2 * drivers/i2c/chips/lm8323.c
4 * Copyright (C) 2007-2009 Nokia Corporation
6 * Written by Daniel Stone <daniel.stone@nokia.com>
7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
9 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation (version 2 of the License only).
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/input.h>
32 #include <linux/leds.h>
34 #include <linux/i2c/lm8323.h>
35 #include <linux/slab.h>
37 /* Commands to send to the chip. */
38 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
39 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
40 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
41 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
42 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
43 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
44 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
45 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
46 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
47 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
48 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
49 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
50 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
51 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
52 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
53 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
54 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
55 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
56 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
57 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
58 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
59 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
61 /* Interrupt status. */
62 #define INT_KEYPAD 0x01 /* Key event. */
63 #define INT_ROTATOR 0x02 /* Rotator event. */
64 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
65 #define INT_NOINIT 0x10 /* Lost configuration. */
66 #define INT_PWM1 0x20 /* PWM1 stopped. */
67 #define INT_PWM2 0x40 /* PWM2 stopped. */
68 #define INT_PWM3 0x80 /* PWM3 stopped. */
70 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
71 #define ERR_BADPAR 0x01 /* Bad parameter. */
72 #define ERR_CMDUNK 0x02 /* Unknown command. */
73 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
74 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
76 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
77 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
78 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
79 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
80 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
81 #define CFG_PSIZE 0x20 /* Package size (must be 0). */
82 #define CFG_ROTEN 0x40 /* Enable rotator. */
84 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
85 #define CLK_RCPWM_INTERNAL 0x00
86 #define CLK_RCPWM_EXTERNAL 0x03
87 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
88 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
90 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
91 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
92 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
93 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
94 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
96 /* Key event fifo length */
97 #define LM8323_FIFO_LEN 15
99 /* Commands for PWM engine; feed in with PWM_WRITE. */
100 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
101 #define PWM_SET(v) (0x4000 | ((v) & 0xff))
102 /* Go to start of script. */
103 #define PWM_GOTOSTART 0x0000
105 * Stop engine (generates interrupt). If reset is 1, clear the program
106 * counter, else leave it.
108 #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
110 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
111 * Take t clock scales (up to 63) per step, for n steps (up to 126).
112 * If u is set, ramp up, else ramp down.
114 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
115 ((n) & 0x7f) | ((u) ? 0 : 0x80))
117 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
118 * If cnt is zero, execute until PWM_END is encountered.
120 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
123 * Wait for trigger. Argument is a mask of channels, shifted by the channel
124 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
127 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
128 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
129 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
135 int desired_brightness
;
140 struct work_struct work
;
141 struct led_classdev cdev
;
142 struct lm8323_chip
*chip
;
148 struct i2c_client
*client
;
149 struct work_struct work
;
150 struct input_dev
*idev
;
155 unsigned short keymap
[LM8323_KEYMAP_SIZE
];
160 struct lm8323_pwm pwm
[LM8323_NUM_PWMS
];
163 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
164 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
165 #define work_to_lm8323(w) container_of(w, struct lm8323_chip, work)
166 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
167 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
169 #define LM8323_MAX_DATA 8
172 * To write, we just access the chip's address in write mode, and dump the
173 * command and data out on the bus. The command byte and data are taken as
174 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
176 static int lm8323_write(struct lm8323_chip
*lm
, int len
, ...)
180 u8 data
[LM8323_MAX_DATA
];
184 if (unlikely(len
> LM8323_MAX_DATA
)) {
185 dev_err(&lm
->client
->dev
, "tried to send %d bytes\n", len
);
190 for (i
= 0; i
< len
; i
++)
191 data
[i
] = va_arg(ap
, int);
196 * If the host is asleep while we send the data, we can get a NACK
197 * back while it wakes up, so try again, once.
199 ret
= i2c_master_send(lm
->client
, data
, len
);
200 if (unlikely(ret
== -EREMOTEIO
))
201 ret
= i2c_master_send(lm
->client
, data
, len
);
202 if (unlikely(ret
!= len
))
203 dev_err(&lm
->client
->dev
, "sent %d bytes of %d total\n",
210 * To read, we first send the command byte to the chip and end the transaction,
211 * then access the chip in read mode, at which point it will send the data.
