FRV: Use generic show_interrupts()
[cris-mirror.git] / drivers / media / common / tuners / xc5000.c
blob1e28f7dcb26b6903b459b18e4329c6a0182c3759
1 /*
2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
4 * Copyright (c) 2007 Xceive Corporation
5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/videodev2.h>
27 #include <linux/delay.h>
28 #include <linux/dvb/frontend.h>
29 #include <linux/i2c.h>
31 #include "dvb_frontend.h"
33 #include "xc5000.h"
34 #include "tuner-i2c.h"
36 static int debug;
37 module_param(debug, int, 0644);
38 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
40 static int no_poweroff;
41 module_param(no_poweroff, int, 0644);
42 MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n"
43 "\t\t1 keep device energized and with tuner ready all the times.\n"
44 "\t\tFaster, but consumes more power and keeps the device hotter");
46 static DEFINE_MUTEX(xc5000_list_mutex);
47 static LIST_HEAD(hybrid_tuner_instance_list);
49 #define dprintk(level, fmt, arg...) if (debug >= level) \
50 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
52 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.6.114.fw"
53 #define XC5000_DEFAULT_FIRMWARE_SIZE 12401
55 struct xc5000_priv {
56 struct tuner_i2c_props i2c_props;
57 struct list_head hybrid_tuner_instance_list;
59 u32 if_khz;
60 u32 freq_hz;
61 u32 bandwidth;
62 u8 video_standard;
63 u8 rf_mode;
64 u8 radio_input;
67 /* Misc Defines */
68 #define MAX_TV_STANDARD 24
69 #define XC_MAX_I2C_WRITE_LENGTH 64
71 /* Signal Types */
72 #define XC_RF_MODE_AIR 0
73 #define XC_RF_MODE_CABLE 1
75 /* Result codes */
76 #define XC_RESULT_SUCCESS 0
77 #define XC_RESULT_RESET_FAILURE 1
78 #define XC_RESULT_I2C_WRITE_FAILURE 2
79 #define XC_RESULT_I2C_READ_FAILURE 3
80 #define XC_RESULT_OUT_OF_RANGE 5
82 /* Product id */
83 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
84 #define XC_PRODUCT_ID_FW_LOADED 0x1388
86 /* Registers */
87 #define XREG_INIT 0x00
88 #define XREG_VIDEO_MODE 0x01
89 #define XREG_AUDIO_MODE 0x02
90 #define XREG_RF_FREQ 0x03
91 #define XREG_D_CODE 0x04
92 #define XREG_IF_OUT 0x05
93 #define XREG_SEEK_MODE 0x07
94 #define XREG_POWER_DOWN 0x0A /* Obsolete */
95 /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */
96 #define XREG_OUTPUT_AMP 0x0B
97 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
98 #define XREG_SMOOTHEDCVBS 0x0E
99 #define XREG_XTALFREQ 0x0F
100 #define XREG_FINERFREQ 0x10
101 #define XREG_DDIMODE 0x11
103 #define XREG_ADC_ENV 0x00
104 #define XREG_QUALITY 0x01
105 #define XREG_FRAME_LINES 0x02
106 #define XREG_HSYNC_FREQ 0x03
107 #define XREG_LOCK 0x04
108 #define XREG_FREQ_ERROR 0x05
109 #define XREG_SNR 0x06
110 #define XREG_VERSION 0x07
111 #define XREG_PRODUCT_ID 0x08
112 #define XREG_BUSY 0x09
113 #define XREG_BUILD 0x0D
116 Basic firmware description. This will remain with
117 the driver for documentation purposes.
119 This represents an I2C firmware file encoded as a
120 string of unsigned char. Format is as follows:
122 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
123 char[1 ]=len0_LSB -> length of first write transaction
124 char[2 ]=data0 -> first byte to be sent
125 char[3 ]=data1
126 char[4 ]=data2
127 char[ ]=...
128 char[M ]=dataN -> last byte to be sent
129 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
130 char[M+2]=len1_LSB -> length of second write transaction
131 char[M+3]=data0
132 char[M+4]=data1
134 etc.
136 The [len] value should be interpreted as follows:
138 len= len_MSB _ len_LSB
139 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
140 len=0000_0000_0000_0000 : Reset command: Do hardware reset
141 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
142 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
144 For the RESET and WAIT commands, the two following bytes will contain
145 immediately the length of the following transaction.
