writesize + mtd->oobsize;
289 fsl_elbc_do_read(chip, 1);
290 fsl_elbc_run_command(mtd);
291 return;
293 /* READID must read all 5 possible bytes while CEB is active */
294 case NAND_CMD_READID:
295 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_READID.\n");
297 out_be32(&lbc->fir, (FIR_OP_CW0 << FIR_OP0_SHIFT) |
298 (FIR_OP_UA << FIR_OP1_SHIFT) |
299 (FIR_OP_RBW << FIR_OP2_SHIFT));
300 out_be32(&lbc->fcr, NAND_CMD_READID << FCR_CMD0_SHIFT);
301 /* 5 bytes for manuf, device and exts */
302 out_be32(&lbc->fbcr, 5);
303 ctrl->read_bytes = 5;
304 ctrl->use_mdr = 1;
305 ctrl->mdr = 0;
307 set_addr(mtd, 0, 0, 0);
308 fsl_elbc_run_command(mtd);
309 return;
311 /* ERASE1 stores the block and page address */
312 case NAND_CMD_ERASE1:
313 dev_vdbg(ctrl->dev,
314 "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, "
315 "page_addr: 0x%x.\n", page_addr);
316 set_addr(mtd, 0, page_addr, 0);
317 return;
319 /* ERASE2 uses the block and page address from ERASE1 */
320 case NAND_CMD_ERASE2:
321 dev_vdbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n");
323 out_be32(&lbc->fir,
324 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
325 (FIR_OP_PA << FIR_OP1_SHIFT) |
326 (FIR_OP_CM1 << FIR_OP2_SHIFT));
328 out_be32(&lbc->fcr,
329 (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) |
330 (NAND_CMD_ERASE2 << FCR_CMD1_SHIFT));
332 out_be32(&lbc->fbcr, 0);
333 ctrl->read_bytes = 0;
335 fsl_elbc_run_command(mtd);
336 return;
338 /* SEQIN sets up the addr buffer and all registers except the length */
339 case NAND_CMD_SEQIN: {
340 __be32 fcr;
341 dev_vdbg(ctrl->dev,
342 "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, "
343 "page_addr: 0x%x, column: 0x%x.\n",
344 page_addr, column);
346 ctrl->column = column;
347 ctrl->oob = 0;
349 if (priv->page_size) {
350 fcr = (NAND_CMD_SEQIN << FCR_CMD0_SHIFT) |
351 (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT);
353 out_be32(&lbc->fir,
354 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
355 (FIR_OP_CA << FIR_OP1_SHIFT) |
356 (FIR_OP_PA << FIR_OP2_SHIFT) |
357 (FIR_OP_WB << FIR_OP3_SHIFT) |
358 (FIR_OP_CW1 << FIR_OP4_SHIFT));
359 } else {
360 fcr = (NAND_CMD_PAGEPROG << FCR_CMD1_SHIFT) |
361 (NAND_CMD_SEQIN << FCR_CMD2_SHIFT);
363 out_be32(&lbc->fir,
364 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
365 (FIR_OP_CM2 << FIR_OP1_SHIFT) |
366 (FIR_OP_CA << FIR_OP2_SHIFT) |
367 (FIR_OP_PA << FIR_OP3_SHIFT) |
368 (FIR_OP_WB << FIR_OP4_SHIFT) |
369 (FIR_OP_CW1 << FIR_OP5_SHIFT));
371 if (column >= mtd->writesize) {
372 /* OOB area --> READOOB */
373 column -= mtd->writesize;
374 fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT;
375 ctrl->oob = 1;
376 } else if (column < 256) {
377 /* First 256 bytes --> READ0 */
378 fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT;
379 } else {
380 /* Second 256 bytes --> READ1 */
381 fcr |= NAND_CMD_READ1 << FCR_CMD0_SHIFT;
385 out_be32(&lbc->fcr, fcr);
386 set_addr(mtd, column, page_addr, ctrl->oob);
387 return;
390 /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
391 case NAND_CMD_PAGEPROG: {
392 int full_page;
393 dev_vdbg(ctrl->dev,
394 "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG "
395 "writing %d bytes.\n", ctrl->index);
397 /* if the write did not start at 0 or is not a full page
398 * then set the exact length, otherwise use a full page
399 * write so the HW generates the ECC.