213 static int lm8323_read(struct lm8323_chip
*lm
, u8 cmd
, u8
*buf
, int len
)
218 * If the host is asleep while we send the byte, we can get a NACK
219 * back while it wakes up, so try again, once.
221 ret
= i2c_master_send(lm
->client
, &cmd
, 1);
222 if (unlikely(ret
== -EREMOTEIO
))
223 ret
= i2c_master_send(lm
->client
, &cmd
, 1);
224 if (unlikely(ret
!= 1)) {
225 dev_err(&lm
->client
->dev
, "sending read cmd 0x%02x failed\n",
230 ret
= i2c_master_recv(lm
->client
, buf
, len
);
231 if (unlikely(ret
!= len
))
232 dev_err(&lm
->client
->dev
, "wanted %d bytes, got %d\n",
239 * Set the chip active time (idle time before it enters halt).
241 static void lm8323_set_active_time(struct lm8323_chip
*lm
, int time
)
243 lm8323_write(lm
, 2, LM8323_CMD_SET_ACTIVE
, time
>> 2);
247 * The signals are AT-style: the low 7 bits are the keycode, and the top
248 * bit indicates the state (1 for down, 0 for up).
250 static inline u8
lm8323_whichkey(u8 event
)
255 static inline int lm8323_ispress(u8 event
)
257 return (event
& 0x80) ? 1 : 0;
260 static void process_keys(struct lm8323_chip
*lm
)
263 u8 key_fifo
[LM8323_FIFO_LEN
+ 1];
264 int old_keys_down
= lm
->keys_down
;
269 * Read all key events from the FIFO at once. Next READ_FIFO clears the
270 * FIFO even if we didn't read all events previously.
272 ret
= lm8323_read(lm
, LM8323_CMD_READ_FIFO
, key_fifo
, LM8323_FIFO_LEN
);
275 dev_err(&lm
->client
->dev
, "Failed reading fifo \n");
280 while ((event
= key_fifo
[i
++])) {
281 u8 key
= lm8323_whichkey(event
);
282 int isdown
= lm8323_ispress(event
);
283 unsigned short keycode
= lm
->keymap
[key
];
285 dev_vdbg(&lm
->client
->dev
, "key 0x%02x %s\n",
286 key
, isdown
? "down" : "up");
288 if (lm
->kp_enabled
) {
289 input_event(lm
->idev
, EV_MSC
, MSC_SCAN
, key
);
290 input_report_key(lm
->idev
, keycode
, isdown
);
291 input_sync(lm
->idev
);
301 * Errata: We need to ensure that the chip never enters halt mode
302 * during a keypress, so set active time to 0. When it's released,
303 * we can enter halt again, so set the active time back to normal.
305 if (!old_keys_down
&& lm
->keys_down
)
306 lm8323_set_active_time(lm
, 0);
307 if (old_keys_down
&& !lm
->keys_down
)
308 lm8323_set_active_time(lm
, lm
->active_time
);
311 static void lm8323_process_error(struct lm8323_chip
*lm
)
315 if (lm8323_read(lm
, LM8323_CMD_READ_ERR
, &error
, 1) == 1) {
316 if (error
& ERR_FIFOOVER
)
317 dev_vdbg(&lm
->client
->dev
, "fifo overflow!\n");
318 if (error
& ERR_KEYOVR
)
319 dev_vdbg(&lm
->client
->dev
,
320 "more than two keys pressed\n");
321 if (error
& ERR_CMDUNK
)
322 dev_vdbg(&lm
->client
->dev
,
323 "unknown command submitted\n");
324 if (error
& ERR_BADPAR
)
325 dev_vdbg(&lm
->client
->dev
, "bad command parameter\n");
329 static void lm8323_reset(struct lm8323_chip
*lm
)
331 /* The docs say we must pass 0xAA as the data byte. */
332 lm8323_write(lm
, 2, LM8323_CMD_RESET
, 0xAA);
335 static int lm8323_configure(struct lm8323_chip
*lm
)
337 int keysize
= (lm
->size_x
<< 4) | lm
->size_y
;
338 int clock
= (CLK_SLOWCLKEN
| CLK_RCPWM_EXTERNAL
);
339 int debounce
= lm
->debounce_time
>> 2;
340 int active
= lm
->active_time
>> 2;
343 * Active time must be greater than the debounce time: if it's
344 * a close-run thing, give ourselves a 12ms buffer.