148 struct XC_TV_STANDARD {
149 char *Name;
150 u16 AudioMode;
151 u16 VideoMode;
154 /* Tuner standards */
155 #define MN_NTSC_PAL_BTSC 0
156 #define MN_NTSC_PAL_A2 1
157 #define MN_NTSC_PAL_EIAJ 2
158 #define MN_NTSC_PAL_Mono 3
159 #define BG_PAL_A2 4
160 #define BG_PAL_NICAM 5
161 #define BG_PAL_MONO 6
162 #define I_PAL_NICAM 7
163 #define I_PAL_NICAM_MONO 8
164 #define DK_PAL_A2 9
165 #define DK_PAL_NICAM 10
166 #define DK_PAL_MONO 11
167 #define DK_SECAM_A2DK1 12
168 #define DK_SECAM_A2LDK3 13
169 #define DK_SECAM_A2MONO 14
170 #define L_SECAM_NICAM 15
171 #define LC_SECAM_NICAM 16
172 #define DTV6 17
173 #define DTV8 18
174 #define DTV7_8 19
175 #define DTV7 20
176 #define FM_Radio_INPUT2 21
177 #define FM_Radio_INPUT1 22
178 #define FM_Radio_INPUT1_MONO 23
180 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
181 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
182 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
183 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
184 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
185 {"B/G-PAL-A2", 0x0A00, 0x8049},
186 {"B/G-PAL-NICAM", 0x0C04, 0x8049},
187 {"B/G-PAL-MONO", 0x0878, 0x8059},
188 {"I-PAL-NICAM", 0x1080, 0x8009},
189 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
190 {"D/K-PAL-A2", 0x1600, 0x8009},
191 {"D/K-PAL-NICAM", 0x0E80, 0x8009},
192 {"D/K-PAL-MONO", 0x1478, 0x8009},
193 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
194 {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
195 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
196 {"L-SECAM-NICAM", 0x8E82, 0x0009},
197 {"L'-SECAM-NICAM", 0x8E82, 0x4009},
198 {"DTV6", 0x00C0, 0x8002},
199 {"DTV8", 0x00C0, 0x800B},
200 {"DTV7/8", 0x00C0, 0x801B},
201 {"DTV7", 0x00C0, 0x8007},
202 {"FM Radio-INPUT2", 0x9802, 0x9002},
203 {"FM Radio-INPUT1", 0x0208, 0x9002},
204 {"FM Radio-INPUT1_MONO", 0x0278, 0x9002}
207 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
208 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
209 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val);
210 static int xc5000_TunerReset(struct dvb_frontend *fe);
212 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
214 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
215 .flags = 0, .buf = buf, .len = len };
217 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
218 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len);
219 return XC_RESULT_I2C_WRITE_FAILURE;
221 return XC_RESULT_SUCCESS;
224 #if 0
225 /* This routine is never used because the only time we read data from the
226 i2c bus is when we read registers, and we want that to be an atomic i2c
227 transaction in case we are on a multi-master bus */
228 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
230 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
231 .flags = I2C_M_RD, .buf = buf, .len = len };
233 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
234 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len);
235 return -EREMOTEIO;
237 return 0;
239 #endif
241 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
243 u8 buf[2] = { reg >> 8, reg & 0xff };
244 u8 bval[2] = { 0, 0 };
245 struct i2c_msg msg[2] = {
246 { .addr = priv->i2c_props.addr,
247 .flags = 0, .buf = &buf[0], .len = 2 },
248 { .addr = priv->i2c_props.addr,
249 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
252 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
253 printk(KERN_WARNING "xc5000: I2C read failed\n");
254 return -EREMOTEIO;
257 *val = (bval[0] << 8) | bval[1];
258 return XC_RESULT_SUCCESS;
261 static void xc_wait(int wait_ms)
263 msleep(wait_ms);
266 static int xc5000_TunerReset(struct dvb_frontend *fe)
268 struct xc5000_priv *priv = fe->tuner_priv;
269 int ret;
271 dprintk(1, "%s()\n", __func__);
273 if (fe->callback) {
274 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
275 fe->dvb->priv :
276 priv->i2c_props.adap->algo_data,
277 DVB_FRONTEND_COMPONENT_TUNER,
278 XC5000_TUNER_RESET, 0);