401 if (ctrl->oob || ctrl->column != 0 ||
402 ctrl->index != mtd->writesize + mtd->oobsize) {
403 out_be32(&lbc->fbcr, ctrl->index);
404 full_page = 0;
405 } else {
406 out_be32(&lbc->fbcr, 0);
407 full_page = 1;
410 fsl_elbc_run_command(mtd);
412 /* Read back the page in order to fill in the ECC for the
413 * caller. Is this really needed?
415 if (full_page && ctrl->oob_poi) {
416 out_be32(&lbc->fbcr, 3);
417 set_addr(mtd, 6, page_addr, 1);
419 ctrl->read_bytes = mtd->writesize + 9;
421 fsl_elbc_do_read(chip, 1);
422 fsl_elbc_run_command(mtd);
424 memcpy_fromio(ctrl->oob_poi + 6,
425 &ctrl->addr[ctrl->index], 3);
426 ctrl->index += 3;
429 ctrl->oob_poi = NULL;
430 return;
433 /* CMD_STATUS must read the status byte while CEB is active */
434 /* Note - it does not wait for the ready line */
435 case NAND_CMD_STATUS:
436 out_be32(&lbc->fir,
437 (FIR_OP_CM0 << FIR_OP0_SHIFT) |
438 (FIR_OP_RBW << FIR_OP1_SHIFT));
439 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
440 out_be32(&lbc->fbcr, 1);
441 set_addr(mtd, 0, 0, 0);
442 ctrl->read_bytes = 1;
444 fsl_elbc_run_command(mtd);
446 /* The chip always seems to report that it is
447 * write-protected, even when it is not.
449 setbits8(ctrl->addr, NAND_STATUS_WP);
450 return;
452 /* RESET without waiting for the ready line */
453 case NAND_CMD_RESET:
454 dev_dbg(ctrl->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n");
455 out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT);
456 out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT);
457 fsl_elbc_run_command(mtd);
458 return;
460 default:
461 dev_err(ctrl->dev,
462 "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n",
463 command);
467 static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip)
469 /* The hardware does not seem to support multiple
470 * chips per bank.
475 * Write buf to the FCM Controller Data Buffer
477 static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
479 struct nand_chip *chip = mtd->priv;
480 struct fsl_elbc_mtd *priv = chip->priv;
481 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
482 unsigned int bufsize = mtd->writesize + mtd->oobsize;
484 if (len <= 0) {
485 dev_err(ctrl->dev, "write_buf of %d bytes", len);
486 ctrl->status = 0;
487 return;
490 if ((unsigned int)len > bufsize - ctrl->index) {
491 dev_err(ctrl->dev,
492 "write_buf beyond end of buffer "
493 "(%d requested, %u available)\n",
494 len, bufsize - ctrl->index);
495 len = bufsize - ctrl->index;
498 memcpy_toio(&ctrl->addr[ctrl->index], buf, len);
500 * This is workaround for the weird elbc hangs during nand write,
501 * Scott Wood says: "...perhaps difference in how long it takes a
502 * write to make it through the localbus compared to a write to IMMR
503 * is causing problems, and sync isn't helping for some reason."
504 * Reading back the last byte helps though.
506 in_8(&ctrl->addr[ctrl->index] + len - 1);
508 ctrl->index += len;
512 * read a byte from either the FCM hardware buffer if it has any data left
513 * otherwise issue a command to read a single byte.