346 if (debounce
>= active
)
347 active
= debounce
+ 3;
349 lm8323_write(lm
, 2, LM8323_CMD_WRITE_CFG
, 0);
350 lm8323_write(lm
, 2, LM8323_CMD_WRITE_CLOCK
, clock
);
351 lm8323_write(lm
, 2, LM8323_CMD_SET_KEY_SIZE
, keysize
);
352 lm8323_set_active_time(lm
, lm
->active_time
);
353 lm8323_write(lm
, 2, LM8323_CMD_SET_DEBOUNCE
, debounce
);
354 lm8323_write(lm
, 3, LM8323_CMD_WRITE_PORT_STATE
, 0xff, 0xff);
355 lm8323_write(lm
, 3, LM8323_CMD_WRITE_PORT_SEL
, 0, 0);
358 * Not much we can do about errors at this point, so just hope
365 static void pwm_done(struct lm8323_pwm
*pwm
)
367 mutex_lock(&pwm
->lock
);
368 pwm
->running
= false;
369 if (pwm
->desired_brightness
!= pwm
->brightness
)
370 schedule_work(&pwm
->work
);
371 mutex_unlock(&pwm
->lock
);
375 * Bottom half: handle the interrupt by posting key events, or dealing with
376 * errors appropriately.
378 static void lm8323_work(struct work_struct
*work
)
380 struct lm8323_chip
*lm
= work_to_lm8323(work
);
384 mutex_lock(&lm
->lock
);
386 while ((lm8323_read(lm
, LM8323_CMD_READ_INT
, &ints
, 1) == 1) && ints
) {
387 if (likely(ints
& INT_KEYPAD
))
389 if (ints
& INT_ROTATOR
) {
390 /* We don't currently support the rotator. */
391 dev_vdbg(&lm
->client
->dev
, "rotator fired\n");
393 if (ints
& INT_ERROR
) {
394 dev_vdbg(&lm
->client
->dev
, "error!\n");
395 lm8323_process_error(lm
);
397 if (ints
& INT_NOINIT
) {
398 dev_err(&lm
->client
->dev
, "chip lost config; "
400 lm8323_configure(lm
);
402 for (i
= 0; i
< LM8323_NUM_PWMS
; i
++) {
403 if (ints
& (1 << (INT_PWM1
+ i
))) {
404 dev_vdbg(&lm
->client
->dev
,
405 "pwm%d engine completed\n", i
);
406 pwm_done(&lm
->pwm
[i
]);
411 mutex_unlock(&lm
->lock
);
415 * We cannot use I2C in interrupt context, so we just schedule work.
417 static irqreturn_t
lm8323_irq(int irq
, void *data
)
419 struct lm8323_chip
*lm
= data
;
421 schedule_work(&lm
->work
);
429 static int lm8323_read_id(struct lm8323_chip
*lm
, u8
*buf
)
433 bytes
= lm8323_read(lm
, LM8323_CMD_READ_ID
, buf
, 2);
434 if (unlikely(bytes
!= 2))
440 static void lm8323_write_pwm_one(struct lm8323_pwm
*pwm
, int pos
, u16 cmd
)
442 lm8323_write(pwm
->chip
, 4, LM8323_CMD_PWM_WRITE
, (pos
<< 2) | pwm
->id
,
443 (cmd
& 0xff00) >> 8, cmd
& 0x00ff);
447 * Write a script into a given PWM engine, concluding with PWM_END.
448 * If 'kill' is nonzero, the engine will be shut down at the end
449 * of the script, producing a zero output. Otherwise the engine
450 * will be kept running at the final PWM level indefinitely.