279 if (ret) {
280 printk(KERN_ERR "xc5000: reset failed\n");
281 return XC_RESULT_RESET_FAILURE;
283 } else {
284 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
285 return XC_RESULT_RESET_FAILURE;
287 return XC_RESULT_SUCCESS;
290 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
292 u8 buf[4];
293 int WatchDogTimer = 100;
294 int result;
296 buf[0] = (regAddr >> 8) & 0xFF;
297 buf[1] = regAddr & 0xFF;
298 buf[2] = (i2cData >> 8) & 0xFF;
299 buf[3] = i2cData & 0xFF;
300 result = xc_send_i2c_data(priv, buf, 4);
301 if (result == XC_RESULT_SUCCESS) {
302 /* wait for busy flag to clear */
303 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
304 result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf);
305 if (result == XC_RESULT_SUCCESS) {
306 if ((buf[0] == 0) && (buf[1] == 0)) {
307 /* busy flag cleared */
308 break;
309 } else {
310 xc_wait(5); /* wait 5 ms */
311 WatchDogTimer--;
316 if (WatchDogTimer < 0)
317 result = XC_RESULT_I2C_WRITE_FAILURE;
319 return result;
322 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
324 struct xc5000_priv *priv = fe->tuner_priv;
326 int i, nbytes_to_send, result;
327 unsigned int len, pos, index;
328 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
330 index = 0;
331 while ((i2c_sequence[index] != 0xFF) ||
332 (i2c_sequence[index + 1] != 0xFF)) {
333 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
334 if (len == 0x0000) {
335 /* RESET command */
336 result = xc5000_TunerReset(fe);
337 index += 2;
338 if (result != XC_RESULT_SUCCESS)
339 return result;
340 } else if (len & 0x8000) {
341 /* WAIT command */
342 xc_wait(len & 0x7FFF);
343 index += 2;
344 } else {
345 /* Send i2c data whilst ensuring individual transactions
346 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
348 index += 2;
349 buf[0] = i2c_sequence[index];
350 buf[1] = i2c_sequence[index + 1];
351 pos = 2;
352 while (pos < len) {
353 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
354 nbytes_to_send =
355 XC_MAX_I2C_WRITE_LENGTH;
356 else
357 nbytes_to_send = (len - pos + 2);
358 for (i = 2; i < nbytes_to_send; i++) {
359 buf[i] = i2c_sequence[index + pos +
360 i - 2];
362 result = xc_send_i2c_data(priv, buf,
363 nbytes_to_send);
365 if (result != XC_RESULT_SUCCESS)
366 return result;
368 pos += nbytes_to_send - 2;
370 index += len;
373 return XC_RESULT_SUCCESS;
376 static int xc_initialize(struct xc5000_priv *priv)
378 dprintk(1, "%s()\n", __func__);
379 return xc_write_reg(priv, XREG_INIT, 0);
382 static int xc_SetTVStandard(struct xc5000_priv *priv,
383 u16 VideoMode, u16 AudioMode)
385 int ret;
386 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
387 dprintk(1, "%s() Standard = %s\n",
388 __func__,
389 XC5000_Standard[priv->video_standard].Name);
391 ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
392 if (ret == XC_RESULT_SUCCESS)
393 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
395 return ret;
398 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
400 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
401 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
403 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
404 rf_mode = XC_RF_MODE_CABLE;
405 printk(KERN_ERR
406 "%s(), Invalid mode, defaulting to CABLE",
407 __func__);
409 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
412 static const struct dvb_tuner_ops xc5000_tuner_ops;
414 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
416 u16 freq_code;
418 dprintk(1, "%s(%u)\n", __func__, freq_hz);
420 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
421 (freq_hz < xc5000_tuner_ops.info.frequency_min))
422 return XC_RESULT_OUT_OF_RANGE;
424 freq_code = (u16)(freq_hz / 15625);
426 /* Starting in firmware version 1.1.44, Xceive recommends using the
427 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
428 only be used for fast scanning for channel lock) */
429 return xc_write_reg(priv, XREG_FINERFREQ, freq_code);
433 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