515 static u8 fsl_elbc_read_byte(struct mtd_info *mtd)
517 struct nand_chip *chip = mtd->priv;
518 struct fsl_elbc_mtd *priv = chip->priv;
519 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
521 /* If there are still bytes in the FCM, then use the next byte. */
522 if (ctrl->index < ctrl->read_bytes)
523 return in_8(&ctrl->addr[ctrl->index++]);
525 dev_err(ctrl->dev, "read_byte beyond end of buffer\n");
526 return ERR_BYTE;
530 * Read from the FCM Controller Data Buffer
532 static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
534 struct nand_chip *chip = mtd->priv;
535 struct fsl_elbc_mtd *priv = chip->priv;
536 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
537 int avail;
539 if (len < 0)
540 return;
542 avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index);
543 memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail);
544 ctrl->index += avail;
546 if (len > avail)
547 dev_err(ctrl->dev,
548 "read_buf beyond end of buffer "
549 "(%d requested, %d available)\n",
550 len, avail);
554 * Verify buffer against the FCM Controller Data Buffer
556 static int fsl_elbc_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
558 struct nand_chip *chip = mtd->priv;
559 struct fsl_elbc_mtd *priv = chip->priv;
560 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
561 int i;
563 if (len < 0) {
564 dev_err(ctrl->dev, "write_buf of %d bytes", len);
565 return -EINVAL;
568 if ((unsigned int)len > ctrl->read_bytes - ctrl->index) {
569 dev_err(ctrl->dev,
570 "verify_buf beyond end of buffer "
571 "(%d requested, %u available)\n",
572 len, ctrl->read_bytes - ctrl->index);
574 ctrl->index = ctrl->read_bytes;
575 return -EINVAL;
578 for (i = 0; i < len; i++)
579 if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i])
580 break;
582 ctrl->index += len;
583 return i == len && ctrl->status == LTESR_CC ? 0 : -EIO;
586 /* This function is called after Program and Erase Operations to
587 * check for success or failure.
589 static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip)
591 struct fsl_elbc_mtd *priv = chip->priv;
592 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
593 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
595 if (ctrl->status != LTESR_CC)
596 return NAND_STATUS_FAIL;
598 /* Use READ_STATUS command, but wait for the device to be ready */
599 ctrl->use_mdr = 0;
600 out_be32(&lbc->fir,
601 (FIR_OP_CW0 << FIR_OP0_SHIFT) |
602 (FIR_OP_RBW << FIR_OP1_SHIFT));
603 out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT);
604 out_be32(&lbc->fbcr, 1);
605 set_addr(mtd, 0, 0, 0);
606 ctrl->read_bytes = 1;
608 fsl_elbc_run_command(mtd);
610 if (ctrl->status != LTESR_CC)
611 return NAND_STATUS_FAIL;
613 /* The chip always seems to report that it is
614 * write-protected, even when it is not.
616 setbits8(ctrl->addr, NAND_STATUS_WP);
617 return fsl_elbc_read_byte(mtd);
620 static int fsl_elbc_chip_init_tail(struct mtd_info *mtd)
622 struct nand_chip *chip = mtd->priv;
623 struct fsl_elbc_mtd *priv = chip->priv;
624 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
625 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
626 unsigned int al;
628 /* calculate FMR Address Length field */
629 al = 0;
630 if (chip->pagemask & 0xffff0000)
631 al++;
632 if (chip->pagemask & 0xff000000)
633 al++;
635 /* add to ECCM mode set in fsl_elbc_init */
636 priv->fmr |= (12 << FMR_CWTO_SHIFT) | /* Timeout > 12 ms */
637 (al << FMR_AL_SHIFT);
639 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->numchips = %d\n",
640 chip->numchips);
641 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chipsize = %ld\n",
642 chip->chipsize);
643 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->pagemask = %8x\n",
644 chip->pagemask);
645 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_delay = %d\n",
646 chip->chip_delay);
647 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->badblockpos = %d\n",
648 chip->badblockpos);
649 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->chip_shift = %d\n",
650 chip->chip_shift);