452 static void lm8323_write_pwm(struct lm8323_pwm
*pwm
, int kill
,
453 int len
, const u16
*cmds
)
457 for (i
= 0; i
< len
; i
++)
458 lm8323_write_pwm_one(pwm
, i
, cmds
[i
]);
460 lm8323_write_pwm_one(pwm
, i
++, PWM_END(kill
));
461 lm8323_write(pwm
->chip
, 2, LM8323_CMD_START_PWM
, pwm
->id
);
465 static void lm8323_pwm_work(struct work_struct
*work
)
467 struct lm8323_pwm
*pwm
= work_to_pwm(work
);
468 int div512
, perstep
, steps
, hz
, up
, kill
;
472 mutex_lock(&pwm
->lock
);
475 * Do nothing if we're already at the requested level,
476 * or previous setting is not yet complete. In the latter
477 * case we will be called again when the previous PWM script
480 if (pwm
->running
|| pwm
->desired_brightness
== pwm
->brightness
)
483 kill
= (pwm
->desired_brightness
== 0);
484 up
= (pwm
->desired_brightness
> pwm
->brightness
);
485 steps
= abs(pwm
->desired_brightness
- pwm
->brightness
);
488 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
489 * 32768Hz), and number of ticks per step.
491 if ((pwm
->fade_time
/ steps
) > (32768 / 512)) {
499 perstep
= (hz
* pwm
->fade_time
) / (steps
* 1000);
503 else if (perstep
> 63)
510 pwm_cmds
[num_cmds
++] = PWM_RAMP(div512
, perstep
, s
, up
);
514 lm8323_write_pwm(pwm
, kill
, num_cmds
, pwm_cmds
);
515 pwm
->brightness
= pwm
->desired_brightness
;
518 mutex_unlock(&pwm
->lock
);
521 static void lm8323_pwm_set_brightness(struct led_classdev
*led_cdev
,
522 enum led_brightness brightness
)
524 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
525 struct lm8323_chip
*lm
= pwm
->chip
;
527 mutex_lock(&pwm
->lock
);
528 pwm
->desired_brightness
= brightness
;
529 mutex_unlock(&pwm
->lock
);
531 if (in_interrupt()) {
532 schedule_work(&pwm
->work
);
535 * Schedule PWM work as usual unless we are going into suspend
537 mutex_lock(&lm
->lock
);
538 if (likely(!lm
->pm_suspend
))
539 schedule_work(&pwm
->work
);
541 lm8323_pwm_work(&pwm
->work
);
542 mutex_unlock(&lm
->lock
);
546 static ssize_t
lm8323_pwm_show_time(struct device
*dev
,
547 struct device_attribute
*attr
, char *buf
)
549 struct led_classdev
*led_cdev
= dev_get_drvdata(dev
);
550 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
552 return sprintf(buf
, "%d\n", pwm
->fade_time
);
555 static ssize_t
lm8323_pwm_store_time(struct device
*dev
,
556 struct device_attribute
*attr
, const char *buf
, size_t len
)
558 struct led_classdev
*led_cdev
= dev_get_drvdata(dev
);
559 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
563 ret
= strict_strtoul(buf
, 10, &time
);
564 /* Numbers only, please. */
568 pwm
->fade_time
= time
;
572 static DEVICE_ATTR(time
, 0644, lm8323_pwm_show_time
, lm8323_pwm_store_time
);
574 static int init_pwm(struct lm8323_chip
*lm
, int id
, struct device
*dev
,
577 struct lm8323_pwm
*pwm
;
581 pwm
= &lm
->pwm
[id
- 1];
586 pwm
->desired_brightness
= 0;
587 pwm
->running
= false;
588 pwm
->enabled
= false;
589 INIT_WORK(&pwm
->work
, lm8323_pwm_work
);
590 mutex_init(&pwm
->lock
);
594 pwm
->cdev
.name
= name
;
595 pwm
->cdev
.brightness_set
= lm8323_pwm_set_brightness
;
596 if (led_classdev_register(dev
, &pwm
->cdev
) < 0) {
597 dev_err(dev
, "couldn't register PWM %d\n", id
);
600 if (device_create_file(pwm
->cdev
.dev
,
601 &dev_attr_time
) < 0) {
602 dev_err(dev
, "couldn't register time attribute\n");
603 led_classdev_unregister(&pwm
->cdev
);
612 static struct i2c_driver lm8323_i2c_driver
;
614 static ssize_t
lm8323_show_disable(struct device
*dev
,
615 struct device_attribute
*attr
, char *buf
)
617 struct lm8323_chip
*lm
= dev_get_drvdata(dev
);
619 return sprintf(buf
, "%u\n", !lm
->kp_enabled
);
622 static ssize_t
lm8323_set_disable(struct device
*dev
,
623 struct device_attribute
*attr
,
624 const char *buf
, size_t count
)
626 struct lm8323_chip
*lm
= dev_get_drvdata(dev
);
630 ret
= strict_strtoul(buf
, 10, &i
);
632 mutex_lock(&lm
->lock
);
634 mutex_unlock(&lm
->lock
);
638 static DEVICE_ATTR(disable_kp
, 0644, lm8323_show_disable
, lm8323_set_disable
);
640 static int __devinit
lm8323_probe(struct i2c_client
*client
,
641 const struct i2c_device_id
*id
)
643 struct lm8323_platform_data
*pdata
= client
->dev
.platform_data
;
644 struct input_dev
*idev
;
645 struct lm8323_chip
*lm
;
651 if (!pdata
|| !pdata
->size_x
|| !pdata
->size_y
) {
652 dev_err(&client
->dev
, "missing platform_data\n");
656 if (pdata
->size_x
> 8) {
657 dev_err(&client
->dev
, "invalid x size %d specified\n",
662 if (pdata
->size_y
> 12) {
663 dev_err(&client
->dev
, "invalid y size %d specified\n",
668 lm
= kzalloc(sizeof *lm
, GFP_KERNEL
);
669 idev
= input_allocate_device();
677 mutex_init(&lm
->lock
);
678 INIT_WORK(&lm
->work
, lm8323_work
);
680 lm
->size_x
= pdata
->size_x
;
681 lm
->size_y
= pdata
->size_y
;
682 dev_vdbg(&client
->dev
, "Keypad size: %d x %d\n",
683 lm
->size_x
, lm
->size_y
);
685 lm
->debounce_time
= pdata
->debounce_time
;
686 lm
->active_time
= pdata
->active_time
;
690 /* Nothing's set up to service the IRQ yet, so just spin for max.
691 * 100ms until we can configure. */
692 tmo
= jiffies
+ msecs_to_jiffies(100);
693 while (lm8323_read(lm
, LM8323_CMD_READ_INT
, data
, 1) == 1) {
694 if (data
[0] & INT_NOINIT
)
697 if (time_after(jiffies
, tmo
)) {
698 dev_err(&client
->dev
,
699 "timeout waiting for initialisation\n");
706 lm8323_configure(lm
);
708 /* If a true probe check the device */
709 if (lm8323_read_id(lm
, data
) != 0) {
710 dev_err(&client
->dev
, "device not found\n");
715 for (pwm
= 0; pwm
< LM8323_NUM_PWMS
; pwm
++) {
716 err
= init_pwm(lm
, pwm
+ 1, &client
->dev
,
717 pdata
->pwm_names
[pwm
]);
722 lm
->kp_enabled
= true;
723 err
= device_create_file(&client
->dev
, &dev_attr_disable_kp
);
727 idev
->name
= pdata
->name
? : "LM8323 keypad";
728 snprintf(lm
->phys
, sizeof(lm
->phys
),
729 "%s/input-kp", dev_name(&client
->dev
));
730 idev
->phys
= lm
->phys
;
732 idev
->evbit
[0] = BIT(EV_KEY
) | BIT(EV_MSC
);
733 __set_bit(MSC_SCAN
, idev
->mscbit
);
734 for (i
= 0; i
< LM8323_KEYMAP_SIZE
; i
++) {