435 u32 freq_code = (freq_khz * 1024)/1000;
436 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
437 __func__, freq_khz, freq_code);
439 return xc_write_reg(priv, XREG_IF_OUT, freq_code);
443 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
445 return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope);
448 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
450 int result;
451 u16 regData;
452 u32 tmp;
454 result = xc5000_readreg(priv, XREG_FREQ_ERROR, &regData);
455 if (result != XC_RESULT_SUCCESS)
456 return result;
458 tmp = (u32)regData;
459 (*freq_error_hz) = (tmp * 15625) / 1000;
460 return result;
463 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
465 return xc5000_readreg(priv, XREG_LOCK, lock_status);
468 static int xc_get_version(struct xc5000_priv *priv,
469 u8 *hw_majorversion, u8 *hw_minorversion,
470 u8 *fw_majorversion, u8 *fw_minorversion)
472 u16 data;
473 int result;
475 result = xc5000_readreg(priv, XREG_VERSION, &data);
476 if (result != XC_RESULT_SUCCESS)
477 return result;
479 (*hw_majorversion) = (data >> 12) & 0x0F;
480 (*hw_minorversion) = (data >> 8) & 0x0F;
481 (*fw_majorversion) = (data >> 4) & 0x0F;
482 (*fw_minorversion) = data & 0x0F;
484 return 0;
487 static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev)
489 return xc5000_readreg(priv, XREG_BUILD, buildrev);
492 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
494 u16 regData;
495 int result;
497 result = xc5000_readreg(priv, XREG_HSYNC_FREQ, &regData);
498 if (result != XC_RESULT_SUCCESS)
499 return result;
501 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
502 return result;
505 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
507 return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines);
510 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
512 return xc5000_readreg(priv, XREG_QUALITY, quality);
515 static u16 WaitForLock(struct xc5000_priv *priv)
517 u16 lockState = 0;
518 int watchDogCount = 40;
520 while ((lockState == 0) && (watchDogCount > 0)) {
521 xc_get_lock_status(priv, &lockState);
522 if (lockState != 1) {
523 xc_wait(5);
524 watchDogCount--;
527 return lockState;
530 #define XC_TUNE_ANALOG 0
531 #define XC_TUNE_DIGITAL 1
532 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode)
534 int found = 0;
536 dprintk(1, "%s(%u)\n", __func__, freq_hz);
538 if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
539 return 0;
541 if (mode == XC_TUNE_ANALOG) {
542 if (WaitForLock(priv) == 1)
543 found = 1;
546 return found;
550 static int xc5000_fwupload(struct dvb_frontend *fe)
552 struct xc5000_priv *priv = fe->tuner_priv;
553 const struct firmware *fw;
554 int ret;
556 /* request the firmware, this will block and timeout */
557 printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
558 XC5000_DEFAULT_FIRMWARE);
560 ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
561 priv->i2c_props.adap->dev.parent);
562 if (ret) {
563 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
564 ret = XC_RESULT_RESET_FAILURE;
565 goto out;
566 } else {
567 printk(KERN_DEBUG "xc5000: firmware read %Zu bytes.\n",
568 fw->size);
569 ret = XC_RESULT_SUCCESS;
572 if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
573 printk(KERN_ERR "xc5000: firmware incorrect size\n");
574 ret = XC_RESULT_RESET_FAILURE;
575 } else {
576 printk(KERN_INFO "xc5000: firmware uploading...\n");
577 ret = xc_load_i2c_sequence(fe, fw->data);
578 printk(KERN_INFO "xc5000: firmware upload complete...\n");
581 out:
582 release_firmware(fw);
583 return ret;
586 static void xc_debug_dump(struct xc5000_priv *priv)
588 u16 adc_envelope;
589 u32 freq_error_hz = 0;
590 u16 lock_status;
591 u32 hsync_freq_hz = 0;
592 u16 frame_lines;
593 u16 quality;
594 u8 hw_majorversion = 0, hw_minorversion = 0;
595 u8 fw_majorversion = 0, fw_minorversion = 0;
596 u16 fw_buildversion = 0;
598 /* Wait for stats to stabilize.
599 * Frame Lines needs two frame times after initial lock
600 * before it is valid.