651 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->page_shift = %d\n",
652 chip->page_shift);
653 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n",
654 chip->phys_erase_shift);
655 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecclayout = %p\n",
656 chip->ecclayout);
657 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.mode = %d\n",
658 chip->ecc.mode);
659 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.steps = %d\n",
660 chip->ecc.steps);
661 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n",
662 chip->ecc.bytes);
663 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.total = %d\n",
664 chip->ecc.total);
665 dev_dbg(ctrl->dev, "fsl_elbc_init: nand->ecc.layout = %p\n",
666 chip->ecc.layout);
667 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags);
668 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->size = %d\n", mtd->size);
669 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->erasesize = %d\n",
670 mtd->erasesize);
671 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->writesize = %d\n",
672 mtd->writesize);
673 dev_dbg(ctrl->dev, "fsl_elbc_init: mtd->oobsize = %d\n",
674 mtd->oobsize);
676 /* adjust Option Register and ECC to match Flash page size */
677 if (mtd->writesize == 512) {
678 priv->page_size = 0;
679 clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
680 } else if (mtd->writesize == 2048) {
681 priv->page_size = 1;
682 setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS);
683 /* adjust ecc setup if needed */
684 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
685 BR_DECC_CHK_GEN) {
686 chip->ecc.size = 512;
687 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
688 &fsl_elbc_oob_lp_eccm1 :
689 &fsl_elbc_oob_lp_eccm0;
690 mtd->ecclayout = chip->ecc.layout;
691 mtd->oobavail = chip->ecc.layout->oobavail;
693 } else {
694 dev_err(ctrl->dev,
695 "fsl_elbc_init: page size %d is not supported\n",
696 mtd->writesize);
697 return -1;
700 return 0;
703 static int fsl_elbc_read_page(struct mtd_info *mtd,
704 struct nand_chip *chip,
705 uint8_t *buf)
707 fsl_elbc_read_buf(mtd, buf, mtd->writesize);
708 fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
710 if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL)
711 mtd->ecc_stats.failed++;
713 return 0;
716 /* ECC will be calculated automatically, and errors will be detected in
717 * waitfunc.
719 static void fsl_elbc_write_page(struct mtd_info *mtd,
720 struct nand_chip *chip,
721 const uint8_t *buf)
723 struct fsl_elbc_mtd *priv = chip->priv;
724 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
726 fsl_elbc_write_buf(mtd, buf, mtd->writesize);
727 fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
729 ctrl->oob_poi = chip->oob_poi;
732 static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv)
734 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
735 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
736 struct nand_chip *chip = &priv->chip;
738 dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank);
740 /* Fill in fsl_elbc_mtd structure */
741 priv->mtd.priv = chip;
742 priv->mtd.owner = THIS_MODULE;
743 priv->fmr = 0; /* rest filled in later */
745 /* fill in nand_chip structure */
746 /* set up function call table */
747 chip->read_byte = fsl_elbc_read_byte;
748 chip->write_buf = fsl_elbc_write_buf;
749 chip->read_buf = fsl_elbc_read_buf;
750 chip->verify_buf = fsl_elbc_verify_buf;
751 chip->select_chip = fsl_elbc_select_chip;
752 chip->cmdfunc = fsl_elbc_cmdfunc;
753 chip->waitfunc = fsl_elbc_wait;
755 /* set up nand options */
756 chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR;
758 chip->controller = &ctrl->controller;
759 chip->priv = priv;
761 chip->ecc.read_page = fsl_elbc_read_page;
762 chip->ecc.write_page = fsl_elbc_write_page;
764 /* If CS Base Register selects full hardware ECC then use it */
765 if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) ==
766 BR_DECC_CHK_GEN) {
767 chip->ecc.mode = NAND_ECC_HW;
768 /* put in small page settings and adjust later if needed */
769 chip->ecc.layout = (priv->fmr & FMR_ECCM) ?
