FRV: Use generic show_interrupts()
[cris-mirror.git] / fs / btrfs / ctree.c
blobb5baff0dccfec40c360397c0d1e47380aea51ae2
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 *root, struct btrfs_key *ins_key,
31 struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 struct btrfs_root *root, struct extent_buffer *dst,
34 struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 struct btrfs_root *root,
37 struct extent_buffer *dst_buf,
38 struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42 struct btrfs_root *root, struct btrfs_path *path,
43 struct btrfs_key *cpu_key, u32 *data_size,
44 u32 total_data, u32 total_size, int nr);
47 struct btrfs_path *btrfs_alloc_path(void)
49 struct btrfs_path *path;
50 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51 if (path)
52 path->reada = 1;
53 return path;
57 * set all locked nodes in the path to blocking locks. This should
58 * be done before scheduling
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
62 int i;
63 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64 if (p->nodes[i] && p->locks[i])
65 btrfs_set_lock_blocking(p->nodes[i]);
70 * reset all the locked nodes in the patch to spinning locks.
72 * held is used to keep lockdep happy, when lockdep is enabled
73 * we set held to a blocking lock before we go around and
74 * retake all the spinlocks in the path. You can safely use NULL
75 * for held
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 struct extent_buffer *held)
80 int i;
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 /* lockdep really cares that we take all of these spinlocks
84 * in the right order. If any of the locks in the path are not
85 * currently blocking, it is going to complain. So, make really
86 * really sure by forcing the path to blocking before we clear
87 * the path blocking.
89 if (held)
90 btrfs_set_lock_blocking(held);
91 btrfs_set_path_blocking(p);
92 #endif
94 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95 if (p->nodes[i] && p->locks[i])
96 btrfs_clear_lock_blocking(p->nodes[i]);
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 if (held)
101 btrfs_clear_lock_blocking(held);
102 #endif
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
108 if (!p)
109 return;
110 btrfs_release_path(NULL, p);
111 kmem_cache_free(btrfs_path_cachep, p);
115 * path release drops references on the extent buffers in the path
116 * and it drops any locks held by this path
118 * It is safe to call this on paths that no locks or extent buffers held.
120 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
122 int i;
124 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125 p->slots[i] = 0;
126 if (!p->nodes[i])
127 continue;
128 if (p->locks[i]) {
129 btrfs_tree_unlock(p->nodes[i]);
130 p->locks[i] = 0;
132 free_extent_buffer(p->nodes[i]);
133 p->nodes[i] = NULL;
138 * safely gets a reference on the root node of a tree. A lock
139 * is not taken, so a concurrent writer may put a different node
140 * at the root of the tree. See btrfs_lock_root_node for the
141 * looping required.
143 * The extent buffer returned by this has a reference taken, so
144 * it won't disappear. It may stop being the root of the tree
145 * at any time because there are no locks held.
147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 struct extent_buffer *eb;
150 spin_lock(&root->node_lock);
151 eb = root->node;
152 extent_buffer_get(eb);
153 spin_unlock(&root->node_lock);
154 return eb;
157 /* loop around taking references on and locking the root node of the
158 * tree until you end up with a lock on the root. A locked buffer
159 * is returned, with a reference held.
161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
163 struct extent_buffer *eb;
165 while (1) {
166 eb = btrfs_root_node(root);
167 btrfs_tree_lock(eb);
169 spin_lock(&root->node_lock);
170 if (eb == root->node) {
171 spin_unlock(&root->node_lock);
172 break;
174 spin_unlock(&root->node_lock);
176 btrfs_tree_unlock(eb);
177 free_extent_buffer(eb);
179 return eb;
182 /* cowonly root (everything not a reference counted cow subvolume), just get
183 * put onto a simple dirty list. transaction.c walks this to make sure they
184 * get properly updated on disk.
186 static void add_root_to_dirty_list(struct btrfs_root *root)
188 if (root->track_dirty && list_empty(&root->dirty_list)) {
189 list_add(&root->dirty_list,
190 &root->fs_info->dirty_cowonly_roots);
195 * used by snapshot creation to make a copy of a root for a tree with
196 * a given objectid. The buffer with the new root node is returned in
197 * cow_ret, and this func returns zero on success or a negative error code.
199 int btrfs_copy_root(struct btrfs_trans_handle *trans,
200 struct btrfs_root *root,
201 struct extent_buffer *buf,
202 struct extent_buffer **cow_ret, u64 new_root_objectid)
204 struct extent_buffer *cow;
205 int ret = 0;
206 int level;
207 struct btrfs_disk_key disk_key;
209 WARN_ON(root->ref_cows && trans->transid !=
210 root->fs_info->running_transaction->transid);
211 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
213 level = btrfs_header_level(buf);
214 if (level == 0)
215 btrfs_item_key(buf, &disk_key, 0);
216 else
217 btrfs_node_key(buf, &disk_key, 0);
219 cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
220 new_root_objectid, &disk_key, level,
221 buf->start, 0);
222 if (IS_ERR(cow))
223 return PTR_ERR(cow);
225 copy_extent_buffer(cow, buf, 0, 0, cow->len);
226 btrfs_set_header_bytenr(cow, cow->start);
227 btrfs_set_header_generation(cow, trans->transid);
228 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 BTRFS_HEADER_FLAG_RELOC);
231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233 else
234 btrfs_set_header_owner(cow, new_root_objectid);
236 write_extent_buffer(cow, root->fs_info->fsid,
237 (unsigned long)btrfs_header_fsid(cow),
238 BTRFS_FSID_SIZE);
240 WARN_ON(btrfs_header_generation(buf) > trans->transid);
241 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
242 ret = btrfs_inc_ref(trans, root, cow, 1);
243 else
244 ret = btrfs_inc_ref(trans, root, cow, 0);
246 if (ret)
247 return ret;
249 btrfs_mark_buffer_dirty(cow);
250 *cow_ret = cow;
251 return 0;
255 * check if the tree block can be shared by multiple trees
257 int btrfs_block_can_be_shared(struct btrfs_root *root,
258 struct extent_buffer *buf)
261 * Tree blocks not in refernece counted trees and tree roots
262 * are never shared. If a block was allocated after the last
263 * snapshot and the block was not allocated by tree relocation,
264 * we know the block is not shared.
266 if (root->ref_cows &&
267 buf != root->node && buf != root->commit_root &&
268 (btrfs_header_generation(buf) <=
269 btrfs_root_last_snapshot(&root->root_item) ||
270 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
271 return 1;
272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
273 if (root->ref_cows &&
274 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
275 return 1;
276 #endif
277 return 0;
280 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
281 struct btrfs_root *root,
282 struct extent_buffer *buf,
283 struct extent_buffer *cow,
284 int *last_ref)
286 u64 refs;
287 u64 owner;
288 u64 flags;
289 u64 new_flags = 0;
290 int ret;
293 * Backrefs update rules:
295 * Always use full backrefs for extent pointers in tree block
296 * allocated by tree relocation.
298 * If a shared tree block is no longer referenced by its owner
299 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
300 * use full backrefs for extent pointers in tree block.
302 * If a tree block is been relocating
303 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
304 * use full backrefs for extent pointers in tree block.
305 * The reason for this is some operations (such as drop tree)
306 * are only allowed for blocks use full backrefs.
309 if (btrfs_block_can_be_shared(root, buf)) {
310 ret = btrfs_lookup_extent_info(trans, root, buf->start,
311 buf->len, &refs, &flags);
312 BUG_ON(ret);
313 BUG_ON(refs == 0);
314 } else {
315 refs = 1;
316 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
317 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
318 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
319 else
320 flags = 0;
323 owner = btrfs_header_owner(buf);
324 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
325 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
327 if (refs > 1) {
328 if ((owner == root->root_key.objectid ||
329 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
330 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
331 ret = btrfs_inc_ref(trans, root, buf, 1);
332 BUG_ON(ret);
334 if (root->root_key.objectid ==
335 BTRFS_TREE_RELOC_OBJECTID) {
336 ret = btrfs_dec_ref(trans, root, buf, 0);
337 BUG_ON(ret);
338 ret = btrfs_inc_ref(trans, root, cow, 1);
339 BUG_ON(ret);
341 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
342 } else {
344 if (root->root_key.objectid ==
345 BTRFS_TREE_RELOC_OBJECTID)
346 ret = btrfs_inc_ref(trans, root, cow, 1);
347 else
348 ret = btrfs_inc_ref(trans, root, cow, 0);
349 BUG_ON(ret);
351 if (new_flags != 0) {
352 ret = btrfs_set_disk_extent_flags(trans, root,
353 buf->start,
354 buf->len,
355 new_flags, 0);
356 BUG_ON(ret);
358 } else {
359 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
360 if (root->root_key.objectid ==
361 BTRFS_TREE_RELOC_OBJECTID)
362 ret = btrfs_inc_ref(trans, root, cow, 1);
363 else
364 ret = btrfs_inc_ref(trans, root, cow, 0);
365 BUG_ON(ret);
366 ret = btrfs_dec_ref(trans, root, buf, 1);
367 BUG_ON(ret);
369 clean_tree_block(trans, root, buf);
370 *last_ref = 1;
372 return 0;
376 * does the dirty work in cow of a single block. The parent block (if
377 * supplied) is updated to point to the new cow copy. The new buffer is marked
378 * dirty and returned locked. If you modify the block it needs to be marked
379 * dirty again.
381 * search_start -- an allocation hint for the new block
383 * empty_size -- a hint that you plan on doing more cow. This is the size in
384 * bytes the allocator should try to find free next to the block it returns.
385 * This is just a hint and may be ignored by the allocator.
387 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
388 struct btrfs_root *root,
389 struct extent_buffer *buf,
390 struct extent_buffer *parent, int parent_slot,
391 struct extent_buffer **cow_ret,
392 u64 search_start, u64 empty_size)
394 struct btrfs_disk_key disk_key;
395 struct extent_buffer *cow;
396 int level;
397 int last_ref = 0;
398 int unlock_orig = 0;
399 u64 parent_start;
401 if (*cow_ret == buf)
402 unlock_orig = 1;
404 btrfs_assert_tree_locked(buf);
406 WARN_ON(root->ref_cows && trans->transid !=
407 root->fs_info->running_transaction->transid);
408 WARN_ON(root->ref_cows && trans->transid != root->last_trans);
410 level = btrfs_header_level(buf);
412 if (level == 0)
413 btrfs_item_key(buf, &disk_key, 0);
414 else
415 btrfs_node_key(buf, &disk_key, 0);
417 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
418 if (parent)
419 parent_start = parent->start;
420 else
421 parent_start = 0;
422 } else
423 parent_start = 0;
425 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
426 root->root_key.objectid, &disk_key,
427 level, search_start, empty_size);
428 if (IS_ERR(cow))
429 return PTR_ERR(cow);
431 /* cow is set to blocking by btrfs_init_new_buffer */
433 copy_extent_buffer(cow, buf, 0, 0, cow->len);
434 btrfs_set_header_bytenr(cow, cow->start);
435 btrfs_set_header_generation(cow, trans->transid);
436 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
437 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
438 BTRFS_HEADER_FLAG_RELOC);
439 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
440 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
441 else
442 btrfs_set_header_owner(cow, root->root_key.objectid);
444 write_extent_buffer(cow, root->fs_info->fsid,
445 (unsigned long)btrfs_header_fsid(cow),
446 BTRFS_FSID_SIZE);
448 update_ref_for_cow(trans, root, buf, cow, &last_ref);
450 if (root->ref_cows)
451 btrfs_reloc_cow_block(trans, root, buf, cow);
453 if (buf == root->node) {
454 WARN_ON(parent && parent != buf);
455 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
456 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
457 parent_start = buf->start;
458 else
459 parent_start = 0;
461 spin_lock(&root->node_lock);
462 root->node = cow;
463 extent_buffer_get(cow);
464 spin_unlock(&root->node_lock);
466 btrfs_free_tree_block(trans, root, buf, parent_start,
467 last_ref);
468 free_extent_buffer(buf);
469 add_root_to_dirty_list(root);
470 } else {
471 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
472 parent_start = parent->start;
473 else
474 parent_start = 0;
476 WARN_ON(trans->transid != btrfs_header_generation(parent));
477 btrfs_set_node_blockptr(parent, parent_slot,
478 cow->start);
479 btrfs_set_node_ptr_generation(parent, parent_slot,
480 trans->transid);
481 btrfs_mark_buffer_dirty(parent);
482 btrfs_free_tree_block(trans, root, buf, parent_start,
483 last_ref);
485 if (unlock_orig)
486 btrfs_tree_unlock(buf);
487 free_extent_buffer(buf);
488 btrfs_mark_buffer_dirty(cow);
489 *cow_ret = cow;
490 return 0;
493 static inline int should_cow_block(struct btrfs_trans_handle *trans,
494 struct btrfs_root *root,
495 struct extent_buffer *buf)
497 if (btrfs_header_generation(buf) == trans->transid &&
498 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
499 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
500 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
501 return 0;
502 return 1;
506 * cows a single block, see __btrfs_cow_block for the real work.
507 * This version of it has extra checks so that a block isn't cow'd more than
508 * once per transaction, as long as it hasn't been written yet
510 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
511 struct btrfs_root *root, struct extent_buffer *buf,
512 struct extent_buffer *parent, int parent_slot,
513 struct extent_buffer **cow_ret)
515 u64 search_start;
516 int ret;
518 if (trans->transaction != root->fs_info->running_transaction) {
519 printk(KERN_CRIT "trans %llu running %llu\n",
520 (unsigned long long)trans->transid,
521 (unsigned long long)
522 root->fs_info->running_transaction->transid);
523 WARN_ON(1);
525 if (trans->transid != root->fs_info->generation) {
526 printk(KERN_CRIT "trans %llu running %llu\n",
527 (unsigned long long)trans->transid,
528 (unsigned long long)root->fs_info->generation);
529 WARN_ON(1);
532 if (!should_cow_block(trans, root, buf)) {
533 *cow_ret = buf;
534 return 0;
537 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
539 if (parent)
540 btrfs_set_lock_blocking(parent);
541 btrfs_set_lock_blocking(buf);
543 ret = __btrfs_cow_block(trans, root, buf, parent,
544 parent_slot, cow_ret, search_start, 0);
545 return ret;
549 * helper function for defrag to decide if two blocks pointed to by a
550 * node are actually close by
552 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
554 if (blocknr < other && other - (blocknr + blocksize) < 32768)
555 return 1;
556 if (blocknr > other && blocknr - (other + blocksize) < 32768)
557 return 1;
558 return 0;
562 * compare two keys in a memcmp fashion
564 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
566 struct btrfs_key k1;
568 btrfs_disk_key_to_cpu(&k1, disk);
570 return btrfs_comp_cpu_keys(&k1, k2);
574 * same as comp_keys only with two btrfs_key's
576 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
578 if (k1->objectid > k2->objectid)
579 return 1;
580 if (k1->objectid < k2->objectid)
581 return -1;
582 if (k1->type > k2->type)
583 return 1;
584 if (k1->type < k2->type)
585 return -1;
586 if (k1->offset > k2->offset)
587 return 1;
588 if (k1->offset < k2->offset)
589 return -1;
590 return 0;
594 * this is used by the defrag code to go through all the
595 * leaves pointed to by a node and reallocate them so that
596 * disk order is close to key order
598 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
599 struct btrfs_root *root, struct extent_buffer *parent,
600 int start_slot, int cache_only, u64 *last_ret,
601 struct btrfs_key *progress)
603 struct extent_buffer *cur;
604 u64 blocknr;
605 u64 gen;
606 u64 search_start = *last_ret;
607 u64 last_block = 0;
608 u64 other;
609 u32 parent_nritems;
610 int end_slot;
611 int i;
612 int err = 0;
613 int parent_level;
614 int uptodate;
615 u32 blocksize;
616 int progress_passed = 0;
617 struct btrfs_disk_key disk_key;
619 parent_level = btrfs_header_level(parent);
620 if (cache_only && parent_level != 1)
621 return 0;
623 if (trans->transaction != root->fs_info->running_transaction)
624 WARN_ON(1);
625 if (trans->transid != root->fs_info->generation)
626 WARN_ON(1);
628 parent_nritems = btrfs_header_nritems(parent);
629 blocksize = btrfs_level_size(root, parent_level - 1);
630 end_slot = parent_nritems;
632 if (parent_nritems == 1)
633 return 0;
635 btrfs_set_lock_blocking(parent);
637 for (i = start_slot; i < end_slot; i++) {
638 int close = 1;
640 if (!parent->map_token) {
641 map_extent_buffer(parent,
642 btrfs_node_key_ptr_offset(i),
643 sizeof(struct btrfs_key_ptr),
644 &parent->map_token, &parent->kaddr,
645 &parent->map_start, &parent->map_len,
646 KM_USER1);
648 btrfs_node_key(parent, &disk_key, i);
649 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
650 continue;
652 progress_passed = 1;
653 blocknr = btrfs_node_blockptr(parent, i);
654 gen = btrfs_node_ptr_generation(parent, i);
655 if (last_block == 0)
656 last_block = blocknr;
658 if (i > 0) {
659 other = btrfs_node_blockptr(parent, i - 1);
660 close = close_blocks(blocknr, other, blocksize);
662 if (!close && i < end_slot - 2) {
663 other = btrfs_node_blockptr(parent, i + 1);
664 close = close_blocks(blocknr, other, blocksize);
666 if (close) {
667 last_block = blocknr;
668 continue;
670 if (parent->map_token) {
671 unmap_extent_buffer(parent, parent->map_token,
672 KM_USER1);
673 parent->map_token = NULL;
676 cur = btrfs_find_tree_block(root, blocknr, blocksize);
677 if (cur)
678 uptodate = btrfs_buffer_uptodate(cur, gen);
679 else
680 uptodate = 0;
681 if (!cur || !uptodate) {
682 if (cache_only) {
683 free_extent_buffer(cur);
684 continue;
686 if (!cur) {
687 cur = read_tree_block(root, blocknr,
688 blocksize, gen);
689 } else if (!uptodate) {
690 btrfs_read_buffer(cur, gen);
693 if (search_start == 0)
694 search_start = last_block;
696 btrfs_tree_lock(cur);
697 btrfs_set_lock_blocking(cur);
698 err = __btrfs_cow_block(trans, root, cur, parent, i,
699 &cur, search_start,
700 min(16 * blocksize,
701 (end_slot - i) * blocksize));
702 if (err) {
703 btrfs_tree_unlock(cur);
704 free_extent_buffer(cur);
705 break;
707 search_start = cur->start;
708 last_block = cur->start;
709 *last_ret = search_start;
710 btrfs_tree_unlock(cur);
711 free_extent_buffer(cur);
713 if (parent->map_token) {
714 unmap_extent_buffer(parent, parent->map_token,
715 KM_USER1);
716 parent->map_token = NULL;
718 return err;
722 * The leaf data grows from end-to-front in the node.