602 xc_wait(100);
604 xc_get_ADC_Envelope(priv, &adc_envelope);
605 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
607 xc_get_frequency_error(priv, &freq_error_hz);
608 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
610 xc_get_lock_status(priv, &lock_status);
611 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
612 lock_status);
614 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
615 &fw_majorversion, &fw_minorversion);
616 xc_get_buildversion(priv, &fw_buildversion);
617 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x.%04x\n",
618 hw_majorversion, hw_minorversion,
619 fw_majorversion, fw_minorversion, fw_buildversion);
621 xc_get_hsync_freq(priv, &hsync_freq_hz);
622 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
624 xc_get_frame_lines(priv, &frame_lines);
625 dprintk(1, "*** Frame lines = %d\n", frame_lines);
627 xc_get_quality(priv, &quality);
628 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
631 static int xc5000_set_params(struct dvb_frontend *fe,
632 struct dvb_frontend_parameters *params)
634 struct xc5000_priv *priv = fe->tuner_priv;
635 int ret;
637 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
638 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
639 dprintk(1, "Unable to load firmware and init tuner\n");
640 return -EINVAL;
644 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
646 if (fe->ops.info.type == FE_ATSC) {
647 dprintk(1, "%s() ATSC\n", __func__);
648 switch (params->u.vsb.modulation) {
649 case VSB_8:
650 case VSB_16:
651 dprintk(1, "%s() VSB modulation\n", __func__);
652 priv->rf_mode = XC_RF_MODE_AIR;
653 priv->freq_hz = params->frequency - 1750000;
654 priv->bandwidth = BANDWIDTH_6_MHZ;
655 priv->video_standard = DTV6;
656 break;
657 case QAM_64:
658 case QAM_256:
659 case QAM_AUTO:
660 dprintk(1, "%s() QAM modulation\n", __func__);
661 priv->rf_mode = XC_RF_MODE_CABLE;
662 priv->freq_hz = params->frequency - 1750000;
663 priv->bandwidth = BANDWIDTH_6_MHZ;
664 priv->video_standard = DTV6;
665 break;
666 default:
667 return -EINVAL;
669 } else if (fe->ops.info.type == FE_OFDM) {
670 dprintk(1, "%s() OFDM\n", __func__);
671 switch (params->u.ofdm.bandwidth) {
672 case BANDWIDTH_6_MHZ:
673 priv->bandwidth = BANDWIDTH_6_MHZ;
674 priv->video_standard = DTV6;
675 priv->freq_hz = params->frequency - 1750000;
676 break;
677 case BANDWIDTH_7_MHZ:
678 printk(KERN_ERR "xc5000 bandwidth 7MHz not supported\n");
679 return -EINVAL;
680 case BANDWIDTH_8_MHZ:
681 priv->bandwidth = BANDWIDTH_8_MHZ;
682 priv->video_standard = DTV8;
683 priv->freq_hz = params->frequency - 2750000;
684 break;
685 default:
686 printk(KERN_ERR "xc5000 bandwidth not set!\n");
687 return -EINVAL;
689 priv->rf_mode = XC_RF_MODE_AIR;
690 } else if (fe->ops.info.type == FE_QAM) {
691 dprintk(1, "%s() QAM\n", __func__);
692 switch (params->u.qam.modulation) {
693 case QAM_16:
694 case QAM_32:
695 case QAM_64:
696 case QAM_128:
697 case QAM_256:
698 case QAM_AUTO:
699 dprintk(1, "%s() QAM modulation\n", __func__);
700 priv->bandwidth = BANDWIDTH_8_MHZ;
701 priv->video_standard = DTV7_8;
702 priv->freq_hz = params->frequency - 2750000;
703 priv->rf_mode = XC_RF_MODE_CABLE;
704 break;
705 default:
706 return -EINVAL;
708 } else {
709 printk(KERN_ERR "xc5000 modulation type not supported!\n");
710 return -EINVAL;
713 dprintk(1, "%s() frequency=%d (compensated)\n",
714 __func__, priv->freq_hz);
716 ret = xc_SetSignalSource(priv, priv->rf_mode);
717 if (ret != XC_RESULT_SUCCESS) {