770 &fsl_elbc_oob_sp_eccm1 : &fsl_elbc_oob_sp_eccm0;
771 chip->ecc.size = 512;
772 chip->ecc.bytes = 3;
773 } else {
774 /* otherwise fall back to default software ECC */
775 chip->ecc.mode = NAND_ECC_SOFT;
778 return 0;
781 static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv)
783 struct fsl_elbc_ctrl *ctrl = priv->ctrl;
785 nand_release(&priv->mtd);
787 kfree(priv->mtd.name);
789 if (priv->vbase)
790 iounmap(priv->vbase);
792 ctrl->chips[priv->bank] = NULL;
793 kfree(priv);
795 return 0;
798 static int fsl_elbc_chip_probe(struct fsl_elbc_ctrl *ctrl,
799 struct device_node *node)
801 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
802 struct fsl_elbc_mtd *priv;
803 struct resource res;
804 #ifdef CONFIG_MTD_PARTITIONS
805 static const char *part_probe_types[]
806 = { "cmdlinepart", "RedBoot", NULL };
807 struct mtd_partition *parts;
808 #endif
809 int ret;
810 int bank;
812 /* get, allocate and map the memory resource */
813 ret = of_address_to_resource(node, 0, &res);
814 if (ret) {
815 dev_err(ctrl->dev, "failed to get resource\n");
816 return ret;
819 /* find which chip select it is connected to */
820 for (bank = 0; bank < MAX_BANKS; bank++)
821 if ((in_be32(&lbc->bank[bank].br) & BR_V) &&
822 (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM &&
823 (in_be32(&lbc->bank[bank].br) &
824 in_be32(&lbc->bank[bank].or) & BR_BA)
825 == res.start)
826 break;
828 if (bank >= MAX_BANKS) {
829 dev_err(ctrl->dev, "address did not match any chip selects\n");
830 return -ENODEV;
833 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
834 if (!priv)
835 return -ENOMEM;
837 ctrl->chips[bank] = priv;
838 priv->bank = bank;
839 priv->ctrl = ctrl;
840 priv->dev = ctrl->dev;
842 priv->vbase = ioremap(res.start, res.end - res.start + 1);
843 if (!priv->vbase) {
844 dev_err(ctrl->dev, "failed to map chip region\n");
845 ret = -ENOMEM;
846 goto err;
849 priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", res.start);
850 if (!priv->mtd.name) {
851 ret = -ENOMEM;
852 goto err;
855 ret = fsl_elbc_chip_init(priv);
856 if (ret)
857 goto err;
859 ret = nand_scan_ident(&priv->mtd, 1);
860 if (ret)
861 goto err;
863 ret = fsl_elbc_chip_init_tail(&priv->mtd);
864 if (ret)
865 goto err;
867 ret = nand_scan_tail(&priv->mtd);
868 if (ret)
869 goto err;
871 #ifdef CONFIG_MTD_PARTITIONS
872 /* First look for RedBoot table or partitions on the command
873 * line, these take precedence over device tree information */
874 ret = parse_mtd_partitions(&priv->mtd, part_probe_types, &parts, 0);
875 if (ret < 0)
876 goto err;
878 #ifdef CONFIG_MTD_OF_PARTS
879 if (ret == 0) {
880 ret = of_mtd_parse_partitions(priv->dev, &priv->mtd,
881 node, &parts);
882 if (ret < 0)
883 goto err;
885 #endif
887 if (ret > 0)
888 add_mtd_partitions(&priv->mtd, parts, ret);
889 else
890 #endif
891 add_mtd_device(&priv->mtd);
893 printk(KERN_INFO "eLBC NAND device at 0x%zx, bank %d\n",
894 res.start, priv->bank);
895 return 0;
897 err:
898 fsl_elbc_chip_remove(priv);
899 return ret;
902 static int __devinit fsl_elbc_ctrl_init(struct fsl_elbc_ctrl *ctrl)
904 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
906 /* clear event registers */
907 setbits32(&lbc->ltesr, LTESR_NAND_MASK);
908 out_be32(&lbc->lteatr, 0);
910 /* Enable interrupts for any detected events */
911 out_be32(&lbc->lteir, LTESR_NAND_MASK);
913 ctrl->read_bytes = 0;
914 ctrl->index = 0;
915 ctrl->addr = NULL;
917 return 0;
920 static int __devexit fsl_elbc_ctrl_remove(struct of_device *ofdev)
922 struct fsl_elbc_ctrl *ctrl = dev_get_drvdata(&ofdev->dev);
923 int i;
925 for (i = 0; i < MAX_BANKS; i++)
926 if (ctrl->chips[i])
927 fsl_elbc_chip_remove(ctrl->chips[i]);
929 if (ctrl->irq)
930 free_irq(ctrl->irq, ctrl);
932 if (ctrl->regs)
933 iounmap(ctrl->regs);
935 dev_set_drvdata(&ofdev->dev, NULL);
936 kfree(ctrl);
937 return 0;
940 /* NOTE: This interrupt is also used to report other localbus events,
941 * such as transaction errors on other chipselects. If we want to
942 * capture those, we'll need to move the IRQ code into a shared
943 * LBC driver.