723 * this returns the address of the start of the last item,
724 * which is the stop of the leaf data stack
726 static inline unsigned int leaf_data_end(struct btrfs_root *root,
727 struct extent_buffer *leaf)
729 u32 nr = btrfs_header_nritems(leaf);
730 if (nr == 0)
731 return BTRFS_LEAF_DATA_SIZE(root);
732 return btrfs_item_offset_nr(leaf, nr - 1);
736 * extra debugging checks to make sure all the items in a key are
737 * well formed and in the proper order
739 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
740 int level)
742 struct extent_buffer *parent = NULL;
743 struct extent_buffer *node = path->nodes[level];
744 struct btrfs_disk_key parent_key;
745 struct btrfs_disk_key node_key;
746 int parent_slot;
747 int slot;
748 struct btrfs_key cpukey;
749 u32 nritems = btrfs_header_nritems(node);
751 if (path->nodes[level + 1])
752 parent = path->nodes[level + 1];
754 slot = path->slots[level];
755 BUG_ON(nritems == 0);
756 if (parent) {
757 parent_slot = path->slots[level + 1];
758 btrfs_node_key(parent, &parent_key, parent_slot);
759 btrfs_node_key(node, &node_key, 0);
760 BUG_ON(memcmp(&parent_key, &node_key,
761 sizeof(struct btrfs_disk_key)));
762 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
763 btrfs_header_bytenr(node));
765 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
766 if (slot != 0) {
767 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
768 btrfs_node_key(node, &node_key, slot);
769 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
771 if (slot < nritems - 1) {
772 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
773 btrfs_node_key(node, &node_key, slot);
774 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
776 return 0;
780 * extra checking to make sure all the items in a leaf are
781 * well formed and in the proper order
783 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
784 int level)
786 struct extent_buffer *leaf = path->nodes[level];
787 struct extent_buffer *parent = NULL;
788 int parent_slot;
789 struct btrfs_key cpukey;
790 struct btrfs_disk_key parent_key;
791 struct btrfs_disk_key leaf_key;
792 int slot = path->slots[0];
794 u32 nritems = btrfs_header_nritems(leaf);
796 if (path->nodes[level + 1])
797 parent = path->nodes[level + 1];
799 if (nritems == 0)
800 return 0;
802 if (parent) {
803 parent_slot = path->slots[level + 1];
804 btrfs_node_key(parent, &parent_key, parent_slot);
805 btrfs_item_key(leaf, &leaf_key, 0);
807 BUG_ON(memcmp(&parent_key, &leaf_key,
808 sizeof(struct btrfs_disk_key)));
809 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
810 btrfs_header_bytenr(leaf));
812 if (slot != 0 && slot < nritems - 1) {
813 btrfs_item_key(leaf, &leaf_key, slot);
814 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
815 if (comp_keys(&leaf_key, &cpukey) <= 0) {
816 btrfs_print_leaf(root, leaf);
817 printk(KERN_CRIT "slot %d offset bad key\n", slot);
818 BUG_ON(1);
820 if (btrfs_item_offset_nr(leaf, slot - 1) !=
821 btrfs_item_end_nr(leaf, slot)) {
822 btrfs_print_leaf(root, leaf);
823 printk(KERN_CRIT "slot %d offset bad\n", slot);
824 BUG_ON(1);
827 if (slot < nritems - 1) {
828 btrfs_item_key(leaf, &leaf_key, slot);
829 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
830 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
831 if (btrfs_item_offset_nr(leaf, slot) !=
832 btrfs_item_end_nr(leaf, slot + 1)) {
833 btrfs_print_leaf(root, leaf);
834 printk(KERN_CRIT "slot %d offset bad\n", slot);
835 BUG_ON(1);
838 BUG_ON(btrfs_item_offset_nr(leaf, 0) +
839 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
840 return 0;
843 static noinline int check_block(struct btrfs_root *root,
844 struct btrfs_path *path, int level)
846 return 0;
847 if (level == 0)
848 return check_leaf(root, path, level);
849 return check_node(root, path, level);
853 * search for key in the extent_buffer. The items start at offset p,
854 * and they are item_size apart. There are 'max' items in p.
856 * the slot in the array is returned via slot, and it points to
857 * the place where you would insert key if it is not found in
858 * the array.
860 * slot may point to max if the key is bigger than all of the keys
862 static noinline int generic_bin_search(struct extent_buffer *eb,
863 unsigned long p,
864 int item_size, struct btrfs_key *key,
865 int max, int *slot)
867 int low = 0;
868 int high = max;
869 int mid;
870 int ret;
871 struct btrfs_disk_key *tmp = NULL;
872 struct btrfs_disk_key unaligned;
873 unsigned long offset;
874 char *map_token = NULL;
875 char *kaddr = NULL;
876 unsigned long map_start = 0;
877 unsigned long map_len = 0;
878 int err;
880 while (low < high) {
881 mid = (low + high) / 2;
882 offset = p + mid * item_size;
884 if (!map_token || offset < map_start ||
885 (offset + sizeof(struct btrfs_disk_key)) >
886 map_start + map_len) {
887 if (map_token) {
888 unmap_extent_buffer(eb, map_token, KM_USER0);
889 map_token = NULL;
892 err = map_private_extent_buffer(eb, offset,
893 sizeof(struct btrfs_disk_key),
894 &map_token, &kaddr,
895 &map_start, &map_len, KM_USER0);
897 if (!err) {
898 tmp = (struct btrfs_disk_key *)(kaddr + offset -
899 map_start);
900 } else {
901 read_extent_buffer(eb, &unaligned,
902 offset, sizeof(unaligned));
903 tmp = &unaligned;
906 } else {
907 tmp = (struct btrfs_disk_key *)(kaddr + offset -
908 map_start);
910 ret = comp_keys(tmp, key);
912 if (ret < 0)
913 low = mid + 1;
914 else if (ret > 0)
915 high = mid;
916 else {
917 *slot = mid;
918 if (map_token)
919 unmap_extent_buffer(eb, map_token, KM_USER0);
920 return 0;
923 *slot = low;
924 if (map_token)
925 unmap_extent_buffer(eb, map_token, KM_USER0);
926 return 1;
930 * simple bin_search frontend that does the right thing for
931 * leaves vs nodes
933 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
934 int level, int *slot)
936 if (level == 0) {
937 return generic_bin_search(eb,
938 offsetof(struct btrfs_leaf, items),
939 sizeof(struct btrfs_item),
940 key, btrfs_header_nritems(eb),
941 slot);
942 } else {
943 return generic_bin_search(eb,
944 offsetof(struct btrfs_node, ptrs),
945 sizeof(struct btrfs_key_ptr),
946 key, btrfs_header_nritems(eb),
947 slot);
949 return -1;
952 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
953 int level, int *slot)
955 return bin_search(eb, key, level, slot);
958 static void root_add_used(struct btrfs_root *root, u32 size)
960 spin_lock(&root->accounting_lock);
961 btrfs_set_root_used(&root->root_item,
962 btrfs_root_used(&root->root_item) + size);
963 spin_unlock(&root->accounting_lock);
966 static void root_sub_used(struct btrfs_root *root, u32 size)
968 spin_lock(&root->accounting_lock);
969 btrfs_set_root_used(&root->root_item,
970 btrfs_root_used(&root->root_item) - size);
971 spin_unlock(&root->accounting_lock);
974 /* given a node and slot number, this reads the blocks it points to. The
975 * extent buffer is returned with a reference taken (but unlocked).
976 * NULL is returned on error.
978 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
979 struct extent_buffer *parent, int slot)
981 int level = btrfs_header_level(parent);
982 if (slot < 0)
983 return NULL;
984 if (slot >= btrfs_header_nritems(parent))
985 return NULL;
987 BUG_ON(level == 0);
989 return read_tree_block(root, btrfs_node_blockptr(parent, slot),
990 btrfs_level_size(root, level - 1),
991 btrfs_node_ptr_generation(parent, slot));
995 * node level balancing, used to make sure nodes are in proper order for
996 * item deletion. We balance from the top down, so we have to make sure
997 * that a deletion won't leave an node completely empty later on.
999 static noinline int balance_level(struct btrfs_trans_handle *trans,
1000 struct btrfs_root *root,
1001 struct btrfs_path *path, int level)
1003 struct extent_buffer *right = NULL;
1004 struct extent_buffer *mid;
1005 struct extent_buffer *left = NULL;
1006 struct extent_buffer *parent = NULL;
1007 int ret = 0;
1008 int wret;
1009 int pslot;
1010 int orig_slot = path->slots[level];
1011 u64 orig_ptr;
1013 if (level == 0)
1014 return 0;
1016 mid = path->nodes[level];
1018 WARN_ON(!path->locks[level]);
1019 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1021 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1023 if (level < BTRFS_MAX_LEVEL - 1)
1024 parent = path->nodes[level + 1];
1025 pslot = path->slots[level + 1];
1028 * deal with the case where there is only one pointer in the root
1029 * by promoting the node below to a root
1031 if (!parent) {
1032 struct extent_buffer *child;
1034 if (btrfs_header_nritems(mid) != 1)
1035 return 0;
1037 /* promote the child to a root */
1038 child = read_node_slot(root, mid, 0);
1039 BUG_ON(!child);
1040 btrfs_tree_lock(child);
1041 btrfs_set_lock_blocking(child);
1042 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1043 if (ret) {
1044 btrfs_tree_unlock(child);
1045 free_extent_buffer(child);
1046 goto enospc;
1049 spin_lock(&root->node_lock);
1050 root->node = child;
1051 spin_unlock(&root->node_lock);
1053 add_root_to_dirty_list(root);
1054 btrfs_tree_unlock(child);
1056 path->locks[level] = 0;
1057 path->nodes[level] = NULL;
1058 clean_tree_block(trans, root, mid);
1059 btrfs_tree_unlock(mid);
1060 /* once for the path */
1061 free_extent_buffer(mid);
1063 root_sub_used(root, mid->len);
1064 btrfs_free_tree_block(trans, root, mid, 0, 1);
1065 /* once for the root ptr */
1066 free_extent_buffer(mid);
1067 return 0;
1069 if (btrfs_header_nritems(mid) >
1070 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1071 return 0;
1073 btrfs_header_nritems(mid);
1075 left = read_node_slot(root, parent, pslot - 1);
1076 if (left) {
1077 btrfs_tree_lock(left);
1078 btrfs_set_lock_blocking(left);
1079 wret = btrfs_cow_block(trans, root, left,
1080 parent, pslot - 1, &left);
1081 if (wret) {
1082 ret = wret;
1083 goto enospc;
1086 right = read_node_slot(root, parent, pslot + 1);
1087 if (right) {
1088 btrfs_tree_lock(right);
1089 btrfs_set_lock_blocking(right);
1090 wret = btrfs_cow_block(trans, root, right,
1091 parent, pslot + 1, &right);
1092 if (wret) {
1093 ret = wret;
1094 goto enospc;
1098 /* first, try to make some room in the middle buffer */
1099 if (left) {
1100 orig_slot += btrfs_header_nritems(left);
1101 wret = push_node_left(trans, root, left, mid, 1);
1102 if (wret < 0)
1103 ret = wret;
1104 btrfs_header_nritems(mid);
1108 * then try to empty the right most buffer into the middle
1110 if (right) {
1111 wret = push_node_left(trans, root, mid, right, 1);
1112 if (wret < 0 && wret != -ENOSPC)
1113 ret = wret;
1114 if (btrfs_header_nritems(right) == 0) {
1115 clean_tree_block(trans, root, right);
1116 btrfs_tree_unlock(right);
1117 wret = del_ptr(trans, root, path, level + 1, pslot +
1119 if (wret)
1120 ret = wret;
1121 root_sub_used(root, right->len);
1122 btrfs_free_tree_block(trans, root, right, 0, 1);
1123 free_extent_buffer(right);
1124 right = NULL;
1125 } else {
1126 struct btrfs_disk_key right_key;
1127 btrfs_node_key(right, &right_key, 0);
1128 btrfs_set_node_key(parent, &right_key, pslot + 1);
1129 btrfs_mark_buffer_dirty(parent);
1132 if (btrfs_header_nritems(mid) == 1) {
1134 * we're not allowed to leave a node with one item in the
1135 * tree during a delete. A deletion from lower in the tree
1136 * could try to delete the only pointer in this node.
1137 * So, pull some keys from the left.
1138 * There has to be a left pointer at this point because
1139 * otherwise we would have pulled some pointers from the
1140 * right
1142 BUG_ON(!left);
1143 wret = balance_node_right(trans, root, mid, left);
1144 if (wret < 0) {
1145 ret = wret;
1146 goto enospc;
1148 if (wret == 1) {
1149 wret = push_node_left(trans, root, left, mid, 1);
1150 if (wret < 0)
1151 ret = wret;
1153 BUG_ON(wret == 1);
1155 if (btrfs_header_nritems(mid) == 0) {
1156 clean_tree_block(trans, root, mid);
1157 btrfs_tree_unlock(mid);
1158 wret = del_ptr(trans, root, path, level + 1, pslot);
1159 if (wret)
1160 ret = wret;
1161 root_sub_used(root, mid->len);
1162 btrfs_free_tree_block(trans, root, mid, 0, 1);
1163 free_extent_buffer(mid);
1164 mid = NULL;
1165 } else {
1166 /* update the parent key to reflect our changes */
1167 struct btrfs_disk_key mid_key;
1168 btrfs_node_key(mid, &mid_key, 0);
1169 btrfs_set_node_key(parent, &mid_key, pslot);
1170 btrfs_mark_buffer_dirty(parent);
1173 /* update the path */
1174 if (left) {
1175 if (btrfs_header_nritems(left) > orig_slot) {
1176 extent_buffer_get(left);
1177 /* left was locked after cow */
1178 path->nodes[level] = left;
1179 path->slots[level + 1] -= 1;
1180 path->slots[level] = orig_slot;
1181 if (mid) {
1182 btrfs_tree_unlock(mid);
1183 free_extent_buffer(mid);
1185 } else {
1186 orig_slot -= btrfs_header_nritems(left);
1187 path->slots[level] = orig_slot;
1190 /* double check we haven't messed things up */
1191 check_block(root, path, level);
1192 if (orig_ptr !=
1193 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1194 BUG();
1195 enospc:
1196 if (right) {
1197 btrfs_tree_unlock(right);
1198 free_extent_buffer(right);
1200 if (left) {
1201 if (path->nodes[level] != left)
1202 btrfs_tree_unlock(left);
1203 free_extent_buffer(left);
1205 return ret;
1208 /* Node balancing for insertion. Here we only split or push nodes around
1209 * when they are completely full. This is also done top down, so we
1210 * have to be pessimistic.