718 printk(KERN_ERR
719 "xc5000: xc_SetSignalSource(%d) failed\n",
720 priv->rf_mode);
721 return -EREMOTEIO;
724 ret = xc_SetTVStandard(priv,
725 XC5000_Standard[priv->video_standard].VideoMode,
726 XC5000_Standard[priv->video_standard].AudioMode);
727 if (ret != XC_RESULT_SUCCESS) {
728 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
729 return -EREMOTEIO;
732 ret = xc_set_IF_frequency(priv, priv->if_khz);
733 if (ret != XC_RESULT_SUCCESS) {
734 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
735 priv->if_khz);
736 return -EIO;
739 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x8a);
741 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL);
743 if (debug)
744 xc_debug_dump(priv);
746 return 0;
749 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
751 struct xc5000_priv *priv = fe->tuner_priv;
752 int ret;
753 u16 id;
755 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
756 if (ret == XC_RESULT_SUCCESS) {
757 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
758 ret = XC_RESULT_RESET_FAILURE;
759 else
760 ret = XC_RESULT_SUCCESS;
763 dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
764 ret == XC_RESULT_SUCCESS ? "True" : "False", id);
765 return ret;
768 static int xc5000_set_tv_freq(struct dvb_frontend *fe,
769 struct analog_parameters *params)
771 struct xc5000_priv *priv = fe->tuner_priv;
772 int ret;
774 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
775 __func__, params->frequency);
777 /* Fix me: it could be air. */
778 priv->rf_mode = params->mode;
779 if (params->mode > XC_RF_MODE_CABLE)
780 priv->rf_mode = XC_RF_MODE_CABLE;
782 /* params->frequency is in units of 62.5khz */
783 priv->freq_hz = params->frequency * 62500;
785 /* FIX ME: Some video standards may have several possible audio
786 standards. We simply default to one of them here.
788 if (params->std & V4L2_STD_MN) {
789 /* default to BTSC audio standard */
790 priv->video_standard = MN_NTSC_PAL_BTSC;
791 goto tune_channel;
794 if (params->std & V4L2_STD_PAL_BG) {
795 /* default to NICAM audio standard */
796 priv->video_standard = BG_PAL_NICAM;
797 goto tune_channel;
800 if (params->std & V4L2_STD_PAL_I) {
801 /* default to NICAM audio standard */
802 priv->video_standard = I_PAL_NICAM;
803 goto tune_channel;
806 if (params->std & V4L2_STD_PAL_DK) {
807 /* default to NICAM audio standard */
808 priv->video_standard = DK_PAL_NICAM;
809 goto tune_channel;
812 if (params->std & V4L2_STD_SECAM_DK) {
813 /* default to A2 DK1 audio standard */
814 priv->video_standard = DK_SECAM_A2DK1;
815 goto tune_channel;
818 if (params->std & V4L2_STD_SECAM_L) {
819 priv->video_standard = L_SECAM_NICAM;
820 goto tune_channel;
823 if (params->std & V4L2_STD_SECAM_LC) {
824 priv->video_standard = LC_SECAM_NICAM;
825 goto tune_channel;
828 tune_channel:
829 ret = xc_SetSignalSource(priv, priv->rf_mode);
830 if (ret != XC_RESULT_SUCCESS) {
831 printk(KERN_ERR
832 "xc5000: xc_SetSignalSource(%d) failed\n",
833 priv->rf_mode);
834 return -EREMOTEIO;
837 ret = xc_SetTVStandard(priv,
838 XC5000_Standard[priv->video_standard].VideoMode,
839 XC5000_Standard[priv->video_standard].AudioMode);
840 if (ret != XC_RESULT_SUCCESS) {
841 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
842 return -EREMOTEIO;
845 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
847 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
849 if (debug)
850 xc_debug_dump(priv);
852 return 0;
855 static int xc5000_set_radio_freq(struct dvb_frontend *fe,
856 struct analog_parameters *params)
858 struct xc5000_priv *priv = fe->tuner_priv;
859 int ret = -EINVAL;
860 u8 radio_input;
862 dprintk(1, "%s() frequency=%d (in units of khz)\n",
863 __func__, params->frequency);
865 if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) {
866 dprintk(1, "%s() radio input not configured\n", __func__);
867 return -EINVAL;
870 if (priv->radio_input == XC5000_RADIO_FM1)
871 radio_input = FM_Radio_INPUT1;
872 else if (priv->radio_input == XC5000_RADIO_FM2)
873 radio_input = FM_Radio_INPUT2;
874 else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
875 radio_input = FM_Radio_INPUT1_MONO;
876 else {
877 dprintk(1, "%s() unknown radio input %d\n", __func__,
878 priv->radio_input);
879 return -EINVAL;
882 priv->freq_hz = params->frequency * 125 / 2;
884 priv->rf_mode = XC_RF_MODE_AIR;
886 ret = xc_SetTVStandard(priv, XC5000_Standard[radio_input].VideoMode,
887 XC5000_Standard[radio_input].AudioMode);
889 if (ret != XC_RESULT_SUCCESS) {
890 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
891 return -EREMOTEIO;
894 ret = xc_SetSignalSource(priv, priv->rf_mode);
895 if (ret != XC_RESULT_SUCCESS) {
896 printk(KERN_ERR
897 "xc5000: xc_SetSignalSource(%d) failed\n",
898 priv->rf_mode);
899 return -EREMOTEIO;
902 if ((priv->radio_input == XC5000_RADIO_FM1) ||
903 (priv->radio_input == XC5000_RADIO_FM2))
904 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09);
905 else if (priv->radio_input == XC5000_RADIO_FM1_MONO)
906 xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06);
908 xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG);
910 return 0;
913 static int xc5000_set_analog_params(struct dvb_frontend *fe,
914 struct analog_parameters *params)
916 struct xc5000_priv *priv = fe->tuner_priv;
917 int ret = -EINVAL;
919 if (priv->i2c_props.adap == NULL)
920 return -EINVAL;
922 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
923 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
924 dprintk(1, "Unable to load firmware and init tuner\n");
925 return -EINVAL;
929 switch (params->mode) {
930 case V4L2_TUNER_RADIO:
931 ret = xc5000_set_radio_freq(fe, params);
932 break;
933 case V4L2_TUNER_ANALOG_TV:
934 case V4L2_TUNER_DIGITAL_TV:
935 ret = xc5000_set_tv_freq(fe, params);
936 break;
939 return ret;
943 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
945 struct xc5000_priv *priv = fe->tuner_priv;
946 dprintk(1, "%s()\n", __func__);
947 *freq = priv->freq_hz;
948 return 0;
951 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
953 struct xc5000_priv *priv = fe->tuner_priv;
954 dprintk(1, "%s()\n", __func__);
956 *bw = priv->bandwidth;
957 return 0;
960 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
962 struct xc5000_priv *priv = fe->tuner_priv;
963 u16 lock_status = 0;
965 xc_get_lock_status(priv, &lock_status);
967 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
969 *status = lock_status;
971 return 0;
974 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
976 struct xc5000_priv *priv = fe->tuner_priv;
977 int ret = 0;
979 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
980 ret = xc5000_fwupload(fe);
981 if (ret != XC_RESULT_SUCCESS)
982 return ret;
985 /* Start the tuner self-calibration process */
986 ret |= xc_initialize(priv);
988 /* Wait for calibration to complete.
989 * We could continue but XC5000 will clock stretch subsequent
990 * I2C transactions until calibration is complete. This way we
991 * don't have to rely on clock stretching working.
993 xc_wait(100);
995 /* Default to "CABLE" mode */
996 ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
998 return ret;
1001 static int xc5000_sleep(struct dvb_frontend *fe)
1003 int ret;
1005 dprintk(1, "%s()\n", __func__);
1007 /* Avoid firmware reload on slow devices */
1008 if (no_poweroff)
1009 return 0;
1011 /* According to Xceive technical support, the "powerdown" register
1012 was removed in newer versions of the firmware. The "supported"
1013 way to sleep the tuner is to pull the reset pin low for 10ms */
1014 ret = xc5000_TunerReset(fe);
1015 if (ret != XC_RESULT_SUCCESS) {
1016 printk(KERN_ERR
1017 "xc5000: %s() unable to shutdown tuner\n",
1018 __func__);
1019 return -EREMOTEIO;
1020 } else
1021 return XC_RESULT_SUCCESS;
1024 static int xc5000_init(struct dvb_frontend *fe)
1026 struct xc5000_priv *priv = fe->tuner_priv;
1027 dprintk(1, "%s()\n", __func__);
1029 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
1030 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
1031 return -EREMOTEIO;
1034 if (debug)
1035 xc_debug_dump(priv);
1037 return 0;
1040 static int xc5000_release(struct dvb_frontend *fe)
1042 struct xc5000_priv *priv = fe->tuner_priv;
1044 dprintk(1, "%s()\n", __func__);
1046 mutex_lock(&xc5000_list_mutex);
1048 if (priv)
1049 hybrid_tuner_release_state(priv);
1051 mutex_unlock(&xc5000_list_mutex);
1053 fe->tuner_priv = NULL;
1055 return 0;
1058 static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg)
1060 struct xc5000_priv *priv = fe->tuner_priv;
1061 struct xc5000_config *p = priv_cfg;
1063 dprintk(1, "%s()\n", __func__);
1065 if (p->if_khz)
1066 priv->if_khz = p->if_khz;
1068 if (p->radio_input)
1069 priv->radio_input = p->radio_input;
1071 return 0;
1075 static const struct dvb_tuner_ops xc5000_tuner_ops = {
1076 .info = {
1077 .name = "Xceive XC5000",
1078 .frequency_min = 1000000,
1079 .frequency_max = 1023000000,
1080 .frequency_step = 50000,
1083 .release = xc5000_release,
1084 .init = xc5000_init,
1085 .sleep = xc5000_sleep,
1087 .set_config = xc5000_set_config,
1088 .set_params = xc5000_set_params,
1089 .set_analog_params = xc5000_set_analog_params,
1090 .get_frequency = xc5000_get_frequency,
1091 .get_bandwidth = xc5000_get_bandwidth,
1092 .get_status = xc5000_get_status
1095 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
1096 struct i2c_adapter *i2c,
1097 const struct xc5000_config *cfg)
1099 struct xc5000_priv *priv = NULL;
1100 int instance;
1101 u16 id = 0;
1103 dprintk(1, "%s(%d-%04x)\n", __func__,
1104 i2c ? i2c_adapter_id(i2c) : -1,
1105 cfg ? cfg->i2c_address : -1);
1107 mutex_lock(&xc5000_list_mutex);
1109 instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
1110 hybrid_tuner_instance_list,
1111 i2c, cfg->i2c_address, "xc5000");
1112 switch (instance) {
1113 case 0:
1114 goto fail;
1115 break;
1116 case 1:
1117 /* new tuner instance */
1118 priv->bandwidth = BANDWIDTH_6_MHZ;
1119 fe->tuner_priv = priv;
1120 break;
1121 default:
1122 /* existing tuner instance */
1123 fe->tuner_priv = priv;
1124 break;
1127 if (priv->if_khz == 0) {
1128 /* If the IF hasn't been set yet, use the value provided by
1129 the caller (occurs in hybrid devices where the analog
1130 call to xc5000_attach occurs before the digital side) */
1131 priv->if_khz = cfg->if_khz;
1134 if (priv->radio_input == 0)
1135 priv->radio_input = cfg->radio_input;
1137 /* Check if firmware has been loaded. It is possible that another
1138 instance of the driver has loaded the firmware.
1140 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != XC_RESULT_SUCCESS)
1141 goto fail;
1143 switch (id) {
1144 case XC_PRODUCT_ID_FW_LOADED:
1145 printk(KERN_INFO
1146 "xc5000: Successfully identified at address 0x%02x\n",
1147 cfg->i2c_address);
1148 printk(KERN_INFO
1149 "xc5000: Firmware has been loaded previously\n");
1150 break;
1151 case XC_PRODUCT_ID_FW_NOT_LOADED:
1152 printk(KERN_INFO
1153 "xc5000: Successfully identified at address 0x%02x\n",
1154 cfg->i2c_address);
1155 printk(KERN_INFO
1156 "xc5000: Firmware has not been loaded previously\n");
1157 break;
1158 default:
1159 printk(KERN_ERR
1160 "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1161 cfg->i2c_address, id);
1162 goto fail;
1165 mutex_unlock(&xc5000_list_mutex);
1167 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1168 sizeof(struct dvb_tuner_ops));
1170 return fe;
1171 fail:
1172 mutex_unlock(&xc5000_list_mutex);
1174 xc5000_release(fe);
1175 return NULL;
1177 EXPORT_SYMBOL(xc5000_attach);
1179 MODULE_AUTHOR("Steven Toth");
1180 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1181 MODULE_LICENSE("GPL");