735 __set_bit(pdata
->keymap
[i
], idev
->keybit
);
736 lm
->keymap
[i
] = pdata
->keymap
[i
];
738 __clear_bit(KEY_RESERVED
, idev
->keybit
);
741 __set_bit(EV_REP
, idev
->evbit
);
743 err
= input_register_device(idev
);
745 dev_dbg(&client
->dev
, "error registering input device\n");
749 err
= request_irq(client
->irq
, lm8323_irq
,
750 IRQF_TRIGGER_FALLING
| IRQF_DISABLED
,
753 dev_err(&client
->dev
, "could not get IRQ %d\n", client
->irq
);
757 i2c_set_clientdata(client
, lm
);
759 device_init_wakeup(&client
->dev
, 1);
760 enable_irq_wake(client
->irq
);
765 input_unregister_device(idev
);
768 device_remove_file(&client
->dev
, &dev_attr_disable_kp
);
771 if (lm
->pwm
[pwm
].enabled
)
772 led_classdev_unregister(&lm
->pwm
[pwm
].cdev
);
774 input_free_device(idev
);
779 static int __devexit
lm8323_remove(struct i2c_client
*client
)
781 struct lm8323_chip
*lm
= i2c_get_clientdata(client
);
784 disable_irq_wake(client
->irq
);
785 free_irq(client
->irq
, lm
);
786 cancel_work_sync(&lm
->work
);
788 input_unregister_device(lm
->idev
);
790 device_remove_file(&lm
->client
->dev
, &dev_attr_disable_kp
);
792 for (i
= 0; i
< 3; i
++)
793 if (lm
->pwm
[i
].enabled
)
794 led_classdev_unregister(&lm
->pwm
[i
].cdev
);
803 * We don't need to explicitly suspend the chip, as it already switches off
804 * when there's no activity.
806 static int lm8323_suspend(struct device
*dev
)
808 struct i2c_client
*client
= to_i2c_client(dev
);
809 struct lm8323_chip
*lm
= i2c_get_clientdata(client
);
812 set_irq_wake(client
->irq
, 0);
813 disable_irq(client
->irq
);
815 mutex_lock(&lm
->lock
);
816 lm
->pm_suspend
= true;
817 mutex_unlock(&lm
->lock
);
819 for (i
= 0; i
< 3; i
++)
820 if (lm
->pwm
[i
].enabled
)
821 led_classdev_suspend(&lm
->pwm
[i
].cdev
);
826 static int lm8323_resume(struct device
*dev
)
828 struct i2c_client
*client
= to_i2c_client(dev
);
829 struct lm8323_chip
*lm
= i2c_get_clientdata(client
);
832 mutex_lock(&lm
->lock
);
833 lm
->pm_suspend
= false;
834 mutex_unlock(&lm
->lock
);
836 for (i
= 0; i
< 3; i
++)
837 if (lm
->pwm
[i
].enabled
)
838 led_classdev_resume(&lm
->pwm
[i
].cdev
);
840 enable_irq(client
->irq
);
841 set_irq_wake(client
->irq
, 1);
847 static SIMPLE_DEV_PM_OPS(lm8323_pm_ops
, lm8323_suspend
, lm8323_resume
);
849 static const struct i2c_device_id lm8323_id
[] = {
854 static struct i2c_driver lm8323_i2c_driver
= {
857 .pm
= &lm8323_pm_ops
,
859 .probe
= lm8323_probe
,
860 .remove
= __devexit_p(lm8323_remove
),
861 .id_table
= lm8323_id
,
863 MODULE_DEVICE_TABLE(i2c
, lm8323_id
);
865 static int __init
lm8323_init(void)
867 return i2c_add_driver(&lm8323_i2c_driver
);
869 module_init(lm8323_init
);
871 static void __exit
lm8323_exit(void)
873 i2c_del_driver(&lm8323_i2c_driver
);
875 module_exit(lm8323_exit
);
877 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
878 MODULE_AUTHOR("Daniel Stone");
879 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
880 MODULE_DESCRIPTION("LM8323 keypad driver");
881 MODULE_LICENSE("GPL");