1212 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1213 struct btrfs_root *root,
1214 struct btrfs_path *path, int level)
1216 struct extent_buffer *right = NULL;
1217 struct extent_buffer *mid;
1218 struct extent_buffer *left = NULL;
1219 struct extent_buffer *parent = NULL;
1220 int ret = 0;
1221 int wret;
1222 int pslot;
1223 int orig_slot = path->slots[level];
1225 if (level == 0)
1226 return 1;
1228 mid = path->nodes[level];
1229 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1231 if (level < BTRFS_MAX_LEVEL - 1)
1232 parent = path->nodes[level + 1];
1233 pslot = path->slots[level + 1];
1235 if (!parent)
1236 return 1;
1238 left = read_node_slot(root, parent, pslot - 1);
1240 /* first, try to make some room in the middle buffer */
1241 if (left) {
1242 u32 left_nr;
1244 btrfs_tree_lock(left);
1245 btrfs_set_lock_blocking(left);
1247 left_nr = btrfs_header_nritems(left);
1248 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1249 wret = 1;
1250 } else {
1251 ret = btrfs_cow_block(trans, root, left, parent,
1252 pslot - 1, &left);
1253 if (ret)
1254 wret = 1;
1255 else {
1256 wret = push_node_left(trans, root,
1257 left, mid, 0);
1260 if (wret < 0)
1261 ret = wret;
1262 if (wret == 0) {
1263 struct btrfs_disk_key disk_key;
1264 orig_slot += left_nr;
1265 btrfs_node_key(mid, &disk_key, 0);
1266 btrfs_set_node_key(parent, &disk_key, pslot);
1267 btrfs_mark_buffer_dirty(parent);
1268 if (btrfs_header_nritems(left) > orig_slot) {
1269 path->nodes[level] = left;
1270 path->slots[level + 1] -= 1;
1271 path->slots[level] = orig_slot;
1272 btrfs_tree_unlock(mid);
1273 free_extent_buffer(mid);
1274 } else {
1275 orig_slot -=
1276 btrfs_header_nritems(left);
1277 path->slots[level] = orig_slot;
1278 btrfs_tree_unlock(left);
1279 free_extent_buffer(left);
1281 return 0;
1283 btrfs_tree_unlock(left);
1284 free_extent_buffer(left);
1286 right = read_node_slot(root, parent, pslot + 1);
1289 * then try to empty the right most buffer into the middle
1291 if (right) {
1292 u32 right_nr;
1294 btrfs_tree_lock(right);
1295 btrfs_set_lock_blocking(right);
1297 right_nr = btrfs_header_nritems(right);
1298 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1299 wret = 1;
1300 } else {
1301 ret = btrfs_cow_block(trans, root, right,
1302 parent, pslot + 1,
1303 &right);
1304 if (ret)
1305 wret = 1;
1306 else {
1307 wret = balance_node_right(trans, root,
1308 right, mid);
1311 if (wret < 0)
1312 ret = wret;
1313 if (wret == 0) {
1314 struct btrfs_disk_key disk_key;
1316 btrfs_node_key(right, &disk_key, 0);
1317 btrfs_set_node_key(parent, &disk_key, pslot + 1);
1318 btrfs_mark_buffer_dirty(parent);
1320 if (btrfs_header_nritems(mid) <= orig_slot) {
1321 path->nodes[level] = right;
1322 path->slots[level + 1] += 1;
1323 path->slots[level] = orig_slot -
1324 btrfs_header_nritems(mid);
1325 btrfs_tree_unlock(mid);
1326 free_extent_buffer(mid);
1327 } else {
1328 btrfs_tree_unlock(right);
1329 free_extent_buffer(right);
1331 return 0;
1333 btrfs_tree_unlock(right);
1334 free_extent_buffer(right);
1336 return 1;
1340 * readahead one full node of leaves, finding things that are close
1341 * to the block in 'slot', and triggering ra on them.
1343 static void reada_for_search(struct btrfs_root *root,
1344 struct btrfs_path *path,
1345 int level, int slot, u64 objectid)
1347 struct extent_buffer *node;
1348 struct btrfs_disk_key disk_key;
1349 u32 nritems;
1350 u64 search;
1351 u64 target;
1352 u64 nread = 0;
1353 int direction = path->reada;
1354 struct extent_buffer *eb;
1355 u32 nr;
1356 u32 blocksize;
1357 u32 nscan = 0;
1359 if (level != 1)
1360 return;
1362 if (!path->nodes[level])
1363 return;
1365 node = path->nodes[level];
1367 search = btrfs_node_blockptr(node, slot);
1368 blocksize = btrfs_level_size(root, level - 1);
1369 eb = btrfs_find_tree_block(root, search, blocksize);
1370 if (eb) {
1371 free_extent_buffer(eb);
1372 return;
1375 target = search;
1377 nritems = btrfs_header_nritems(node);
1378 nr = slot;
1379 while (1) {
1380 if (direction < 0) {
1381 if (nr == 0)
1382 break;
1383 nr--;
1384 } else if (direction > 0) {
1385 nr++;
1386 if (nr >= nritems)
1387 break;
1389 if (path->reada < 0 && objectid) {
1390 btrfs_node_key(node, &disk_key, nr);
1391 if (btrfs_disk_key_objectid(&disk_key) != objectid)
1392 break;
1394 search = btrfs_node_blockptr(node, nr);
1395 if ((search <= target && target - search <= 65536) ||
1396 (search > target && search - target <= 65536)) {
1397 readahead_tree_block(root, search, blocksize,
1398 btrfs_node_ptr_generation(node, nr));
1399 nread += blocksize;
1401 nscan++;
1402 if ((nread > 65536 || nscan > 32))
1403 break;
1408 * returns -EAGAIN if it had to drop the path, or zero if everything was in
1409 * cache
1411 static noinline int reada_for_balance(struct btrfs_root *root,
1412 struct btrfs_path *path, int level)
1414 int slot;
1415 int nritems;
1416 struct extent_buffer *parent;
1417 struct extent_buffer *eb;
1418 u64 gen;
1419 u64 block1 = 0;
1420 u64 block2 = 0;
1421 int ret = 0;
1422 int blocksize;
1424 parent = path->nodes[level + 1];
1425 if (!parent)
1426 return 0;
1428 nritems = btrfs_header_nritems(parent);
1429 slot = path->slots[level + 1];
1430 blocksize = btrfs_level_size(root, level);
1432 if (slot > 0) {
1433 block1 = btrfs_node_blockptr(parent, slot - 1);
1434 gen = btrfs_node_ptr_generation(parent, slot - 1);
1435 eb = btrfs_find_tree_block(root, block1, blocksize);
1436 if (eb && btrfs_buffer_uptodate(eb, gen))
1437 block1 = 0;
1438 free_extent_buffer(eb);
1440 if (slot + 1 < nritems) {
1441 block2 = btrfs_node_blockptr(parent, slot + 1);
1442 gen = btrfs_node_ptr_generation(parent, slot + 1);
1443 eb = btrfs_find_tree_block(root, block2, blocksize);
1444 if (eb && btrfs_buffer_uptodate(eb, gen))
1445 block2 = 0;
1446 free_extent_buffer(eb);
1448 if (block1 || block2) {
1449 ret = -EAGAIN;
1451 /* release the whole path */
1452 btrfs_release_path(root, path);
1454 /* read the blocks */
1455 if (block1)
1456 readahead_tree_block(root, block1, blocksize, 0);
1457 if (block2)
1458 readahead_tree_block(root, block2, blocksize, 0);
1460 if (block1) {
1461 eb = read_tree_block(root, block1, blocksize, 0);
1462 free_extent_buffer(eb);
1464 if (block2) {
1465 eb = read_tree_block(root, block2, blocksize, 0);
1466 free_extent_buffer(eb);
1469 return ret;
1474 * when we walk down the tree, it is usually safe to unlock the higher layers
1475 * in the tree. The exceptions are when our path goes through slot 0, because
1476 * operations on the tree might require changing key pointers higher up in the
1477 * tree.
1479 * callers might also have set path->keep_locks, which tells this code to keep
1480 * the lock if the path points to the last slot in the block. This is part of
1481 * walking through the tree, and selecting the next slot in the higher block.
1483 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
1484 * if lowest_unlock is 1, level 0 won't be unlocked
1486 static noinline void unlock_up(struct btrfs_path *path, int level,
1487 int lowest_unlock)
1489 int i;
1490 int skip_level = level;
1491 int no_skips = 0;
1492 struct extent_buffer *t;
1494 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1495 if (!path->nodes[i])
1496 break;
1497 if (!path->locks[i])
1498 break;
1499 if (!no_skips && path->slots[i] == 0) {
1500 skip_level = i + 1;
1501 continue;
1503 if (!no_skips && path->keep_locks) {
1504 u32 nritems;
1505 t = path->nodes[i];
1506 nritems = btrfs_header_nritems(t);
1507 if (nritems < 1 || path->slots[i] >= nritems - 1) {
1508 skip_level = i + 1;
1509 continue;
1512 if (skip_level < i && i >= lowest_unlock)
1513 no_skips = 1;
1515 t = path->nodes[i];
1516 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1517 btrfs_tree_unlock(t);
1518 path->locks[i] = 0;
1524 * This releases any locks held in the path starting at level and
1525 * going all the way up to the root.
1527 * btrfs_search_slot will keep the lock held on higher nodes in a few
1528 * corner cases, such as COW of the block at slot zero in the node. This
1529 * ignores those rules, and it should only be called when there are no
1530 * more updates to be done higher up in the tree.
1532 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1534 int i;
1536 if (path->keep_locks)
1537 return;
1539 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1540 if (!path->nodes[i])
1541 continue;
1542 if (!path->locks[i])
1543 continue;
1544 btrfs_tree_unlock(path->nodes[i]);
1545 path->locks[i] = 0;
1550 * helper function for btrfs_search_slot. The goal is to find a block
1551 * in cache without setting the path to blocking. If we find the block
1552 * we return zero and the path is unchanged.
1554 * If we can't find the block, we set the path blocking and do some
1555 * reada. -EAGAIN is returned and the search must be repeated.
1557 static int
1558 read_block_for_search(struct btrfs_trans_handle *trans,
1559 struct btrfs_root *root, struct btrfs_path *p,
1560 struct extent_buffer **eb_ret, int level, int slot,
1561 struct btrfs_key *key)
1563 u64 blocknr;
1564 u64 gen;
1565 u32 blocksize;
1566 struct extent_buffer *b = *eb_ret;
1567 struct extent_buffer *tmp;
1568 int ret;
1570 blocknr = btrfs_node_blockptr(b, slot);
1571 gen = btrfs_node_ptr_generation(b, slot);
1572 blocksize = btrfs_level_size(root, level - 1);
1574 tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1575 if (tmp) {
1576 if (btrfs_buffer_uptodate(tmp, 0)) {
1577 if (btrfs_buffer_uptodate(tmp, gen)) {
1579 * we found an up to date block without
1580 * sleeping, return
1581 * right away
1583 *eb_ret = tmp;
1584 return 0;
1586 /* the pages were up to date, but we failed
1587 * the generation number check. Do a full
1588 * read for the generation number that is correct.
1589 * We must do this without dropping locks so
1590 * we can trust our generation number
1592 free_extent_buffer(tmp);
1593 tmp = read_tree_block(root, blocknr, blocksize, gen);
1594 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1595 *eb_ret = tmp;
1596 return 0;
1598 free_extent_buffer(tmp);
1599 btrfs_release_path(NULL, p);
1600 return -EIO;
1605 * reduce lock contention at high levels
1606 * of the btree by dropping locks before
1607 * we read. Don't release the lock on the current
1608 * level because we need to walk this node to figure
1609 * out which blocks to read.
1611 btrfs_unlock_up_safe(p, level + 1);
1612 btrfs_set_path_blocking(p);
1614 free_extent_buffer(tmp);
1615 if (p->reada)
1616 reada_for_search(root, p, level, slot, key->objectid);
1618 btrfs_release_path(NULL, p);
1620 ret = -EAGAIN;
1621 tmp = read_tree_block(root, blocknr, blocksize, 0);
1622 if (tmp) {
1624 * If the read above didn't mark this buffer up to date,
1625 * it will never end up being up to date. Set ret to EIO now
1626 * and give up so that our caller doesn't loop forever
1627 * on our EAGAINs.
1629 if (!btrfs_buffer_uptodate(tmp, 0))
1630 ret = -EIO;
1631 free_extent_buffer(tmp);
1633 return ret;
1637 * helper function for btrfs_search_slot. This does all of the checks
1638 * for node-level blocks and does any balancing required based on
1639 * the ins_len.
1641 * If no extra work was required, zero is returned. If we had to
1642 * drop the path, -EAGAIN is returned and btrfs_search_slot must
1643 * start over
1645 static int
1646 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1647 struct btrfs_root *root, struct btrfs_path *p,
1648 struct extent_buffer *b, int level, int ins_len)
1650 int ret;
1651 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1652 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1653 int sret;
1655 sret = reada_for_balance(root, p, level);
1656 if (sret)
1657 goto again;
1659 btrfs_set_path_blocking(p);
1660 sret = split_node(trans, root, p, level);
1661 btrfs_clear_path_blocking(p, NULL);
1663 BUG_ON(sret > 0);
1664 if (sret) {
1665 ret = sret;
1666 goto done;
1668 b = p->nodes[level];
1669 } else if (ins_len < 0 && btrfs_header_nritems(b) <
1670 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1671 int sret;
1673 sret = reada_for_balance(root, p, level);
1674 if (sret)
1675 goto again;
1677 btrfs_set_path_blocking(p);
1678 sret = balance_level(trans, root, p, level);
1679 btrfs_clear_path_blocking(p, NULL);
1681 if (sret) {
1682 ret = sret;
1683 goto done;
1685 b = p->nodes[level];
1686 if (!b) {
1687 btrfs_release_path(NULL, p);
1688 goto again;
1690 BUG_ON(btrfs_header_nritems(b) == 1);
1692 return 0;
1694 again:
1695 ret = -EAGAIN;
1696 done:
1697 return ret;
1701 * look for key in the tree. path is filled in with nodes along the way
1702 * if key is found, we return zero and you can find the item in the leaf
1703 * level of the path (level 0)
1705 * If the key isn't found, the path points to the slot where it should
1706 * be inserted, and 1 is returned. If there are other errors during the
1707 * search a negative error number is returned.
1709 * if ins_len > 0, nodes and leaves will be split as we walk down the
1710 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
1711 * possible)
1713 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1714 *root, struct btrfs_key *key, struct btrfs_path *p, int
1715 ins_len, int cow)
1717 struct extent_buffer *b;
1718 int slot;
1719 int ret;
1720 int err;
1721 int level;
1722 int lowest_unlock = 1;
1723 u8 lowest_level = 0;
1725 lowest_level = p->lowest_level;
1726 WARN_ON(lowest_level && ins_len > 0);
1727 WARN_ON(p->nodes[0] != NULL);
1729 if (ins_len < 0)
1730 lowest_unlock = 2;
1732 again:
1733 if (p->search_commit_root) {
1734 b = root->commit_root;
1735 extent_buffer_get(b);
1736 if (!p->skip_locking)
1737 btrfs_tree_lock(b);
1738 } else {
1739 if (p->skip_locking)
1740 b = btrfs_root_node(root);
1741 else
1742 b = btrfs_lock_root_node(root);
1745 while (b) {
1746 level = btrfs_header_level(b);
1749 * setup the path here so we can release it under lock
1750 * contention with the cow code
1752 p->nodes[level] = b;
1753 if (!p->skip_locking)
1754 p->locks[level] = 1;
1756 if (cow) {
1758 * if we don't really need to cow this block
1759 * then we don't want to set the path blocking,
1760 * so we test it here
1762 if (!should_cow_block(trans, root, b))
1763 goto cow_done;
1765 btrfs_set_path_blocking(p);
1767 err = btrfs_cow_block(trans, root, b,
1768 p->nodes[level + 1],
1769 p->slots[level + 1], &b);
1770 if (err) {
1771 ret = err;
1772 goto done;
1775 cow_done:
1776 BUG_ON(!cow && ins_len);
1777 if (level != btrfs_header_level(b))
1778 WARN_ON(1);
1779 level = btrfs_header_level(b);
1781 p->nodes[level] = b;
1782 if (!p->skip_locking)
1783 p->locks[level] = 1;
1785 btrfs_clear_path_blocking(p, NULL);
1788 * we have a lock on b and as long as we aren't changing
1789 * the tree, there is no way to for the items in b to change.
1790 * It is safe to drop the lock on our parent before we
1791 * go through the expensive btree search on b.
1793 * If cow is true, then we might be changing slot zero,
1794 * which may require changing the parent. So, we can't
1795 * drop the lock until after we know which slot we're
1796 * operating on.
1798 if (!cow)
1799 btrfs_unlock_up_safe(p, level + 1);
1801 ret = check_block(root, p, level);
1802 if (ret) {
1803 ret = -1;
1804 goto done;
1807 ret = bin_search(b, key, level, &slot);
1809 if (level != 0) {
1810 int dec = 0;
1811 if (ret && slot > 0) {
1812 dec = 1;
1813 slot -= 1;
1815 p->slots[level] = slot;
1816 err = setup_nodes_for_search(trans, root, p, b, level,
1817 ins_len);
1818 if (err == -EAGAIN)
1819 goto again;
1820 if (err) {
1821 ret = err;
1822 goto done;
1824 b = p->nodes[level];
1825 slot = p->slots[level];
1827 unlock_up(p, level, lowest_unlock);
1829 if (level == lowest_level) {
1830 if (dec)
1831 p->slots[level]++;
1832 goto done;
1835 err = read_block_for_search(trans, root, p,
1836 &b, level, slot, key);
1837 if (err == -EAGAIN)
1838 goto again;
1839 if (err) {
1840 ret = err;
1841 goto done;
1844 if (!p->skip_locking) {
1845 btrfs_clear_path_blocking(p, NULL);
1846 err = btrfs_try_spin_lock(b);
1848 if (!err) {
1849 btrfs_set_path_blocking(p);
1850 btrfs_tree_lock(b);
1851 btrfs_clear_path_blocking(p, b);
1854 } else {
1855 p->slots[level] = slot;
1856 if (ins_len > 0 &&
1857 btrfs_leaf_free_space(root, b) < ins_len) {
1858 btrfs_set_path_blocking(p);
1859 err = split_leaf(trans, root, key,
1860 p, ins_len, ret == 0);
1861 btrfs_clear_path_blocking(p, NULL);
1863 BUG_ON(err > 0);
1864 if (err) {
1865 ret = err;
1866 goto done;
1869 if (!p->search_for_split)
1870 unlock_up(p, level, lowest_unlock);
1871 goto done;
1874 ret = 1;
1875 done:
1877 * we don't really know what they plan on doing with the path
1878 * from here on, so for now just mark it as blocking
1880 if (!p->leave_spinning)
1881 btrfs_set_path_blocking(p);
1882 if (ret < 0)
1883 btrfs_release_path(root, p);
1884 return ret;
1888 * adjust the pointers going up the tree, starting at level
1889 * making sure the right key of each node is points to 'key'.
1890 * This is used after shifting pointers to the left, so it stops
1891 * fixing up pointers when a given leaf/node is not in slot 0 of the
1892 * higher levels
1894 * If this fails to write a tree block, it returns -1, but continues
1895 * fixing up the blocks in ram so the tree is consistent.
1897 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1898 struct btrfs_root *root, struct btrfs_path *path,
1899 struct btrfs_disk_key *key, int level)
1901 int i;
1902 int ret = 0;
1903 struct extent_buffer *t;
1905 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1906 int tslot = path->slots[i];
1907 if (!path->nodes[i])
1908 break;
1909 t = path->nodes[i];
1910 btrfs_set_node_key(t, key, tslot);
1911 btrfs_mark_buffer_dirty(path->nodes[i]);
1912 if (tslot != 0)
1913 break;
1915 return ret;
1919 * update item key.
1921 * This function isn't completely safe. It's the caller's responsibility
1922 * that the new key won't break the order
1924 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1925 struct btrfs_root *root, struct btrfs_path *path,
1926 struct btrfs_key *new_key)
1928 struct btrfs_disk_key disk_key;
1929 struct extent_buffer *eb;
1930 int slot;
1932 eb = path->nodes[0];
1933 slot = path->slots[0];
1934 if (slot > 0) {
1935 btrfs_item_key(eb, &disk_key, slot - 1);
1936 if (comp_keys(&disk_key, new_key) >= 0)
1937 return -1;
1939 if (slot < btrfs_header_nritems(eb) - 1) {
1940 btrfs_item_key(eb, &disk_key, slot + 1);
1941 if (comp_keys(&disk_key, new_key) <= 0)
1942 return -1;
1945 btrfs_cpu_key_to_disk(&disk_key, new_key);
1946 btrfs_set_item_key(eb, &disk_key, slot);
1947 btrfs_mark_buffer_dirty(eb);
1948 if (slot == 0)
1949 fixup_low_keys(trans, root, path, &disk_key, 1);
1950 return 0;
1954 * try to push data from one node into the next node left in the
1955 * tree.
1957 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1958 * error, and > 0 if there was no room in the left hand block.
1960 static int push_node_left(struct btrfs_trans_handle *trans,
1961 struct btrfs_root *root, struct extent_buffer *dst,
1962 struct extent_buffer *src, int empty)
1964 int push_items = 0;
1965 int src_nritems;
1966 int dst_nritems;
1967 int ret = 0;
1969 src_nritems = btrfs_header_nritems(src);
1970 dst_nritems = btrfs_header_nritems(dst);
1971 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1972 WARN_ON(btrfs_header_generation(src) != trans->transid);
1973 WARN_ON(btrfs_header_generation(dst) != trans->transid);
1975 if (!empty && src_nritems <= 8)
1976 return 1;
1978 if (push_items <= 0)
1979 return 1;
1981 if (empty) {
1982 push_items = min(src_nritems, push_items);
1983 if (push_items < src_nritems) {
1984 /* leave at least 8 pointers in the node if
1985 * we aren't going to empty it
1987 if (src_nritems - push_items < 8) {
1988 if (push_items <= 8)
1989 return 1;
1990 push_items -= 8;
1993 } else
1994 push_items = min(src_nritems - 8, push_items);
1996 copy_extent_buffer(dst, src,
1997 btrfs_node_key_ptr_offset(dst_nritems),
1998 btrfs_node_key_ptr_offset(0),
1999 push_items * sizeof(struct btrfs_key_ptr));
2001 if (push_items < src_nritems) {
2002 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2003 btrfs_node_key_ptr_offset(push_items),
2004 (src_nritems - push_items) *
2005 sizeof(struct btrfs_key_ptr));
2007 btrfs_set_header_nritems(src, src_nritems - push_items);
2008 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2009 btrfs_mark_buffer_dirty(src);
2010 btrfs_mark_buffer_dirty(dst);
2012 return ret;
2016 * try to push data from one node into the next node right in the
2017 * tree.
2019 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2020 * error, and > 0 if there was no room in the right hand block.
2022 * this will only push up to 1/2 the contents of the left node over
2024 static int balance_node_right(struct btrfs_trans_handle *trans,
2025 struct btrfs_root *root,
2026 struct extent_buffer *dst,
2027 struct extent_buffer *src)
2029 int push_items = 0;
2030 int max_push;
2031 int src_nritems;
2032 int dst_nritems;
2033 int ret = 0;
2035 WARN_ON(btrfs_header_generation(src) != trans->transid);
2036 WARN_ON(btrfs_header_generation(dst) != trans->transid);
2038 src_nritems = btrfs_header_nritems(src);
2039 dst_nritems = btrfs_header_nritems(dst);
2040 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2041 if (push_items <= 0)
2042 return 1;
2044 if (src_nritems < 4)
2045 return 1;
2047 max_push = src_nritems / 2 + 1;
2048 /* don't try to empty the node */
2049 if (max_push >= src_nritems)
2050 return 1;
2052 if (max_push < push_items)
2053 push_items = max_push;
2055 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2056 btrfs_node_key_ptr_offset(0),
2057 (dst_nritems) *
2058 sizeof(struct btrfs_key_ptr));
2060 copy_extent_buffer(dst, src,
2061 btrfs_node_key_ptr_offset(0),
2062 btrfs_node_key_ptr_offset(src_nritems - push_items),
2063 push_items * sizeof(struct btrfs_key_ptr));
2065 btrfs_set_header_nritems(src, src_nritems - push_items);
2066 btrfs_set_header_nritems(dst, dst_nritems + push_items);
2068 btrfs_mark_buffer_dirty(src);
2069 btrfs_mark_buffer_dirty(dst);
2071 return ret;
2075 * helper function to insert a new root level in the tree.
2076 * A new node is allocated, and a single item is inserted to
2077 * point to the existing root
2079 * returns zero on success or < 0 on failure.
2081 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2082 struct btrfs_root *root,
2083 struct btrfs_path *path, int level)
2085 u64 lower_gen;
2086 struct extent_buffer *lower;
2087 struct extent_buffer *c;
2088 struct extent_buffer *old;
2089 struct btrfs_disk_key lower_key;
2091 BUG_ON(path->nodes[level]);
2092 BUG_ON(path->nodes[level-1] != root->node);
2094 lower = path->nodes[level-1];
2095 if (level == 1)
2096 btrfs_item_key(lower, &lower_key, 0);
2097 else
2098 btrfs_node_key(lower, &lower_key, 0);
2100 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2101 root->root_key.objectid, &lower_key,
2102 level, root->node->start, 0);
2103 if (IS_ERR(c))
2104 return PTR_ERR(c);
2106 root_add_used(root, root->nodesize);
2108 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2109 btrfs_set_header_nritems(c, 1);
2110 btrfs_set_header_level(c, level);
2111 btrfs_set_header_bytenr(c, c->start);
2112 btrfs_set_header_generation(c, trans->transid);
2113 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2114 btrfs_set_header_owner(c, root->root_key.objectid);
2116 write_extent_buffer(c, root->fs_info->fsid,
2117 (unsigned long)btrfs_header_fsid(c),
2118 BTRFS_FSID_SIZE);
2120 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2121 (unsigned long)btrfs_header_chunk_tree_uuid(c),
2122 BTRFS_UUID_SIZE);
2124 btrfs_set_node_key(c, &lower_key, 0);
2125 btrfs_set_node_blockptr(c, 0, lower->start);
2126 lower_gen = btrfs_header_generation(lower);
2127 WARN_ON(lower_gen != trans->transid);
2129 btrfs_set_node_ptr_generation(c, 0, lower_gen);
2131 btrfs_mark_buffer_dirty(c);
2133 spin_lock(&root->node_lock);
2134 old = root->node;
2135 root->node = c;
2136 spin_unlock(&root->node_lock);
2138 /* the super has an extra ref to root->node */
2139 free_extent_buffer(old);
2141 add_root_to_dirty_list(root);
2142 extent_buffer_get(c);
2143 path->nodes[level] = c;
2144 path->locks[level] = 1;
2145 path->slots[level] = 0;
2146 return 0;
2150 * worker function to insert a single pointer in a node.
2151 * the node should have enough room for the pointer already
2153 * slot and level indicate where you want the key to go, and
2154 * blocknr is the block the key points to.
2156 * returns zero on success and < 0 on any error
2158 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2159 *root, struct btrfs_path *path, struct btrfs_disk_key
2160 *key, u64 bytenr, int slot, int level)
2162 struct extent_buffer *lower;
2163 int nritems;
2165 BUG_ON(!path->nodes[level]);
2166 btrfs_assert_tree_locked(path->nodes[level]);
2167 lower = path->nodes[level];
2168 nritems = btrfs_header_nritems(lower);
2169 BUG_ON(slot > nritems);
2170 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2171 BUG();
2172 if (slot != nritems) {
2173 memmove_extent_buffer(lower,
2174 btrfs_node_key_ptr_offset(slot + 1),
2175 btrfs_node_key_ptr_offset(slot),
2176 (nritems - slot) * sizeof(struct btrfs_key_ptr));
2178 btrfs_set_node_key(lower, key, slot);
2179 btrfs_set_node_blockptr(lower, slot, bytenr);
2180 WARN_ON(trans->transid == 0);
2181 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2182 btrfs_set_header_nritems(lower, nritems + 1);
2183 btrfs_mark_buffer_dirty(lower);
2184 return 0;
2188 * split the node at the specified level in path in two.
2189 * The path is corrected to point to the appropriate node after the split
2191 * Before splitting this tries to make some room in the node by pushing
2192 * left and right, if either one works, it returns right away.
2194 * returns 0 on success and < 0 on failure
2196 static noinline int split_node(struct btrfs_trans_handle *trans,
2197 struct btrfs_root *root,
2198 struct btrfs_path *path, int level)
2200 struct extent_buffer *c;
2201 struct extent_buffer *split;
2202 struct btrfs_disk_key disk_key;
2203 int mid;
2204 int ret;
2205 int wret;
2206 u32 c_nritems;
2208 c = path->nodes[level];
2209 WARN_ON(btrfs_header_generation(c) != trans->transid);
2210 if (c == root->node) {
2211 /* trying to split the root, lets make a new one */
2212 ret = insert_new_root(trans, root, path, level + 1);
2213 if (ret)
2214 return ret;
2215 } else {
2216 ret = push_nodes_for_insert(trans, root, path, level);
2217 c = path->nodes[level];
2218 if (!ret && btrfs_header_nritems(c) <
2219 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2220 return 0;
2221 if (ret < 0)
2222 return ret;
2225 c_nritems = btrfs_header_nritems(c);
2226 mid = (c_nritems + 1) / 2;
2227 btrfs_node_key(c, &disk_key, mid);
2229 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2230 root->root_key.objectid,
2231 &disk_key, level, c->start, 0);
2232 if (IS_ERR(split))
2233 return PTR_ERR(split);
2235 root_add_used(root, root->nodesize);
2237 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2238 btrfs_set_header_level(split, btrfs_header_level(c));
2239 btrfs_set_header_bytenr(split, split->start);
2240 btrfs_set_header_generation(split, trans->transid);
2241 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2242 btrfs_set_header_owner(split, root->root_key.objectid);
2243 write_extent_buffer(split, root->fs_info->fsid,
2244 (unsigned long)btrfs_header_fsid(split),
2245 BTRFS_FSID_SIZE);
2246 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2247 (unsigned long)btrfs_header_chunk_tree_uuid(split),
2248 BTRFS_UUID_SIZE);
2251 copy_extent_buffer(split, c,
2252 btrfs_node_key_ptr_offset(0),
2253 btrfs_node_key_ptr_offset(mid),
2254 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2255 btrfs_set_header_nritems(split, c_nritems - mid);
2256 btrfs_set_header_nritems(c, mid);
2257 ret = 0;
2259 btrfs_mark_buffer_dirty(c);
2260 btrfs_mark_buffer_dirty(split);
2262 wret = insert_ptr(trans, root, path, &disk_key, split->start,
2263 path->slots[level + 1] + 1,
2264 level + 1);
2265 if (wret)
2266 ret = wret;
2268 if (path->slots[level] >= mid) {
2269 path->slots[level] -= mid;
2270 btrfs_tree_unlock(c);
2271 free_extent_buffer(c);
2272 path->nodes[level] = split;
2273 path->slots[level + 1] += 1;
2274 } else {
2275 btrfs_tree_unlock(split);
2276 free_extent_buffer(split);
2278 return ret;
2282 * how many bytes are required to store the items in a leaf. start
2283 * and nr indicate which items in the leaf to check. This totals up the
2284 * space used both by the item structs and the item data
2286 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2288 int data_len;
2289 int nritems = btrfs_header_nritems(l);
2290 int end = min(nritems, start + nr) - 1;
2292 if (!nr)
2293 return 0;
2294 data_len = btrfs_item_end_nr(l, start);
2295 data_len = data_len - btrfs_item_offset_nr(l, end);
2296 data_len += sizeof(struct btrfs_item) * nr;
2297 WARN_ON(data_len < 0);
2298 return data_len;
2302 * The space between the end of the leaf items and
2303 * the start of the leaf data. IOW, how much room
2304 * the leaf has left for both items and data
2306 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2307 struct extent_buffer *leaf)
2309 int nritems = btrfs_header_nritems(leaf);
2310 int ret;
2311 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2312 if (ret < 0) {
2313 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2314 "used %d nritems %d\n",
2315 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2316 leaf_space_used(leaf, 0, nritems), nritems);
2318 return ret;
2322 * min slot controls the lowest index we're willing to push to the
2323 * right. We'll push up to and including min_slot, but no lower
2325 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2326 struct btrfs_root *root,
2327 struct btrfs_path *path,
2328 int data_size, int empty,
2329 struct extent_buffer *right,
2330 int free_space, u32 left_nritems,
2331 u32 min_slot)
2333 struct extent_buffer *left = path->nodes[0];
2334 struct extent_buffer *upper = path->nodes[1];
2335 struct btrfs_disk_key disk_key;
2336 int slot;
2337 u32 i;
2338 int push_space = 0;
2339 int push_items = 0;
2340 struct btrfs_item *item;
2341 u32 nr;
2342 u32 right_nritems;
2343 u32 data_end;
2344 u32 this_item_size;
2346 if (empty)
2347 nr = 0;
2348 else
2349 nr = max_t(u32, 1, min_slot);
2351 if (path->slots[0] >= left_nritems)
2352 push_space += data_size;
2354 slot = path->slots[1];
2355 i = left_nritems - 1;
2356 while (i >= nr) {
2357 item = btrfs_item_nr(left, i);
2359 if (!empty && push_items > 0) {
2360 if (path->slots[0] > i)
2361 break;
2362 if (path->slots[0] == i) {
2363 int space = btrfs_leaf_free_space(root, left);
2364 if (space + push_space * 2 > free_space)
2365 break;
2369 if (path->slots[0] == i)
2370 push_space += data_size;
2372 if (!left->map_token) {
2373 map_extent_buffer(left, (unsigned long)item,
2374 sizeof(struct btrfs_item),
2375 &left->map_token, &left->kaddr,
2376 &left->map_start, &left->map_len,
2377 KM_USER1);
2380 this_item_size = btrfs_item_size(left, item);
2381 if (this_item_size + sizeof(*item) + push_space > free_space)
2382 break;
2384 push_items++;
2385 push_space += this_item_size + sizeof(*item);
2386 if (i == 0)
2387 break;
2388 i--;
2390 if (left->map_token) {
2391 unmap_extent_buffer(left, left->map_token, KM_USER1);
2392 left->map_token = NULL;
2395 if (push_items == 0)
2396 goto out_unlock;
2398 if (!empty && push_items == left_nritems)
2399 WARN_ON(1);
2401 /* push left to right */
2402 right_nritems = btrfs_header_nritems(right);
2404 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2405 push_space -= leaf_data_end(root, left);
2407 /* make room in the right data area */
2408 data_end = leaf_data_end(root, right);
2409 memmove_extent_buffer(right,
2410 btrfs_leaf_data(right) + data_end - push_space,
2411 btrfs_leaf_data(right) + data_end,
2412 BTRFS_LEAF_DATA_SIZE(root) - data_end);
2414 /* copy from the left data area */
2415 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2416 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2417 btrfs_leaf_data(left) + leaf_data_end(root, left),
2418 push_space);
2420 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2421 btrfs_item_nr_offset(0),
2422 right_nritems * sizeof(struct btrfs_item));
2424 /* copy the items from left to right */
2425 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2426 btrfs_item_nr_offset(left_nritems - push_items),
2427 push_items * sizeof(struct btrfs_item));
2429 /* update the item pointers */
2430 right_nritems += push_items;
2431 btrfs_set_header_nritems(right, right_nritems);
2432 push_space = BTRFS_LEAF_DATA_SIZE(root);
2433 for (i = 0; i < right_nritems; i++) {
2434 item = btrfs_item_nr(right, i);
2435 if (!right->map_token) {
2436 map_extent_buffer(right, (unsigned long)item,
2437 sizeof(struct btrfs_item),
2438 &right->map_token, &right->kaddr,
2439 &right->map_start, &right->map_len,
2440 KM_USER1);
2442 push_space -= btrfs_item_size(right, item);
2443 btrfs_set_item_offset(right, item, push_space);
2446 if (right->map_token) {
2447 unmap_extent_buffer(right, right->map_token, KM_USER1);
2448 right->map_token = NULL;
2450 left_nritems -= push_items;
2451 btrfs_set_header_nritems(left, left_nritems);
2453 if (left_nritems)
2454 btrfs_mark_buffer_dirty(left);
2455 else
2456 clean_tree_block(trans, root, left);
2458 btrfs_mark_buffer_dirty(right);
2460 btrfs_item_key(right, &disk_key, 0);
2461 btrfs_set_node_key(upper, &disk_key, slot + 1);
2462 btrfs_mark_buffer_dirty(upper);
2464 /* then fixup the leaf pointer in the path */
2465 if (path->slots[0] >= left_nritems) {
2466 path->slots[0] -= left_nritems;
2467 if (btrfs_header_nritems(path->nodes[0]) == 0)
2468 clean_tree_block(trans, root, path->nodes[0]);
2469 btrfs_tree_unlock(path->nodes[0]);
2470 free_extent_buffer(path->nodes[0]);
2471 path->nodes[0] = right;
2472 path->slots[1] += 1;
2473 } else {
2474 btrfs_tree_unlock(right);
2475 free_extent_buffer(right);
2477 return 0;
2479 out_unlock:
2480 btrfs_tree_unlock(right);
2481 free_extent_buffer(right);
2482 return 1;
2486 * push some data in the path leaf to the right, trying to free up at
2487 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2489 * returns 1 if the push failed because the other node didn't have enough
2490 * room, 0 if everything worked out and < 0 if there were major errors.
2492 * this will push starting from min_slot to the end of the leaf. It won't
2493 * push any slot lower than min_slot
2495 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2496 *root, struct btrfs_path *path,
2497 int min_data_size, int data_size,
2498 int empty, u32 min_slot)
2500 struct extent_buffer *left = path->nodes[0];
2501 struct extent_buffer *right;
2502 struct extent_buffer *upper;
2503 int slot;
2504 int free_space;
2505 u32 left_nritems;
2506 int ret;
2508 if (!path->nodes[1])
2509 return 1;
2511 slot = path->slots[1];
2512 upper = path->nodes[1];
2513 if (slot >= btrfs_header_nritems(upper) - 1)
2514 return 1;
2516 btrfs_assert_tree_locked(path->nodes[1]);
2518 right = read_node_slot(root, upper, slot + 1);
2519 if (right == NULL)
2520 return 1;
2522 btrfs_tree_lock(right);
2523 btrfs_set_lock_blocking(right);
2525 free_space = btrfs_leaf_free_space(root, right);
2526 if (free_space < data_size)
2527 goto out_unlock;
2529 /* cow and double check */
2530 ret = btrfs_cow_block(trans, root, right, upper,
2531 slot + 1, &right);
2532 if (ret)
2533 goto out_unlock;
2535 free_space = btrfs_leaf_free_space(root, right);
2536 if (free_space < data_size)
2537 goto out_unlock;
2539 left_nritems = btrfs_header_nritems(left);
2540 if (left_nritems == 0)
2541 goto out_unlock;
2543 return __push_leaf_right(trans, root, path, min_data_size, empty,
2544 right, free_space, left_nritems, min_slot);
2545 out_unlock:
2546 btrfs_tree_unlock(right);
2547 free_extent_buffer(right);
2548 return 1;
2552 * push some data in the path leaf to the left, trying to free up at
2553 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2555 * max_slot can put a limit on how far into the leaf we'll push items. The
2556 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
2557 * items
2559 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2560 struct btrfs_root *root,
2561 struct btrfs_path *path, int data_size,
2562 int empty, struct extent_buffer *left,
2563 int free_space, u32 right_nritems,
2564 u32 max_slot)
2566 struct btrfs_disk_key disk_key;
2567 struct extent_buffer *right = path->nodes[0];
2568 int i;
2569 int push_space = 0;
2570 int push_items = 0;
2571 struct btrfs_item *item;
2572 u32 old_left_nritems;
2573 u32 nr;
2574 int ret = 0;
2575 int wret;
2576 u32 this_item_size;
2577 u32 old_left_item_size;
2579 if (empty)
2580 nr = min(right_nritems, max_slot);
2581 else
2582 nr = min(right_nritems - 1, max_slot);
2584 for (i = 0; i < nr; i++) {
2585 item = btrfs_item_nr(right, i);
2586 if (!right->map_token) {
2587 map_extent_buffer(right, (unsigned long)item,
2588 sizeof(struct btrfs_item),
2589 &right->map_token, &right->kaddr,
2590 &right->map_start, &right->map_len,
2591 KM_USER1);
2594 if (!empty && push_items > 0) {
2595 if (path->slots[0] < i)
2596 break;
2597 if (path->slots[0] == i) {
2598 int space = btrfs_leaf_free_space(root, right);
2599 if (space + push_space * 2 > free_space)
2600 break;
2604 if (path->slots[0] == i)
2605 push_space += data_size;
2607 this_item_size = btrfs_item_size(right, item);
2608 if (this_item_size + sizeof(*item) + push_space > free_space)
2609 break;
2611 push_items++;
2612 push_space += this_item_size + sizeof(*item);
2615 if (right->map_token) {
2616 unmap_extent_buffer(right, right->map_token, KM_USER1);
2617 right->map_token = NULL;
2620 if (push_items == 0) {
2621 ret = 1;
2622 goto out;
2624 if (!empty && push_items == btrfs_header_nritems(right))
2625 WARN_ON(1);
2627 /* push data from right to left */
2628 copy_extent_buffer(left, right,
2629 btrfs_item_nr_offset(btrfs_header_nritems(left)),
2630 btrfs_item_nr_offset(0),
2631 push_items * sizeof(struct btrfs_item));
2633 push_space = BTRFS_LEAF_DATA_SIZE(root) -
2634 btrfs_item_offset_nr(right, push_items - 1);
2636 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2637 leaf_data_end(root, left) - push_space,
2638 btrfs_leaf_data(right) +
2639 btrfs_item_offset_nr(right, push_items - 1),
2640 push_space);
2641 old_left_nritems = btrfs_header_nritems(left);
2642 BUG_ON(old_left_nritems <= 0);
2644 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2645 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2646 u32 ioff;
2648 item = btrfs_item_nr(left, i);
2649 if (!left->map_token) {
2650 map_extent_buffer(left, (unsigned long)item,
2651 sizeof(struct btrfs_item),
2652 &left->map_token, &left->kaddr,
2653 &left->map_start, &left->map_len,
2654 KM_USER1);
2657 ioff = btrfs_item_offset(left, item);
2658 btrfs_set_item_offset(left, item,
2659 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2661 btrfs_set_header_nritems(left, old_left_nritems + push_items);
2662 if (left->map_token) {
2663 unmap_extent_buffer(left, left->map_token, KM_USER1);
2664 left->map_token = NULL;
2667 /* fixup right node */
2668 if (push_items > right_nritems) {
2669 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2670 right_nritems);
2671 WARN_ON(1);
2674 if (push_items < right_nritems) {
2675 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2676 leaf_data_end(root, right);
2677 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2678 BTRFS_LEAF_DATA_SIZE(root) - push_space,
2679 btrfs_leaf_data(right) +
2680 leaf_data_end(root, right), push_space);
2682 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2683 btrfs_item_nr_offset(push_items),
2684 (btrfs_header_nritems(right) - push_items) *
2685 sizeof(struct btrfs_item));
2687 right_nritems -= push_items;
2688 btrfs_set_header_nritems(right, right_nritems);
2689 push_space = BTRFS_LEAF_DATA_SIZE(root);
2690 for (i = 0; i < right_nritems; i++) {
2691 item = btrfs_item_nr(right, i);
2693 if (!right->map_token) {
2694 map_extent_buffer(right, (unsigned long)item,
2695 sizeof(struct btrfs_item),
2696 &right->map_token, &right->kaddr,
2697 &right->map_start, &right->map_len,
2698 KM_USER1);
2701 push_space = push_space - btrfs_item_size(right, item);
2702 btrfs_set_item_offset(right, item, push_space);
2704 if (right->map_token) {
2705 unmap_extent_buffer(right, right->map_token, KM_USER1);
2706 right->map_token = NULL;
2709 btrfs_mark_buffer_dirty(left);
2710 if (right_nritems)
2711 btrfs_mark_buffer_dirty(right);
2712 else
2713 clean_tree_block(trans, root, right);
2715 btrfs_item_key(right, &disk_key, 0);
2716 wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2717 if (wret)
2718 ret = wret;
2720 /* then fixup the leaf pointer in the path */
2721 if (path->slots[0] < push_items) {
2722 path->slots[0] += old_left_nritems;
2723 btrfs_tree_unlock(path->nodes[0]);
2724 free_extent_buffer(path->nodes[0]);
2725 path->nodes[0] = left;
2726 path->slots[1] -= 1;
2727 } else {
2728 btrfs_tree_unlock(left);
2729 free_extent_buffer(left);
2730 path->slots[0] -= push_items;
2732 BUG_ON(path->slots[0] < 0);
2733 return ret;
2734 out:
2735 btrfs_tree_unlock(left);
2736 free_extent_buffer(left);
2737 return ret;
2741 * push some data in the path leaf to the left, trying to free up at
2742 * least data_size bytes. returns zero if the push worked, nonzero otherwise
2744 * max_slot can put a limit on how far into the leaf we'll push items. The
2745 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
2746 * items
2748 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2749 *root, struct btrfs_path *path, int min_data_size,
2750 int data_size, int empty, u32 max_slot)
2752 struct extent_buffer *right = path->nodes[0];
2753 struct extent_buffer *left;
2754 int slot;
2755 int free_space;
2756 u32 right_nritems;
2757 int ret = 0;
2759 slot = path->slots[1];
2760 if (slot == 0)
2761 return 1;
2762 if (!path->nodes[1])
2763 return 1;
2765 right_nritems = btrfs_header_nritems(right);
2766 if (right_nritems == 0)
2767 return 1;
2769 btrfs_assert_tree_locked(path->nodes[1]);
2771 left = read_node_slot(root, path->nodes[1], slot - 1);
2772 if (left == NULL)
2773 return 1;
2775 btrfs_tree_lock(left);
2776 btrfs_set_lock_blocking(left);
2778 free_space = btrfs_leaf_free_space(root, left);
2779 if (free_space < data_size) {
2780 ret = 1;
2781 goto out;
2784 /* cow and double check */
2785 ret = btrfs_cow_block(trans, root, left,
2786 path->nodes[1], slot - 1, &left);
2787 if (ret) {
2788 /* we hit -ENOSPC, but it isn't fatal here */
2789 ret = 1;
2790 goto out;
2793 free_space = btrfs_leaf_free_space(root, left);
2794 if (free_space < data_size) {
2795 ret = 1;
2796 goto out;
2799 return __push_leaf_left(trans, root, path, min_data_size,
2800 empty, left, free_space, right_nritems,
2801 max_slot);
2802 out:
2803 btrfs_tree_unlock(left);
2804 free_extent_buffer(left);
2805 return ret;
2809 * split the path's leaf in two, making sure there is at least data_size
2810 * available for the resulting leaf level of the path.
2812 * returns 0 if all went well and < 0 on failure.
2814 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2815 struct btrfs_root *root,
2816 struct btrfs_path *path,
2817 struct extent_buffer *l,
2818 struct extent_buffer *right,
2819 int slot, int mid, int nritems)
2821 int data_copy_size;
2822 int rt_data_off;
2823 int i;
2824 int ret = 0;
2825 int wret;
2826 struct btrfs_disk_key disk_key;
2828 nritems = nritems - mid;
2829 btrfs_set_header_nritems(right, nritems);
2830 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2832 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2833 btrfs_item_nr_offset(mid),
2834 nritems * sizeof(struct btrfs_item));
2836 copy_extent_buffer(right, l,
2837 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2838 data_copy_size, btrfs_leaf_data(l) +
2839 leaf_data_end(root, l), data_copy_size);
2841 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2842 btrfs_item_end_nr(l, mid);
2844 for (i = 0; i < nritems; i++) {
2845 struct btrfs_item *item = btrfs_item_nr(right, i);
2846 u32 ioff;
2848 if (!right->map_token) {
2849 map_extent_buffer(right, (unsigned long)item,
2850 sizeof(struct btrfs_item),
2851 &right->map_token, &right->kaddr,
2852 &right->map_start, &right->map_len,
2853 KM_USER1);
2856 ioff = btrfs_item_offset(right, item);
2857 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2860 if (right->map_token) {
2861 unmap_extent_buffer(right, right->map_token, KM_USER1);
2862 right->map_token = NULL;
2865 btrfs_set_header_nritems(l, mid);
2866 ret = 0;
2867 btrfs_item_key(right, &disk_key, 0);
2868 wret = insert_ptr(trans, root, path, &disk_key, right->start,
2869 path->slots[1] + 1, 1);
2870 if (wret)
2871 ret = wret;
2873 btrfs_mark_buffer_dirty(right);
2874 btrfs_mark_buffer_dirty(l);
2875 BUG_ON(path->slots[0] != slot);
2877 if (mid <= slot) {
2878 btrfs_tree_unlock(path->nodes[0]);
2879 free_extent_buffer(path->nodes[0]);
2880 path->nodes[0] = right;
2881 path->slots[0] -= mid;
2882 path->slots[1] += 1;
2883 } else {
2884 btrfs_tree_unlock(right);
2885 free_extent_buffer(right);
2888 BUG_ON(path->slots[0] < 0);
2890 return ret;
2894 * double splits happen when we need to insert a big item in the middle
2895 * of a leaf. A double split can leave us with 3 mostly empty leaves:
2896 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2897 * A B C
2899 * We avoid this by trying to push the items on either side of our target
2900 * into the adjacent leaves. If all goes well we can avoid the double split
2901 * completely.
2903 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2904 struct btrfs_root *root,
2905 struct btrfs_path *path,
2906 int data_size)
2908 int ret;
2909 int progress = 0;
2910 int slot;
2911 u32 nritems;
2913 slot = path->slots[0];
2916 * try to push all the items after our slot into the
2917 * right leaf
2919 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2920 if (ret < 0)
2921 return ret;
2923 if (ret == 0)
2924 progress++;
2926 nritems = btrfs_header_nritems(path->nodes[0]);
2928 * our goal is to get our slot at the start or end of a leaf. If
2929 * we've done so we're done
2931 if (path->slots[0] == 0 || path->slots[0] == nritems)
2932 return 0;
2934 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2935 return 0;
2937 /* try to push all the items before our slot into the next leaf */
2938 slot = path->slots[0];
2939 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2940 if (ret < 0)
2941 return ret;
2943 if (ret == 0)
2944 progress++;
2946 if (progress)
2947 return 0;
2948 return 1;
2952 * split the path's leaf in two, making sure there is at least data_size
2953 * available for the resulting leaf level of the path.
2955 * returns 0 if all went well and < 0 on failure.
2957 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2958 struct btrfs_root *root,
2959 struct btrfs_key *ins_key,
2960 struct btrfs_path *path, int data_size,
2961 int extend)
2963 struct btrfs_disk_key disk_key;
2964 struct extent_buffer *l;
2965 u32 nritems;
2966 int mid;
2967 int slot;
2968 struct extent_buffer *right;
2969 int ret = 0;
2970 int wret;
2971 int split;
2972 int num_doubles = 0;
2973 int tried_avoid_double = 0;
2975 l = path->nodes[0];
2976 slot = path->slots[0];
2977 if (extend && data_size + btrfs_item_size_nr(l, slot) +
2978 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2979 return -EOVERFLOW;
2981 /* first try to make some room by pushing left and right */
2982 if (data_size) {
2983 wret = push_leaf_right(trans, root, path, data_size,
2984 data_size, 0, 0);
2985 if (wret < 0)
2986 return wret;
2987 if (wret) {
2988 wret = push_leaf_left(trans, root, path, data_size,
2989 data_size, 0, (u32)-1);
2990 if (wret < 0)
2991 return wret;
2993 l = path->nodes[0];
2995 /* did the pushes work? */
2996 if (btrfs_leaf_free_space(root, l) >= data_size)
2997 return 0;
3000 if (!path->nodes[1]) {
3001 ret = insert_new_root(trans, root, path, 1);
3002 if (ret)
3003 return ret;
3005 again:
3006 split = 1;
3007 l = path->nodes[0];
3008 slot = path->slots[0];
3009 nritems = btrfs_header_nritems(l);
3010 mid = (nritems + 1) / 2;
3012 if (mid <= slot) {
3013 if (nritems == 1 ||
3014 leaf_space_used(l, mid, nritems - mid) + data_size >
3015 BTRFS_LEAF_DATA_SIZE(root)) {
3016 if (slot >= nritems) {
3017 split = 0;
3018 } else {
3019 mid = slot;
3020 if (mid != nritems &&
3021 leaf_space_used(l, mid, nritems - mid) +
3022 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3023 if (data_size && !tried_avoid_double)
3024 goto push_for_double;
3025 split = 2;
3029 } else {
3030 if (leaf_space_used(l, 0, mid) + data_size >
3031 BTRFS_LEAF_DATA_SIZE(root)) {
3032 if (!extend && data_size && slot == 0) {
3033 split = 0;
3034 } else if ((extend || !data_size) && slot == 0) {
3035 mid = 1;
3036 } else {
3037 mid = slot;
3038 if (mid != nritems &&
3039 leaf_space_used(l, mid, nritems - mid) +
3040 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3041 if (data_size && !tried_avoid_double)
3042 goto push_for_double;
3043 split = 2 ;
3049 if (split == 0)
3050 btrfs_cpu_key_to_disk(&disk_key, ins_key);
3051 else
3052 btrfs_item_key(l, &disk_key, mid);
3054 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3055 root->root_key.objectid,
3056 &disk_key, 0, l->start, 0);
3057 if (IS_ERR(right))
3058 return PTR_ERR(right);
3060 root_add_used(root, root->leafsize);
3062 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3063 btrfs_set_header_bytenr(right, right->start);
3064 btrfs_set_header_generation(right, trans->transid);
3065 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3066 btrfs_set_header_owner(right, root->root_key.objectid);
3067 btrfs_set_header_level(right, 0);
3068 write_extent_buffer(right, root->fs_info->fsid,
3069 (unsigned long)btrfs_header_fsid(right),
3070 BTRFS_FSID_SIZE);
3072 write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3073 (unsigned long)btrfs_header_chunk_tree_uuid(right),
3074 BTRFS_UUID_SIZE);
3076 if (split == 0) {
3077 if (mid <= slot) {
3078 btrfs_set_header_nritems(right, 0);
3079 wret = insert_ptr(trans, root, path,
3080 &disk_key, right->start,
3081 path->slots[1] + 1, 1);
3082 if (wret)
3083 ret = wret;
3085 btrfs_tree_unlock(path->nodes[0]);
3086 free_extent_buffer(path->nodes[0]);
3087 path->nodes[0] = right;
3088 path->slots[0] = 0;
3089 path->slots[1] += 1;
3090 } else {
3091 btrfs_set_header_nritems(right, 0);
3092 wret = insert_ptr(trans, root, path,
3093 &disk_key,
3094 right->start,
3095 path->slots[1], 1);
3096 if (wret)
3097 ret = wret;
3098 btrfs_tree_unlock(path->nodes[0]);
3099 free_extent_buffer(path->nodes[0]);
3100 path->nodes[0] = right;
3101 path->slots[0] = 0;
3102 if (path->slots[1] == 0) {
3103 wret = fixup_low_keys(trans, root,
3104 path, &disk_key, 1);
3105 if (wret)
3106 ret = wret;
3109 btrfs_mark_buffer_dirty(right);
3110 return ret;
3113 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3114 BUG_ON(ret);
3116 if (split == 2) {
3117 BUG_ON(num_doubles != 0);
3118 num_doubles++;
3119 goto again;
3122 return ret;
3124 push_for_double:
3125 push_for_double_split(trans, root, path, data_size);
3126 tried_avoid_double = 1;
3127 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3128 return 0;
3129 goto again;
3132 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3133 struct btrfs_root *root,
3134 struct btrfs_path *path, int ins_len)
3136 struct btrfs_key key;
3137 struct extent_buffer *leaf;
3138 struct btrfs_file_extent_item *fi;
3139 u64 extent_len = 0;
3140 u32 item_size;
3141 int ret;
3143 leaf = path->nodes[0];
3144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3146 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3147 key.type != BTRFS_EXTENT_CSUM_KEY);
3149 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3150 return 0;
3152 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3153 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3154 fi = btrfs_item_ptr(leaf, path->slots[0],
3155 struct btrfs_file_extent_item);
3156 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3158 btrfs_release_path(root, path);
3160 path->keep_locks = 1;
3161 path->search_for_split = 1;
3162 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3163 path->search_for_split = 0;
3164 if (ret < 0)
3165 goto err;
3167 ret = -EAGAIN;
3168 leaf = path->nodes[0];
3169 /* if our item isn't there or got smaller, return now */
3170 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3171 goto err;
3173 /* the leaf has changed, it now has room. return now */
3174 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3175 goto err;
3177 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3178 fi = btrfs_item_ptr(leaf, path->slots[0],
3179 struct btrfs_file_extent_item);
3180 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3181 goto err;
3184 btrfs_set_path_blocking(path);
3185 ret = split_leaf(trans, root, &key, path, ins_len, 1);
3186 if (ret)
3187 goto err;
3189 path->keep_locks = 0;
3190 btrfs_unlock_up_safe(path, 1);
3191 return 0;
3192 err:
3193 path->keep_locks = 0;
3194 return ret;
3197 static noinline int split_item(struct btrfs_trans_handle *trans,
3198 struct btrfs_root *root,
3199 struct btrfs_path *path,
3200 struct btrfs_key *new_key,
3201 unsigned long split_offset)
3203 struct extent_buffer *leaf;
3204 struct btrfs_item *item;
3205 struct btrfs_item *new_item;
3206 int slot;
3207 char *buf;
3208 u32 nritems;
3209 u32 item_size;
3210 u32 orig_offset;
3211 struct btrfs_disk_key disk_key;
3213 leaf = path->nodes[0];
3214 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3216 btrfs_set_path_blocking(path);
3218 item = btrfs_item_nr(leaf, path->slots[0]);
3219 orig_offset = btrfs_item_offset(leaf, item);
3220 item_size = btrfs_item_size(leaf, item);
3222 buf = kmalloc(item_size, GFP_NOFS);
3223 if (!buf)
3224 return -ENOMEM;
3226 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3227 path->slots[0]), item_size);
3229 slot = path->slots[0] + 1;
3230 nritems = btrfs_header_nritems(leaf);
3231 if (slot != nritems) {
3232 /* shift the items */
3233 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3234 btrfs_item_nr_offset(slot),
3235 (nritems - slot) * sizeof(struct btrfs_item));
3238 btrfs_cpu_key_to_disk(&disk_key, new_key);
3239 btrfs_set_item_key(leaf, &disk_key, slot);
3241 new_item = btrfs_item_nr(leaf, slot);
3243 btrfs_set_item_offset(leaf, new_item, orig_offset);
3244 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3246 btrfs_set_item_offset(leaf, item,
3247 orig_offset + item_size - split_offset);
3248 btrfs_set_item_size(leaf, item, split_offset);
3250 btrfs_set_header_nritems(leaf, nritems + 1);
3252 /* write the data for the start of the original item */
3253 write_extent_buffer(leaf, buf,
3254 btrfs_item_ptr_offset(leaf, path->slots[0]),
3255 split_offset);
3257 /* write the data for the new item */
3258 write_extent_buffer(leaf, buf + split_offset,
3259 btrfs_item_ptr_offset(leaf, slot),
3260 item_size - split_offset);
3261 btrfs_mark_buffer_dirty(leaf);
3263 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3264 kfree(buf);
3265 return 0;
3269 * This function splits a single item into two items,
3270 * giving 'new_key' to the new item and splitting the
3271 * old one at split_offset (from the start of the item).
3273 * The path may be released by this operation. After
3274 * the split, the path is pointing to the old item. The
3275 * new item is going to be in the same node as the old one.
3277 * Note, the item being split must be smaller enough to live alone on
3278 * a tree block with room for one extra struct btrfs_item
3280 * This allows us to split the item in place, keeping a lock on the
3281 * leaf the entire time.
3283 int btrfs_split_item(struct btrfs_trans_handle *trans,
3284 struct btrfs_root *root,
3285 struct btrfs_path *path,
3286 struct btrfs_key *new_key,
3287 unsigned long split_offset)
3289 int ret;
3290 ret = setup_leaf_for_split(trans, root, path,
3291 sizeof(struct btrfs_item));
3292 if (ret)
3293 return ret;
3295 ret = split_item(trans, root, path, new_key, split_offset);
3296 return ret;
3300 * This function duplicate a item, giving 'new_key' to the new item.
3301 * It guarantees both items live in the same tree leaf and the new item
3302 * is contiguous with the original item.
3304 * This allows us to split file extent in place, keeping a lock on the
3305 * leaf the entire time.
3307 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3308 struct btrfs_root *root,
3309 struct btrfs_path *path,
3310 struct btrfs_key *new_key)
3312 struct extent_buffer *leaf;
3313 int ret;
3314 u32 item_size;
3316 leaf = path->nodes[0];
3317 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3318 ret = setup_leaf_for_split(trans, root, path,
3319 item_size + sizeof(struct btrfs_item));
3320 if (ret)
3321 return ret;
3323 path->slots[0]++;
3324 ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3325 item_size, item_size +
3326 sizeof(struct btrfs_item), 1);
3327 BUG_ON(ret);
3329 leaf = path->nodes[0];
3330 memcpy_extent_buffer(leaf,
3331 btrfs_item_ptr_offset(leaf, path->slots[0]),
3332 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3333 item_size);
3334 return 0;
3338 * make the item pointed to by the path smaller. new_size indicates
3339 * how small to make it, and from_end tells us if we just chop bytes
3340 * off the end of the item or if we shift the item to chop bytes off
3341 * the front.
3343 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3344 struct btrfs_root *root,
3345 struct btrfs_path *path,
3346 u32 new_size, int from_end)
3348 int ret = 0;
3349 int slot;
3350 struct extent_buffer *leaf;
3351 struct btrfs_item *item;
3352 u32 nritems;
3353 unsigned int data_end;
3354 unsigned int old_data_start;
3355 unsigned int old_size;
3356 unsigned int size_diff;
3357 int i;
3359 leaf = path->nodes[0];
3360 slot = path->slots[0];
3362 old_size = btrfs_item_size_nr(leaf, slot);
3363 if (old_size == new_size)
3364 return 0;
3366 nritems = btrfs_header_nritems(leaf);
3367 data_end = leaf_data_end(root, leaf);
3369 old_data_start = btrfs_item_offset_nr(leaf, slot);
3371 size_diff = old_size - new_size;
3373 BUG_ON(slot < 0);
3374 BUG_ON(slot >= nritems);
3377 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3379 /* first correct the data pointers */
3380 for (i = slot; i < nritems; i++) {
3381 u32 ioff;
3382 item = btrfs_item_nr(leaf, i);
3384 if (!leaf->map_token) {
3385 map_extent_buffer(leaf, (unsigned long)item,
3386 sizeof(struct btrfs_item),
3387 &leaf->map_token, &leaf->kaddr,
3388 &leaf->map_start, &leaf->map_len,
3389 KM_USER1);
3392 ioff = btrfs_item_offset(leaf, item);
3393 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3396 if (leaf->map_token) {
3397 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3398 leaf->map_token = NULL;
3401 /* shift the data */
3402 if (from_end) {
3403 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3404 data_end + size_diff, btrfs_leaf_data(leaf) +
3405 data_end, old_data_start + new_size - data_end);
3406 } else {
3407 struct btrfs_disk_key disk_key;
3408 u64 offset;
3410 btrfs_item_key(leaf, &disk_key, slot);
3412 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3413 unsigned long ptr;
3414 struct btrfs_file_extent_item *fi;
3416 fi = btrfs_item_ptr(leaf, slot,
3417 struct btrfs_file_extent_item);
3418 fi = (struct btrfs_file_extent_item *)(
3419 (unsigned long)fi - size_diff);
3421 if (btrfs_file_extent_type(leaf, fi) ==
3422 BTRFS_FILE_EXTENT_INLINE) {
3423 ptr = btrfs_item_ptr_offset(leaf, slot);
3424 memmove_extent_buffer(leaf, ptr,
3425 (unsigned long)fi,
3426 offsetof(struct btrfs_file_extent_item,
3427 disk_bytenr));
3431 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3432 data_end + size_diff, btrfs_leaf_data(leaf) +
3433 data_end, old_data_start - data_end);
3435 offset = btrfs_disk_key_offset(&disk_key);
3436 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3437 btrfs_set_item_key(leaf, &disk_key, slot);
3438 if (slot == 0)
3439 fixup_low_keys(trans, root, path, &disk_key, 1);
3442 item = btrfs_item_nr(leaf, slot);
3443 btrfs_set_item_size(leaf, item, new_size);
3444 btrfs_mark_buffer_dirty(leaf);
3446 ret = 0;
3447 if (btrfs_leaf_free_space(root, leaf) < 0) {
3448 btrfs_print_leaf(root, leaf);
3449 BUG();
3451 return ret;
3455 * make the item pointed to by the path bigger, data_size is the new size.
3457 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3458 struct btrfs_root *root, struct btrfs_path *path,
3459 u32 data_size)
3461 int ret = 0;
3462 int slot;
3463 struct extent_buffer *leaf;
3464 struct btrfs_item *item;
3465 u32 nritems;
3466 unsigned int data_end;
3467 unsigned int old_data;
3468 unsigned int old_size;
3469 int i;
3471 leaf = path->nodes[0];
3473 nritems = btrfs_header_nritems(leaf);
3474 data_end = leaf_data_end(root, leaf);
3476 if (btrfs_leaf_free_space(root, leaf) < data_size) {
3477 btrfs_print_leaf(root, leaf);
3478 BUG();
3480 slot = path->slots[0];
3481 old_data = btrfs_item_end_nr(leaf, slot);
3483 BUG_ON(slot < 0);
3484 if (slot >= nritems) {
3485 btrfs_print_leaf(root, leaf);
3486 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3487 slot, nritems);
3488 BUG_ON(1);
3492 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3494 /* first correct the data pointers */
3495 for (i = slot; i < nritems; i++) {
3496 u32 ioff;
3497 item = btrfs_item_nr(leaf, i);
3499 if (!leaf->map_token) {
3500 map_extent_buffer(leaf, (unsigned long)item,
3501 sizeof(struct btrfs_item),
3502 &leaf->map_token, &leaf->kaddr,
3503 &leaf->map_start, &leaf->map_len,
3504 KM_USER1);
3506 ioff = btrfs_item_offset(leaf, item);
3507 btrfs_set_item_offset(leaf, item, ioff - data_size);
3510 if (leaf->map_token) {
3511 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3512 leaf->map_token = NULL;
3515 /* shift the data */
3516 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3517 data_end - data_size, btrfs_leaf_data(leaf) +
3518 data_end, old_data - data_end);
3520 data_end = old_data;
3521 old_size = btrfs_item_size_nr(leaf, slot);
3522 item = btrfs_item_nr(leaf, slot);
3523 btrfs_set_item_size(leaf, item, old_size + data_size);
3524 btrfs_mark_buffer_dirty(leaf);
3526 ret = 0;
3527 if (btrfs_leaf_free_space(root, leaf) < 0) {
3528 btrfs_print_leaf(root, leaf);
3529 BUG();
3531 return ret;
3535 * Given a key and some data, insert items into the tree.
3536 * This does all the path init required, making room in the tree if needed.
3537 * Returns the number of keys that were inserted.
3539 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3540 struct btrfs_root *root,
3541 struct btrfs_path *path,
3542 struct btrfs_key *cpu_key, u32 *data_size,
3543 int nr)
3545 struct extent_buffer *leaf;
3546 struct btrfs_item *item;
3547 int ret = 0;
3548 int slot;
3549 int i;
3550 u32 nritems;
3551 u32 total_data = 0;
3552 u32 total_size = 0;
3553 unsigned int data_end;
3554 struct btrfs_disk_key disk_key;
3555 struct btrfs_key found_key;
3557 for (i = 0; i < nr; i++) {
3558 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3559 BTRFS_LEAF_DATA_SIZE(root)) {
3560 break;
3561 nr = i;
3563 total_data += data_size[i];
3564 total_size += data_size[i] + sizeof(struct btrfs_item);
3566 BUG_ON(nr == 0);
3568 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3569 if (ret == 0)
3570 return -EEXIST;
3571 if (ret < 0)
3572 goto out;
3574 leaf = path->nodes[0];
3576 nritems = btrfs_header_nritems(leaf);
3577 data_end = leaf_data_end(root, leaf);
3579 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3580 for (i = nr; i >= 0; i--) {
3581 total_data -= data_size[i];
3582 total_size -= data_size[i] + sizeof(struct btrfs_item);
3583 if (total_size < btrfs_leaf_free_space(root, leaf))
3584 break;
3586 nr = i;
3589 slot = path->slots[0];
3590 BUG_ON(slot < 0);
3592 if (slot != nritems) {
3593 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3595 item = btrfs_item_nr(leaf, slot);
3596 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3598 /* figure out how many keys we can insert in here */
3599 total_data = data_size[0];
3600 for (i = 1; i < nr; i++) {
3601 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3602 break;
3603 total_data += data_size[i];
3605 nr = i;
3607 if (old_data < data_end) {
3608 btrfs_print_leaf(root, leaf);
3609 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3610 slot, old_data, data_end);
3611 BUG_ON(1);
3614 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3616 /* first correct the data pointers */
3617 WARN_ON(leaf->map_token);
3618 for (i = slot; i < nritems; i++) {
3619 u32 ioff;
3621 item = btrfs_item_nr(leaf, i);
3622 if (!leaf->map_token) {
3623 map_extent_buffer(leaf, (unsigned long)item,
3624 sizeof(struct btrfs_item),
3625 &leaf->map_token, &leaf->kaddr,
3626 &leaf->map_start, &leaf->map_len,
3627 KM_USER1);
3630 ioff = btrfs_item_offset(leaf, item);
3631 btrfs_set_item_offset(leaf, item, ioff - total_data);
3633 if (leaf->map_token) {
3634 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3635 leaf->map_token = NULL;
3638 /* shift the items */
3639 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3640 btrfs_item_nr_offset(slot),
3641 (nritems - slot) * sizeof(struct btrfs_item));
3643 /* shift the data */
3644 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3645 data_end - total_data, btrfs_leaf_data(leaf) +
3646 data_end, old_data - data_end);
3647 data_end = old_data;
3648 } else {
3650 * this sucks but it has to be done, if we are inserting at
3651 * the end of the leaf only insert 1 of the items, since we
3652 * have no way of knowing whats on the next leaf and we'd have
3653 * to drop our current locks to figure it out
3655 nr = 1;
3658 /* setup the item for the new data */
3659 for (i = 0; i < nr; i++) {
3660 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3661 btrfs_set_item_key(leaf, &disk_key, slot + i);
3662 item = btrfs_item_nr(leaf, slot + i);
3663 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3664 data_end -= data_size[i];
3665 btrfs_set_item_size(leaf, item, data_size[i]);
3667 btrfs_set_header_nritems(leaf, nritems + nr);
3668 btrfs_mark_buffer_dirty(leaf);
3670 ret = 0;
3671 if (slot == 0) {
3672 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3673 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3676 if (btrfs_leaf_free_space(root, leaf) < 0) {
3677 btrfs_print_leaf(root, leaf);
3678 BUG();
3680 out:
3681 if (!ret)
3682 ret = nr;
3683 return ret;
3687 * this is a helper for btrfs_insert_empty_items, the main goal here is
3688 * to save stack depth by doing the bulk of the work in a function
3689 * that doesn't call btrfs_search_slot
3691 static noinline_for_stack int
3692 setup_items_for_insert(struct btrfs_trans_handle *trans,
3693 struct btrfs_root *root, struct btrfs_path *path,
3694 struct btrfs_key *cpu_key, u32 *data_size,
3695 u32 total_data, u32 total_size, int nr)
3697 struct btrfs_item *item;
3698 int i;
3699 u32 nritems;
3700 unsigned int data_end;
3701 struct btrfs_disk_key disk_key;
3702 int ret;
3703 struct extent_buffer *leaf;
3704 int slot;
3706 leaf = path->nodes[0];
3707 slot = path->slots[0];
3709 nritems = btrfs_header_nritems(leaf);
3710 data_end = leaf_data_end(root, leaf);
3712 if (btrfs_leaf_free_space(root, leaf) < total_size) {
3713 btrfs_print_leaf(root, leaf);
3714 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3715 total_size, btrfs_leaf_free_space(root, leaf));
3716 BUG();
3719 if (slot != nritems) {
3720 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3722 if (old_data < data_end) {
3723 btrfs_print_leaf(root, leaf);
3724 printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3725 slot, old_data, data_end);
3726 BUG_ON(1);
3729 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3731 /* first correct the data pointers */
3732 WARN_ON(leaf->map_token);
3733 for (i = slot; i < nritems; i++) {
3734 u32 ioff;
3736 item = btrfs_item_nr(leaf, i);
3737 if (!leaf->map_token) {
3738 map_extent_buffer(leaf, (unsigned long)item,
3739 sizeof(struct btrfs_item),
3740 &leaf->map_token, &leaf->kaddr,
3741 &leaf->map_start, &leaf->map_len,
3742 KM_USER1);
3745 ioff = btrfs_item_offset(leaf, item);
3746 btrfs_set_item_offset(leaf, item, ioff - total_data);
3748 if (leaf->map_token) {
3749 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3750 leaf->map_token = NULL;
3753 /* shift the items */
3754 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3755 btrfs_item_nr_offset(slot),
3756 (nritems - slot) * sizeof(struct btrfs_item));
3758 /* shift the data */
3759 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3760 data_end - total_data, btrfs_leaf_data(leaf) +
3761 data_end, old_data - data_end);
3762 data_end = old_data;
3765 /* setup the item for the new data */
3766 for (i = 0; i < nr; i++) {
3767 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3768 btrfs_set_item_key(leaf, &disk_key, slot + i);
3769 item = btrfs_item_nr(leaf, slot + i);
3770 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3771 data_end -= data_size[i];
3772 btrfs_set_item_size(leaf, item, data_size[i]);
3775 btrfs_set_header_nritems(leaf, nritems + nr);
3777 ret = 0;
3778 if (slot == 0) {
3779 struct btrfs_disk_key disk_key;
3780 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3781 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3783 btrfs_unlock_up_safe(path, 1);
3784 btrfs_mark_buffer_dirty(leaf);
3786 if (btrfs_leaf_free_space(root, leaf) < 0) {
3787 btrfs_print_leaf(root, leaf);
3788 BUG();
3790 return ret;
3794 * Given a key and some data, insert items into the tree.
3795 * This does all the path init required, making room in the tree if needed.
3797 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3798 struct btrfs_root *root,
3799 struct btrfs_path *path,
3800 struct btrfs_key *cpu_key, u32 *data_size,
3801 int nr)
3803 int ret = 0;
3804 int slot;
3805 int i;
3806 u32 total_size = 0;
3807 u32 total_data = 0;
3809 for (i = 0; i < nr; i++)
3810 total_data += data_size[i];
3812 total_size = total_data + (nr * sizeof(struct btrfs_item));
3813 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3814 if (ret == 0)
3815 return -EEXIST;
3816 if (ret < 0)
3817 goto out;
3819 slot = path->slots[0];
3820 BUG_ON(slot < 0);
3822 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3823 total_data, total_size, nr);
3825 out:
3826 return ret;
3830 * Given a key and some data, insert an item into the tree.
3831 * This does all the path init required, making room in the tree if needed.
3833 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3834 *root, struct btrfs_key *cpu_key, void *data, u32
3835 data_size)
3837 int ret = 0;
3838 struct btrfs_path *path;
3839 struct extent_buffer *leaf;
3840 unsigned long ptr;
3842 path = btrfs_alloc_path();
3843 BUG_ON(!path);
3844 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3845 if (!ret) {
3846 leaf = path->nodes[0];
3847 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3848 write_extent_buffer(leaf, data, ptr, data_size);
3849 btrfs_mark_buffer_dirty(leaf);
3851 btrfs_free_path(path);
3852 return ret;
3856 * delete the pointer from a given node.
3858 * the tree should have been previously balanced so the deletion does not
3859 * empty a node.
3861 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3862 struct btrfs_path *path, int level, int slot)
3864 struct extent_buffer *parent = path->nodes[level];
3865 u32 nritems;
3866 int ret = 0;
3867 int wret;
3869 nritems = btrfs_header_nritems(parent);
3870 if (slot != nritems - 1) {
3871 memmove_extent_buffer(parent,
3872 btrfs_node_key_ptr_offset(slot),
3873 btrfs_node_key_ptr_offset(slot + 1),
3874 sizeof(struct btrfs_key_ptr) *
3875 (nritems - slot - 1));
3877 nritems--;
3878 btrfs_set_header_nritems(parent, nritems);
3879 if (nritems == 0 && parent == root->node) {
3880 BUG_ON(btrfs_header_level(root->node) != 1);
3881 /* just turn the root into a leaf and break */
3882 btrfs_set_header_level(root->node, 0);
3883 } else if (slot == 0) {
3884 struct btrfs_disk_key disk_key;
3886 btrfs_node_key(parent, &disk_key, 0);
3887 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3888 if (wret)
3889 ret = wret;
3891 btrfs_mark_buffer_dirty(parent);
3892 return ret;
3896 * a helper function to delete the leaf pointed to by path->slots[1] and
3897 * path->nodes[1].
3899 * This deletes the pointer in path->nodes[1] and frees the leaf
3900 * block extent. zero is returned if it all worked out, < 0 otherwise.
3902 * The path must have already been setup for deleting the leaf, including
3903 * all the proper balancing. path->nodes[1] must be locked.
3905 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *root,
3907 struct btrfs_path *path,
3908 struct extent_buffer *leaf)
3910 int ret;
3912 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3913 ret = del_ptr(trans, root, path, 1, path->slots[1]);
3914 if (ret)
3915 return ret;
3918 * btrfs_free_extent is expensive, we want to make sure we
3919 * aren't holding any locks when we call it
3921 btrfs_unlock_up_safe(path, 0);
3923 root_sub_used(root, leaf->len);
3925 btrfs_free_tree_block(trans, root, leaf, 0, 1);
3926 return 0;
3929 * delete the item at the leaf level in path. If that empties
3930 * the leaf, remove it from the tree
3932 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3933 struct btrfs_path *path, int slot, int nr)
3935 struct extent_buffer *leaf;
3936 struct btrfs_item *item;
3937 int last_off;
3938 int dsize = 0;
3939 int ret = 0;
3940 int wret;
3941 int i;
3942 u32 nritems;
3944 leaf = path->nodes[0];
3945 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3947 for (i = 0; i < nr; i++)
3948 dsize += btrfs_item_size_nr(leaf, slot + i);
3950 nritems = btrfs_header_nritems(leaf);
3952 if (slot + nr != nritems) {
3953 int data_end = leaf_data_end(root, leaf);
3955 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3956 data_end + dsize,
3957 btrfs_leaf_data(leaf) + data_end,
3958 last_off - data_end);
3960 for (i = slot + nr; i < nritems; i++) {
3961 u32 ioff;
3963 item = btrfs_item_nr(leaf, i);
3964 if (!leaf->map_token) {
3965 map_extent_buffer(leaf, (unsigned long)item,
3966 sizeof(struct btrfs_item),
3967 &leaf->map_token, &leaf->kaddr,
3968 &leaf->map_start, &leaf->map_len,
3969 KM_USER1);
3971 ioff = btrfs_item_offset(leaf, item);
3972 btrfs_set_item_offset(leaf, item, ioff + dsize);
3975 if (leaf->map_token) {
3976 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3977 leaf->map_token = NULL;
3980 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3981 btrfs_item_nr_offset(slot + nr),
3982 sizeof(struct btrfs_item) *
3983 (nritems - slot - nr));
3985 btrfs_set_header_nritems(leaf, nritems - nr);
3986 nritems -= nr;
3988 /* delete the leaf if we've emptied it */
3989 if (nritems == 0) {
3990 if (leaf == root->node) {
3991 btrfs_set_header_level(leaf, 0);
3992 } else {
3993 btrfs_set_path_blocking(path);
3994 clean_tree_block(trans, root, leaf);
3995 ret = btrfs_del_leaf(trans, root, path, leaf);
3996 BUG_ON(ret);
3998 } else {
3999 int used = leaf_space_used(leaf, 0, nritems);
4000 if (slot == 0) {
4001 struct btrfs_disk_key disk_key;
4003 btrfs_item_key(leaf, &disk_key, 0);
4004 wret = fixup_low_keys(trans, root, path,
4005 &disk_key, 1);
4006 if (wret)
4007 ret = wret;
4010 /* delete the leaf if it is mostly empty */
4011 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4012 /* push_leaf_left fixes the path.
4013 * make sure the path still points to our leaf
4014 * for possible call to del_ptr below
4016 slot = path->slots[1];
4017 extent_buffer_get(leaf);
4019 btrfs_set_path_blocking(path);
4020 wret = push_leaf_left(trans, root, path, 1, 1,
4021 1, (u32)-1);
4022 if (wret < 0 && wret != -ENOSPC)
4023 ret = wret;
4025 if (path->nodes[0] == leaf &&
4026 btrfs_header_nritems(leaf)) {
4027 wret = push_leaf_right(trans, root, path, 1,
4028 1, 1, 0);
4029 if (wret < 0 && wret != -ENOSPC)
4030 ret = wret;
4033 if (btrfs_header_nritems(leaf) == 0) {
4034 path->slots[1] = slot;
4035 ret = btrfs_del_leaf(trans, root, path, leaf);
4036 BUG_ON(ret);
4037 free_extent_buffer(leaf);
4038 } else {
4039 /* if we're still in the path, make sure
4040 * we're dirty. Otherwise, one of the
4041 * push_leaf functions must have already
4042 * dirtied this buffer
4044 if (path->nodes[0] == leaf)
4045 btrfs_mark_buffer_dirty(leaf);
4046 free_extent_buffer(leaf);
4048 } else {
4049 btrfs_mark_buffer_dirty(leaf);
4052 return ret;
4056 * search the tree again to find a leaf with lesser keys
4057 * returns 0 if it found something or 1 if there are no lesser leaves.
4058 * returns < 0 on io errors.
4060 * This may release the path, and so you may lose any locks held at the
4061 * time you call it.
4063 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4065 struct btrfs_key key;
4066 struct btrfs_disk_key found_key;
4067 int ret;
4069 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4071 if (key.offset > 0)
4072 key.offset--;
4073 else if (key.type > 0)
4074 key.type--;
4075 else if (key.objectid > 0)
4076 key.objectid--;
4077 else
4078 return 1;
4080 btrfs_release_path(root, path);
4081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4082 if (ret < 0)
4083 return ret;
4084 btrfs_item_key(path->nodes[0], &found_key, 0);
4085 ret = comp_keys(&found_key, &key);
4086 if (ret < 0)
4087 return 0;
4088 return 1;
4092 * A helper function to walk down the tree starting at min_key, and looking
4093 * for nodes or leaves that are either in cache or have a minimum
4094 * transaction id. This is used by the btree defrag code, and tree logging
4096 * This does not cow, but it does stuff the starting key it finds back
4097 * into min_key, so you can call btrfs_search_slot with cow=1 on the
4098 * key and get a writable path.
4100 * This does lock as it descends, and path->keep_locks should be set
4101 * to 1 by the caller.
4103 * This honors path->lowest_level to prevent descent past a given level
4104 * of the tree.
4106 * min_trans indicates the oldest transaction that you are interested
4107 * in walking through. Any nodes or leaves older than min_trans are
4108 * skipped over (without reading them).
4110 * returns zero if something useful was found, < 0 on error and 1 if there
4111 * was nothing in the tree that matched the search criteria.
4113 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4114 struct btrfs_key *max_key,
4115 struct btrfs_path *path, int cache_only,
4116 u64 min_trans)
4118 struct extent_buffer *cur;
4119 struct btrfs_key found_key;
4120 int slot;
4121 int sret;
4122 u32 nritems;
4123 int level;
4124 int ret = 1;
4126 WARN_ON(!path->keep_locks);
4127 again:
4128 cur = btrfs_lock_root_node(root);
4129 level = btrfs_header_level(cur);
4130 WARN_ON(path->nodes[level]);
4131 path->nodes[level] = cur;
4132 path->locks[level] = 1;
4134 if (btrfs_header_generation(cur) < min_trans) {
4135 ret = 1;
4136 goto out;
4138 while (1) {
4139 nritems = btrfs_header_nritems(cur);
4140 level = btrfs_header_level(cur);
4141 sret = bin_search(cur, min_key, level, &slot);
4143 /* at the lowest level, we're done, setup the path and exit */
4144 if (level == path->lowest_level) {
4145 if (slot >= nritems)
4146 goto find_next_key;
4147 ret = 0;
4148 path->slots[level] = slot;
4149 btrfs_item_key_to_cpu(cur, &found_key, slot);
4150 goto out;
4152 if (sret && slot > 0)
4153 slot--;
4155 * check this node pointer against the cache_only and
4156 * min_trans parameters. If it isn't in cache or is too
4157 * old, skip to the next one.
4159 while (slot < nritems) {
4160 u64 blockptr;
4161 u64 gen;
4162 struct extent_buffer *tmp;
4163 struct btrfs_disk_key disk_key;
4165 blockptr = btrfs_node_blockptr(cur, slot);
4166 gen = btrfs_node_ptr_generation(cur, slot);
4167 if (gen < min_trans) {
4168 slot++;
4169 continue;
4171 if (!cache_only)
4172 break;
4174 if (max_key) {
4175 btrfs_node_key(cur, &disk_key, slot);
4176 if (comp_keys(&disk_key, max_key) >= 0) {
4177 ret = 1;
4178 goto out;
4182 tmp = btrfs_find_tree_block(root, blockptr,
4183 btrfs_level_size(root, level - 1));
4185 if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4186 free_extent_buffer(tmp);
4187 break;
4189 if (tmp)
4190 free_extent_buffer(tmp);
4191 slot++;
4193 find_next_key:
4195 * we didn't find a candidate key in this node, walk forward
4196 * and find another one
4198 if (slot >= nritems) {
4199 path->slots[level] = slot;
4200 btrfs_set_path_blocking(path);
4201 sret = btrfs_find_next_key(root, path, min_key, level,
4202 cache_only, min_trans);
4203 if (sret == 0) {
4204 btrfs_release_path(root, path);
4205 goto again;
4206 } else {
4207 goto out;
4210 /* save our key for returning back */
4211 btrfs_node_key_to_cpu(cur, &found_key, slot);
4212 path->slots[level] = slot;
4213 if (level == path->lowest_level) {
4214 ret = 0;
4215 unlock_up(path, level, 1);
4216 goto out;
4218 btrfs_set_path_blocking(path);
4219 cur = read_node_slot(root, cur, slot);
4221 btrfs_tree_lock(cur);
4223 path->locks[level - 1] = 1;
4224 path->nodes[level - 1] = cur;
4225 unlock_up(path, level, 1);
4226 btrfs_clear_path_blocking(path, NULL);
4228 out:
4229 if (ret == 0)
4230 memcpy(min_key, &found_key, sizeof(found_key));
4231 btrfs_set_path_blocking(path);
4232 return ret;
4236 * this is similar to btrfs_next_leaf, but does not try to preserve
4237 * and fixup the path. It looks for and returns the next key in the
4238 * tree based on the current path and the cache_only and min_trans
4239 * parameters.
4241 * 0 is returned if another key is found, < 0 if there are any errors
4242 * and 1 is returned if there are no higher keys in the tree
4244 * path->keep_locks should be set to 1 on the search made before
4245 * calling this function.
4247 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4248 struct btrfs_key *key, int level,
4249 int cache_only, u64 min_trans)
4251 int slot;
4252 struct extent_buffer *c;
4254 WARN_ON(!path->keep_locks);
4255 while (level < BTRFS_MAX_LEVEL) {
4256 if (!path->nodes[level])
4257 return 1;
4259 slot = path->slots[level] + 1;
4260 c = path->nodes[level];
4261 next:
4262 if (slot >= btrfs_header_nritems(c)) {
4263 int ret;
4264 int orig_lowest;
4265 struct btrfs_key cur_key;
4266 if (level + 1 >= BTRFS_MAX_LEVEL ||
4267 !path->nodes[level + 1])
4268 return 1;
4270 if (path->locks[level + 1]) {
4271 level++;
4272 continue;
4275 slot = btrfs_header_nritems(c) - 1;
4276 if (level == 0)
4277 btrfs_item_key_to_cpu(c, &cur_key, slot);
4278 else
4279 btrfs_node_key_to_cpu(c, &cur_key, slot);
4281 orig_lowest = path->lowest_level;
4282 btrfs_release_path(root, path);
4283 path->lowest_level = level;
4284 ret = btrfs_search_slot(NULL, root, &cur_key, path,
4285 0, 0);
4286 path->lowest_level = orig_lowest;
4287 if (ret < 0)
4288 return ret;
4290 c = path->nodes[level];
4291 slot = path->slots[level];
4292 if (ret == 0)
4293 slot++;
4294 goto next;
4297 if (level == 0)
4298 btrfs_item_key_to_cpu(c, key, slot);
4299 else {
4300 u64 blockptr = btrfs_node_blockptr(c, slot);
4301 u64 gen = btrfs_node_ptr_generation(c, slot);
4303 if (cache_only) {
4304 struct extent_buffer *cur;
4305 cur = btrfs_find_tree_block(root, blockptr,
4306 btrfs_level_size(root, level - 1));
4307 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4308 slot++;
4309 if (cur)
4310 free_extent_buffer(cur);
4311 goto next;
4313 free_extent_buffer(cur);
4315 if (gen < min_trans) {
4316 slot++;
4317 goto next;
4319 btrfs_node_key_to_cpu(c, key, slot);
4321 return 0;
4323 return 1;
4327 * search the tree again to find a leaf with greater keys
4328 * returns 0 if it found something or 1 if there are no greater leaves.
4329 * returns < 0 on io errors.
4331 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4333 int slot;
4334 int level;
4335 struct extent_buffer *c;
4336 struct extent_buffer *next;
4337 struct btrfs_key key;
4338 u32 nritems;
4339 int ret;
4340 int old_spinning = path->leave_spinning;
4341 int force_blocking = 0;
4343 nritems = btrfs_header_nritems(path->nodes[0]);
4344 if (nritems == 0)
4345 return 1;
4348 * we take the blocks in an order that upsets lockdep. Using
4349 * blocking mode is the only way around it.
4351 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4352 force_blocking = 1;
4353 #endif
4355 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4356 again:
4357 level = 1;
4358 next = NULL;
4359 btrfs_release_path(root, path);
4361 path->keep_locks = 1;
4363 if (!force_blocking)
4364 path->leave_spinning = 1;
4366 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4367 path->keep_locks = 0;
4369 if (ret < 0)
4370 return ret;
4372 nritems = btrfs_header_nritems(path->nodes[0]);
4374 * by releasing the path above we dropped all our locks. A balance
4375 * could have added more items next to the key that used to be
4376 * at the very end of the block. So, check again here and
4377 * advance the path if there are now more items available.
4379 if (nritems > 0 && path->slots[0] < nritems - 1) {
4380 if (ret == 0)
4381 path->slots[0]++;
4382 ret = 0;
4383 goto done;
4386 while (level < BTRFS_MAX_LEVEL) {
4387 if (!path->nodes[level]) {
4388 ret = 1;
4389 goto done;
4392 slot = path->slots[level] + 1;
4393 c = path->nodes[level];
4394 if (slot >= btrfs_header_nritems(c)) {
4395 level++;
4396 if (level == BTRFS_MAX_LEVEL) {
4397 ret = 1;
4398 goto done;
4400 continue;
4403 if (next) {
4404 btrfs_tree_unlock(next);
4405 free_extent_buffer(next);
4408 next = c;
4409 ret = read_block_for_search(NULL, root, path, &next, level,
4410 slot, &key);
4411 if (ret == -EAGAIN)
4412 goto again;
4414 if (ret < 0) {
4415 btrfs_release_path(root, path);
4416 goto done;
4419 if (!path->skip_locking) {
4420 ret = btrfs_try_spin_lock(next);
4421 if (!ret) {
4422 btrfs_set_path_blocking(path);
4423 btrfs_tree_lock(next);
4424 if (!force_blocking)
4425 btrfs_clear_path_blocking(path, next);
4427 if (force_blocking)
4428 btrfs_set_lock_blocking(next);
4430 break;
4432 path->slots[level] = slot;
4433 while (1) {
4434 level--;
4435 c = path->nodes[level];
4436 if (path->locks[level])
4437 btrfs_tree_unlock(c);
4439 free_extent_buffer(c);
4440 path->nodes[level] = next;
4441 path->slots[level] = 0;
4442 if (!path->skip_locking)
4443 path->locks[level] = 1;
4445 if (!level)
4446 break;
4448 ret = read_block_for_search(NULL, root, path, &next, level,
4449 0, &key);
4450 if (ret == -EAGAIN)
4451 goto again;
4453 if (ret < 0) {
4454 btrfs_release_path(root, path);
4455 goto done;
4458 if (!path->skip_locking) {
4459 btrfs_assert_tree_locked(path->nodes[level]);
4460 ret = btrfs_try_spin_lock(next);
4461 if (!ret) {
4462 btrfs_set_path_blocking(path);
4463 btrfs_tree_lock(next);
4464 if (!force_blocking)
4465 btrfs_clear_path_blocking(path, next);
4467 if (force_blocking)
4468 btrfs_set_lock_blocking(next);
4471 ret = 0;
4472 done:
4473 unlock_up(path, 0, 1);
4474 path->leave_spinning = old_spinning;
4475 if (!old_spinning)
4476 btrfs_set_path_blocking(path);
4478 return ret;
4482 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4483 * searching until it gets past min_objectid or finds an item of 'type'
4485 * returns 0 if something is found, 1 if nothing was found and < 0 on error
4487 int btrfs_previous_item(struct btrfs_root *root,
4488 struct btrfs_path *path, u64 min_objectid,
4489 int type)
4491 struct btrfs_key found_key;
4492 struct extent_buffer *leaf;
4493 u32 nritems;
4494 int ret;
4496 while (1) {
4497 if (path->slots[0] == 0) {
4498 btrfs_set_path_blocking(path);
4499 ret = btrfs_prev_leaf(root, path);
4500 if (ret != 0)
4501 return ret;
4502 } else {
4503 path->slots[0]--;
4505 leaf = path->nodes[0];
4506 nritems = btrfs_header_nritems(leaf);
4507 if (nritems == 0)
4508 return 1;
4509 if (path->slots[0] == nritems)
4510 path->slots[0]--;
4512 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4513 if (found_key.objectid < min_objectid)
4514 break;
4515 if (found_key.type == type)
4516 return 0;
4517 if (found_key.objectid == min_objectid &&
4518 found_key.type < type)
4519 break;
4521 return 1;