946 static irqreturn_t fsl_elbc_ctrl_irq(int irqno, void *data)
948 struct fsl_elbc_ctrl *ctrl = data;
949 struct fsl_lbc_regs __iomem *lbc = ctrl->regs;
950 __be32 status = in_be32(&lbc->ltesr) & LTESR_NAND_MASK;
952 if (status) {
953 out_be32(&lbc->ltesr, status);
954 out_be32(&lbc->lteatr, 0);
956 ctrl->irq_status = status;
957 smp_wmb();
958 wake_up(&ctrl->irq_wait);
960 return IRQ_HANDLED;
963 return IRQ_NONE;
966 /* fsl_elbc_ctrl_probe
968 * called by device layer when it finds a device matching
969 * one our driver can handled. This code allocates all of
970 * the resources needed for the controller only. The
971 * resources for the NAND banks themselves are allocated
972 * in the chip probe function.
975 static int __devinit fsl_elbc_ctrl_probe(struct of_device *ofdev,
976 const struct of_device_id *match)
978 struct device_node *child;
979 struct fsl_elbc_ctrl *ctrl;
980 int ret;
982 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
983 if (!ctrl)
984 return -ENOMEM;
986 dev_set_drvdata(&ofdev->dev, ctrl);
988 spin_lock_init(&ctrl->controller.lock);
989 init_waitqueue_head(&ctrl->controller.wq);
990 init_waitqueue_head(&ctrl->irq_wait);
992 ctrl->regs = of_iomap(ofdev->node, 0);
993 if (!ctrl->regs) {
994 dev_err(&ofdev->dev, "failed to get memory region\n");
995 ret = -ENODEV;
996 goto err;
999 ctrl->irq = of_irq_to_resource(ofdev->node, 0, NULL);
1000 if (ctrl->irq == NO_IRQ) {
1001 dev_err(&ofdev->dev, "failed to get irq resource\n");
1002 ret = -ENODEV;
1003 goto err;
1006 ctrl->dev = &ofdev->dev;
1008 ret = fsl_elbc_ctrl_init(ctrl);
1009 if (ret < 0)
1010 goto err;
1012 ret = request_irq(ctrl->irq, fsl_elbc_ctrl_irq, 0, "fsl-elbc", ctrl);
1013 if (ret != 0) {
1014 dev_err(&ofdev->dev, "failed to install irq (%d)\n",
1015 ctrl->irq);
1016 ret = ctrl->irq;
1017 goto err;
1020 for_each_child_of_node(ofdev->node, child)
1021 if (of_device_is_compatible(child, "fsl,elbc-fcm-nand"))
1022 fsl_elbc_chip_probe(ctrl, child);
1024 return 0;
1026 err:
1027 fsl_elbc_ctrl_remove(ofdev);
1028 return ret;
1031 static const struct of_device_id fsl_elbc_match[] = {
1033 .compatible = "fsl,elbc",
1038 static struct of_platform_driver fsl_elbc_ctrl_driver = {
1039 .driver = {
1040 .name = "fsl-elbc",
1042 .match_table = fsl_elbc_match,
1043 .probe = fsl_elbc_ctrl_probe,
1044 .remove = __devexit_p(fsl_elbc_ctrl_remove),
1047 static int __init fsl_elbc_init(void)
1049 return of_register_platform_driver(&fsl_elbc_ctrl_driver);
1052 static void __exit fsl_elbc_exit(void)
1054 of_unregister_platform_driver(&fsl_elbc_ctrl_driver);
1057 module_init(fsl_elbc_init);
1058 module_exit(fsl_elbc_exit);
1060 MODULE_LICENSE("GPL");
1061 MODULE_AUTHOR("Freescale");
1062 MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver");