FRV: Use generic show_interrupts()
[cris-mirror.git] / fs / ubifs / journal.c
blobaed25e864227d83b1e200021014765a913d16518
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS journal.
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
61 #include "ubifs.h"
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
80 dent->padding1 = 0;
81 memset(dent->padding2, 0, 4);
84 /**
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
88 static inline void zero_data_node_unused(struct ubifs_data_node *data)
90 memset(data->padding, 0, 2);
93 /**
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95 * node.
96 * @trun: the truncation node to zero out
98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
100 memset(trun->padding, 0, 12);
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
107 * @len: node length
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
115 static int reserve_space(struct ubifs_info *c, int jhead, int len)
117 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
125 ubifs_assert(!c->ro_media && !c->ro_mount);
126 squeeze = (jhead == BASEHD);
127 again:
128 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
130 if (c->ro_error) {
131 err = -EROFS;
132 goto out_unlock;
135 avail = c->leb_size - wbuf->offs - wbuf->used;
136 if (wbuf->lnum != -1 && avail >= len)
137 return 0;
140 * Write buffer wasn't seek'ed or there is no enough space - look for an
141 * LEB with some empty space.
143 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
144 if (lnum >= 0) {
145 /* Found an LEB, add it to the journal head */
146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
147 if (err)
148 goto out_return;
149 /* A new bud was successfully allocated and added to the log */
150 goto out;
153 err = lnum;
154 if (err != -ENOSPC)
155 goto out_unlock;
158 * No free space, we have to run garbage collector to make
159 * some. But the write-buffer mutex has to be unlocked because
160 * GC also takes it.
162 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
163 mutex_unlock(&wbuf->io_mutex);
165 lnum = ubifs_garbage_collect(c, 0);
166 if (lnum < 0) {
167 err = lnum;
168 if (err != -ENOSPC)
169 return err;
172 * GC could not make a free LEB. But someone else may
173 * have allocated new bud for this journal head,
174 * because we dropped @wbuf->io_mutex, so try once
175 * again.
177 dbg_jnl("GC couldn't make a free LEB for jhead %s",
178 dbg_jhead(jhead));
179 if (retries++ < 2) {
180 dbg_jnl("retry (%d)", retries);
181 goto again;
184 dbg_jnl("return -ENOSPC");
185 return err;
188 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
189 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
190 avail = c->leb_size - wbuf->offs - wbuf->used;
192 if (wbuf->lnum != -1 && avail >= len) {
194 * Someone else has switched the journal head and we have
195 * enough space now. This happens when more than one process is
196 * trying to write to the same journal head at the same time.
198 dbg_jnl("return LEB %d back, already have LEB %d:%d",
199 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
200 err = ubifs_return_leb(c, lnum);
201 if (err)
202 goto out_unlock;
203 return 0;
206 err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
207 if (err)
208 goto out_return;
209 offs = 0;
211 out:
212 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype);
213 if (err)
214 goto out_unlock;
216 return 0;
218 out_unlock:
219 mutex_unlock(&wbuf->io_mutex);
220 return err;
222 out_return:
223 /* An error occurred and the LEB has to be returned to lprops */
224 ubifs_assert(err < 0);
225 err1 = ubifs_return_leb(c, lnum);
226 if (err1 && err == -EAGAIN)
228 * Return original error code only if it is not %-EAGAIN,
229 * which is not really an error. Otherwise, return the error
230 * code of 'ubifs_return_leb()'.
232 err = err1;
233 mutex_unlock(&wbuf->io_mutex);
234 return err;
238 * write_node - write node to a journal head.
239 * @c: UBIFS file-system description object
240 * @jhead: journal head
241 * @node: node to write
242 * @len: node length
243 * @lnum: LEB number written is returned here
244 * @offs: offset written is returned here
246 * This function writes a node to reserved space of journal head @jhead.
247 * Returns zero in case of success and a negative error code in case of
248 * failure.
250 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
251 int *lnum, int *offs)
253 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
255 ubifs_assert(jhead != GCHD);
257 *lnum = c->jheads[jhead].wbuf.lnum;
258 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
260 dbg_jnl("jhead %s, LEB %d:%d, len %d",
261 dbg_jhead(jhead), *lnum, *offs, len);
262 ubifs_prepare_node(c, node, len, 0);
264 return ubifs_wbuf_write_nolock(wbuf, node, len);
268 * write_head - write data to a journal head.
269 * @c: UBIFS file-system description object
270 * @jhead: journal head
271 * @buf: buffer to write
272 * @len: length to write
273 * @lnum: LEB number written is returned here
274 * @offs: offset written is returned here
275 * @sync: non-zero if the write-buffer has to by synchronized
277 * This function is the same as 'write_node()' but it does not assume the
278 * buffer it is writing is a node, so it does not prepare it (which means
279 * initializing common header and calculating CRC).
281 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
282 int *lnum, int *offs, int sync)
284 int err;
285 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
287 ubifs_assert(jhead != GCHD);
289 *lnum = c->jheads[jhead].wbuf.lnum;
290 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
291 dbg_jnl("jhead %s, LEB %d:%d, len %d",
292 dbg_jhead(jhead), *lnum, *offs, len);
294 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
295 if (err)
296 return err;
297 if (sync)
298 err = ubifs_wbuf_sync_nolock(wbuf);
299 return err;
303 * make_reservation - reserve journal space.
304 * @c: UBIFS file-system description object
305 * @jhead: journal head
306 * @len: how many bytes to reserve
308 * This function makes space reservation in journal head @jhead. The function
309 * takes the commit lock and locks the journal head, and the caller has to
310 * unlock the head and finish the reservation with 'finish_reservation()'.
311 * Returns zero in case of success and a negative error code in case of
312 * failure.
314 * Note, the journal head may be unlocked as soon as the data is written, while
315 * the commit lock has to be released after the data has been added to the
316 * TNC.
318 static int make_reservation(struct ubifs_info *c, int jhead, int len)
320 int err, cmt_retries = 0, nospc_retries = 0;
322 again:
323 down_read(&c->commit_sem);
324 err = reserve_space(c, jhead, len);
325 if (!err)
326 return 0;
327 up_read(&c->commit_sem);
329 if (err == -ENOSPC) {
331 * GC could not make any progress. We should try to commit
332 * once because it could make some dirty space and GC would
333 * make progress, so make the error -EAGAIN so that the below
334 * will commit and re-try.
336 if (nospc_retries++ < 2) {
337 dbg_jnl("no space, retry");
338 err = -EAGAIN;
342 * This means that the budgeting is incorrect. We always have
343 * to be able to write to the media, because all operations are
344 * budgeted. Deletions are not budgeted, though, but we reserve
345 * an extra LEB for them.
349 if (err != -EAGAIN)
350 goto out;
353 * -EAGAIN means that the journal is full or too large, or the above
354 * code wants to do one commit. Do this and re-try.
356 if (cmt_retries > 128) {
358 * This should not happen unless the journal size limitations
359 * are too tough.
361 ubifs_err("stuck in space allocation");
362 err = -ENOSPC;
363 goto out;
364 } else if (cmt_retries > 32)
365 ubifs_warn("too many space allocation re-tries (%d)",
366 cmt_retries);
368 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
369 cmt_retries);
370 cmt_retries += 1;
372 err = ubifs_run_commit(c);
373 if (err)
374 return err;
375 goto again;
377 out:
378 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
379 len, jhead, err);
380 if (err == -ENOSPC) {
381 /* This are some budgeting problems, print useful information */
382 down_write(&c->commit_sem);
383 spin_lock(&c->space_lock);
384 dbg_dump_stack();
385 dbg_dump_budg(c);
386 spin_unlock(&c->space_lock);
387 dbg_dump_lprops(c);
388 cmt_retries = dbg_check_lprops(c);
389 up_write(&c->commit_sem);
391 return err;
395 * release_head - release a journal head.
396 * @c: UBIFS file-system description object
397 * @jhead: journal head
399 * This function releases journal head @jhead which was locked by
400 * the 'make_reservation()' function. It has to be called after each successful
401 * 'make_reservation()' invocation.
403 static inline void release_head(struct ubifs_info *c, int jhead)
405 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
409 * finish_reservation - finish a reservation.
410 * @c: UBIFS file-system description object
412 * This function finishes journal space reservation. It must be called after
413 * 'make_reservation()'.
415 static void finish_reservation(struct ubifs_info *c)
417 up_read(&c->commit_sem);
421 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
422 * @mode: inode mode
424 static int get_dent_type(int mode)
426 switch (mode & S_IFMT) {
427 case S_IFREG:
428 return UBIFS_ITYPE_REG;
429 case S_IFDIR:
430 return UBIFS_ITYPE_DIR;
431 case S_IFLNK:
432 return UBIFS_ITYPE_LNK;
433 case S_IFBLK:
434 return UBIFS_ITYPE_BLK;
435 case S_IFCHR:
436 return UBIFS_ITYPE_CHR;
437 case S_IFIFO:
438 return UBIFS_ITYPE_FIFO;
439 case S_IFSOCK:
440 return UBIFS_ITYPE_SOCK;
441 default:
442 BUG();
444 return 0;
448 * pack_inode - pack an inode node.
449 * @c: UBIFS file-system description object
450 * @ino: buffer in which to pack inode node
451 * @inode: inode to pack
452 * @last: indicates the last node of the group
454 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
455 const struct inode *inode, int last)
457 int data_len = 0, last_reference = !inode->i_nlink;
458 struct ubifs_inode *ui = ubifs_inode(inode);
460 ino->ch.node_type = UBIFS_INO_NODE;
461 ino_key_init_flash(c, &ino->key, inode->i_ino);
462 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
463 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
464 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
465 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
466 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
467 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
468 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
469 ino->uid = cpu_to_le32(inode->i_uid);
470 ino->gid = cpu_to_le32(inode->i_gid);
471 ino->mode = cpu_to_le32(inode->i_mode);
472 ino->flags = cpu_to_le32(ui->flags);
473 ino->size = cpu_to_le64(ui->ui_size);
474 ino->nlink = cpu_to_le32(inode->i_nlink);
475 ino->compr_type = cpu_to_le16(ui->compr_type);
476 ino->data_len = cpu_to_le32(ui->data_len);
477 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
478 ino->xattr_size = cpu_to_le32(ui->xattr_size);
479 ino->xattr_names = cpu_to_le32(ui->xattr_names);
480 zero_ino_node_unused(ino);
483 * Drop the attached data if this is a deletion inode, the data is not
484 * needed anymore.
486 if (!last_reference) {
487 memcpy(ino->data, ui->data, ui->data_len);
488 data_len = ui->data_len;
491 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
495 * mark_inode_clean - mark UBIFS inode as clean.
496 * @c: UBIFS file-system description object
497 * @ui: UBIFS inode to mark as clean
499 * This helper function marks UBIFS inode @ui as clean by cleaning the
500 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
501 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
502 * just do nothing.
504 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
506 if (ui->dirty)
507 ubifs_release_dirty_inode_budget(c, ui);
508 ui->dirty = 0;
512 * ubifs_jnl_update - update inode.
513 * @c: UBIFS file-system description object
514 * @dir: parent inode or host inode in case of extended attributes
515 * @nm: directory entry name
516 * @inode: inode to update
517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518 * @xent: non-zero if the directory entry is an extended attribute entry
520 * This function updates an inode by writing a directory entry (or extended
521 * attribute entry), the inode itself, and the parent directory inode (or the
522 * host inode) to the journal.
524 * The function writes the host inode @dir last, which is important in case of
525 * extended attributes. Indeed, then we guarantee that if the host inode gets
526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527 * the extended attribute inode gets flushed too. And this is exactly what the
528 * user expects - synchronizing the host inode synchronizes its extended
529 * attributes. Similarly, this guarantees that if @dir is synchronized, its
530 * directory entry corresponding to @nm gets synchronized too.
532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533 * function synchronizes the write-buffer.
535 * This function marks the @dir and @inode inodes as clean and returns zero on
536 * success. In case of failure, a negative error code is returned.
538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 const struct qstr *nm, const struct inode *inode,
540 int deletion, int xent)
542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 int last_reference = !!(deletion && inode->i_nlink == 0);
545 struct ubifs_inode *ui = ubifs_inode(inode);
546 struct ubifs_inode *dir_ui = ubifs_inode(dir);
547 struct ubifs_dent_node *dent;
548 struct ubifs_ino_node *ino;
549 union ubifs_key dent_key, ino_key;
551 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
552 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
553 ubifs_assert(dir_ui->data_len == 0);
554 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
556 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
557 ilen = UBIFS_INO_NODE_SZ;
560 * If the last reference to the inode is being deleted, then there is
561 * no need to attach and write inode data, it is being deleted anyway.
562 * And if the inode is being deleted, no need to synchronize
563 * write-buffer even if the inode is synchronous.
565 if (!last_reference) {
566 ilen += ui->data_len;
567 sync |= IS_SYNC(inode);
570 aligned_dlen = ALIGN(dlen, 8);
571 aligned_ilen = ALIGN(ilen, 8);
572 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
573 dent = kmalloc(len, GFP_NOFS);
574 if (!dent)
575 return -ENOMEM;
577 /* Make reservation before allocating sequence numbers */
578 err = make_reservation(c, BASEHD, len);
579 if (err)
580 goto out_free;
582 if (!xent) {
583 dent->ch.node_type = UBIFS_DENT_NODE;
584 dent_key_init(c, &dent_key, dir->i_ino, nm);
585 } else {
586 dent->ch.node_type = UBIFS_XENT_NODE;
587 xent_key_init(c, &dent_key, dir->i_ino, nm);
590 key_write(c, &dent_key, dent->key);
591 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
592 dent->type = get_dent_type(inode->i_mode);
593 dent->nlen = cpu_to_le16(nm->len);
594 memcpy(dent->name, nm->name, nm->len);
595 dent->name[nm->len] = '\0';
596 zero_dent_node_unused(dent);
597 ubifs_prep_grp_node(c, dent, dlen, 0);
599 ino = (void *)dent + aligned_dlen;
600 pack_inode(c, ino, inode, 0);
601 ino = (void *)ino + aligned_ilen;
602 pack_inode(c, ino, dir, 1);
604 if (last_reference) {
605 err = ubifs_add_orphan(c, inode->i_ino);
606 if (err) {
607 release_head(c, BASEHD);
608 goto out_finish;
610 ui->del_cmtno = c->cmt_no;
613 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
614 if (err)
615 goto out_release;
616 if (!sync) {
617 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
619 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
620 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
622 release_head(c, BASEHD);
623 kfree(dent);
625 if (deletion) {
626 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
627 if (err)
628 goto out_ro;
629 err = ubifs_add_dirt(c, lnum, dlen);
630 } else
631 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
632 if (err)
633 goto out_ro;
636 * Note, we do not remove the inode from TNC even if the last reference
637 * to it has just been deleted, because the inode may still be opened.
638 * Instead, the inode has been added to orphan lists and the orphan
639 * subsystem will take further care about it.
641 ino_key_init(c, &ino_key, inode->i_ino);
642 ino_offs = dent_offs + aligned_dlen;
643 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
644 if (err)
645 goto out_ro;
647 ino_key_init(c, &ino_key, dir->i_ino);
648 ino_offs += aligned_ilen;
649 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
650 if (err)
651 goto out_ro;
653 finish_reservation(c);
654 spin_lock(&ui->ui_lock);
655 ui->synced_i_size = ui->ui_size;
656 spin_unlock(&ui->ui_lock);
657 mark_inode_clean(c, ui);
658 mark_inode_clean(c, dir_ui);
659 return 0;
661 out_finish:
662 finish_reservation(c);
663 out_free:
664 kfree(dent);
665 return err;
667 out_release:
668 release_head(c, BASEHD);
669 out_ro:
670 ubifs_ro_mode(c, err);
671 if (last_reference)
672 ubifs_delete_orphan(c, inode->i_ino);
673 finish_reservation(c);
674 return err;
678 * ubifs_jnl_write_data - write a data node to the journal.
679 * @c: UBIFS file-system description object
680 * @inode: inode the data node belongs to
681 * @key: node key
682 * @buf: buffer to write
683 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
685 * This function writes a data node to the journal. Returns %0 if the data node
686 * was successfully written, and a negative error code in case of failure.
688 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
689 const union ubifs_key *key, const void *buf, int len)
691 struct ubifs_data_node *data;
692 int err, lnum, offs, compr_type, out_len;
693 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
694 struct ubifs_inode *ui = ubifs_inode(inode);
696 dbg_jnl("ino %lu, blk %u, len %d, key %s",
697 (unsigned long)key_inum(c, key), key_block(c, key), len,
698 DBGKEY(key));
699 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
701 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
702 if (!data) {
704 * Fall-back to the write reserve buffer. Note, we might be
705 * currently on the memory reclaim path, when the kernel is
706 * trying to free some memory by writing out dirty pages. The
707 * write reserve buffer helps us to guarantee that we are
708 * always able to write the data.
710 allocated = 0;
711 mutex_lock(&c->write_reserve_mutex);
712 data = c->write_reserve_buf;
715 data->ch.node_type = UBIFS_DATA_NODE;
716 key_write(c, key, &data->key);
717 data->size = cpu_to_le32(len);
718 zero_data_node_unused(data);
720 if (!(ui->flags & UBIFS_COMPR_FL))
721 /* Compression is disabled for this inode */
722 compr_type = UBIFS_COMPR_NONE;
723 else
724 compr_type = ui->compr_type;
726 out_len = dlen - UBIFS_DATA_NODE_SZ;
727 ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
728 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
730 dlen = UBIFS_DATA_NODE_SZ + out_len;
731 data->compr_type = cpu_to_le16(compr_type);
733 /* Make reservation before allocating sequence numbers */
734 err = make_reservation(c, DATAHD, dlen);
735 if (err)
736 goto out_free;
738 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
739 if (err)
740 goto out_release;
741 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
742 release_head(c, DATAHD);
744 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
745 if (err)
746 goto out_ro;
748 finish_reservation(c);
749 if (!allocated)
750 mutex_unlock(&c->write_reserve_mutex);
751 else
752 kfree(data);
753 return 0;
755 out_release:
756 release_head(c, DATAHD);
757 out_ro:
758 ubifs_ro_mode(c, err);
759 finish_reservation(c);
760 out_free:
761 if (!allocated)
762 mutex_unlock(&c->write_reserve_mutex);
763 else
764 kfree(data);
765 return err;
769 * ubifs_jnl_write_inode - flush inode to the journal.
770 * @c: UBIFS file-system description object
771 * @inode: inode to flush
773 * This function writes inode @inode to the journal. If the inode is
774 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
775 * success and a negative error code in case of failure.
777 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
779 int err, lnum, offs;
780 struct ubifs_ino_node *ino;
781 struct ubifs_inode *ui = ubifs_inode(inode);
782 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
784 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
787 * If the inode is being deleted, do not write the attached data. No
788 * need to synchronize the write-buffer either.
790 if (!last_reference) {
791 len += ui->data_len;
792 sync = IS_SYNC(inode);
794 ino = kmalloc(len, GFP_NOFS);
795 if (!ino)
796 return -ENOMEM;
798 /* Make reservation before allocating sequence numbers */
799 err = make_reservation(c, BASEHD, len);
800 if (err)
801 goto out_free;
803 pack_inode(c, ino, inode, 1);
804 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
805 if (err)
806 goto out_release;
807 if (!sync)
808 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
809 inode->i_ino);
810 release_head(c, BASEHD);
812 if (last_reference) {
813 err = ubifs_tnc_remove_ino(c, inode->i_ino);
814 if (err)
815 goto out_ro;
816 ubifs_delete_orphan(c, inode->i_ino);
817 err = ubifs_add_dirt(c, lnum, len);
818 } else {
819 union ubifs_key key;
821 ino_key_init(c, &key, inode->i_ino);
822 err = ubifs_tnc_add(c, &key, lnum, offs, len);
824 if (err)
825 goto out_ro;
827 finish_reservation(c);
828 spin_lock(&ui->ui_lock);
829 ui->synced_i_size = ui->ui_size;
830 spin_unlock(&ui->ui_lock);
831 kfree(ino);
832 return 0;
834 out_release:
835 release_head(c, BASEHD);
836 out_ro:
837 ubifs_ro_mode(c, err);
838 finish_reservation(c);
839 out_free:
840 kfree(ino);
841 return err;
845 * ubifs_jnl_delete_inode - delete an inode.
846 * @c: UBIFS file-system description object
847 * @inode: inode to delete
849 * This function deletes inode @inode which includes removing it from orphans,
850 * deleting it from TNC and, in some cases, writing a deletion inode to the
851 * journal.
853 * When regular file inodes are unlinked or a directory inode is removed, the
854 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
855 * direntry to the media, and adds the inode to orphans. After this, when the
856 * last reference to this inode has been dropped, this function is called. In
857 * general, it has to write one more deletion inode to the media, because if
858 * a commit happened between 'ubifs_jnl_update()' and
859 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
860 * anymore, and in fact it might not be on the flash anymore, because it might
861 * have been garbage-collected already. And for optimization reasons UBIFS does
862 * not read the orphan area if it has been unmounted cleanly, so it would have
863 * no indication in the journal that there is a deleted inode which has to be
864 * removed from TNC.
866 * However, if there was no commit between 'ubifs_jnl_update()' and
867 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
868 * inode to the media for the second time. And this is quite a typical case.
870 * This function returns zero in case of success and a negative error code in
871 * case of failure.
873 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
875 int err;
876 struct ubifs_inode *ui = ubifs_inode(inode);
878 ubifs_assert(inode->i_nlink == 0);
880 if (ui->del_cmtno != c->cmt_no)
881 /* A commit happened for sure */
882 return ubifs_jnl_write_inode(c, inode);
884 down_read(&c->commit_sem);
886 * Check commit number again, because the first test has been done
887 * without @c->commit_sem, so a commit might have happened.
889 if (ui->del_cmtno != c->cmt_no) {
890 up_read(&c->commit_sem);
891 return ubifs_jnl_write_inode(c, inode);
894 err = ubifs_tnc_remove_ino(c, inode->i_ino);
895 if (err)
896 ubifs_ro_mode(c, err);
897 else
898 ubifs_delete_orphan(c, inode->i_ino);
899 up_read(&c->commit_sem);
900 return err;
904 * ubifs_jnl_rename - rename a directory entry.
905 * @c: UBIFS file-system description object
906 * @old_dir: parent inode of directory entry to rename
907 * @old_dentry: directory entry to rename
908 * @new_dir: parent inode of directory entry to rename
909 * @new_dentry: new directory entry (or directory entry to replace)
910 * @sync: non-zero if the write-buffer has to be synchronized
912 * This function implements the re-name operation which may involve writing up
913 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
914 * and returns zero on success. In case of failure, a negative error code is
915 * returned.
917 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
918 const struct dentry *old_dentry,
919 const struct inode *new_dir,
920 const struct dentry *new_dentry, int sync)
922 void *p;
923 union ubifs_key key;
924 struct ubifs_dent_node *dent, *dent2;
925 int err, dlen1, dlen2, ilen, lnum, offs, len;
926 const struct inode *old_inode = old_dentry->d_inode;
927 const struct inode *new_inode = new_dentry->d_inode;
928 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
929 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
930 int move = (old_dir != new_dir);
931 struct ubifs_inode *uninitialized_var(new_ui);
933 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
934 old_dentry->d_name.len, old_dentry->d_name.name,
935 old_dir->i_ino, new_dentry->d_name.len,
936 new_dentry->d_name.name, new_dir->i_ino);
937 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
938 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
939 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
940 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
942 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
943 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
944 if (new_inode) {
945 new_ui = ubifs_inode(new_inode);
946 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
947 ilen = UBIFS_INO_NODE_SZ;
948 if (!last_reference)
949 ilen += new_ui->data_len;
950 } else
951 ilen = 0;
953 aligned_dlen1 = ALIGN(dlen1, 8);
954 aligned_dlen2 = ALIGN(dlen2, 8);
955 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
956 if (old_dir != new_dir)
957 len += plen;
958 dent = kmalloc(len, GFP_NOFS);
959 if (!dent)
960 return -ENOMEM;
962 /* Make reservation before allocating sequence numbers */
963 err = make_reservation(c, BASEHD, len);
964 if (err)
965 goto out_free;
967 /* Make new dent */
968 dent->ch.node_type = UBIFS_DENT_NODE;
969 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
970 dent->inum = cpu_to_le64(old_inode->i_ino);
971 dent->type = get_dent_type(old_inode->i_mode);
972 dent->nlen = cpu_to_le16(new_dentry->d_name.len);
973 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
974 dent->name[new_dentry->d_name.len] = '\0';
975 zero_dent_node_unused(dent);
976 ubifs_prep_grp_node(c, dent, dlen1, 0);
978 /* Make deletion dent */
979 dent2 = (void *)dent + aligned_dlen1;
980 dent2->ch.node_type = UBIFS_DENT_NODE;
981 dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
982 &old_dentry->d_name);
983 dent2->inum = 0;
984 dent2->type = DT_UNKNOWN;
985 dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
986 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
987 dent2->name[old_dentry->d_name.len] = '\0';
988 zero_dent_node_unused(dent2);
989 ubifs_prep_grp_node(c, dent2, dlen2, 0);
991 p = (void *)dent2 + aligned_dlen2;
992 if (new_inode) {
993 pack_inode(c, p, new_inode, 0);
994 p += ALIGN(ilen, 8);
997 if (!move)
998 pack_inode(c, p, old_dir, 1);
999 else {
1000 pack_inode(c, p, old_dir, 0);
1001 p += ALIGN(plen, 8);
1002 pack_inode(c, p, new_dir, 1);
1005 if (last_reference) {
1006 err = ubifs_add_orphan(c, new_inode->i_ino);
1007 if (err) {
1008 release_head(c, BASEHD);
1009 goto out_finish;
1011 new_ui->del_cmtno = c->cmt_no;
1014 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1015 if (err)
1016 goto out_release;
1017 if (!sync) {
1018 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1020 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1021 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1022 if (new_inode)
1023 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1024 new_inode->i_ino);
1026 release_head(c, BASEHD);
1028 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1029 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1030 if (err)
1031 goto out_ro;
1033 err = ubifs_add_dirt(c, lnum, dlen2);
1034 if (err)
1035 goto out_ro;
1037 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1038 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1039 if (err)
1040 goto out_ro;
1042 offs += aligned_dlen1 + aligned_dlen2;
1043 if (new_inode) {
1044 ino_key_init(c, &key, new_inode->i_ino);
1045 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1046 if (err)
1047 goto out_ro;
1048 offs += ALIGN(ilen, 8);
1051 ino_key_init(c, &key, old_dir->i_ino);
1052 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1053 if (err)
1054 goto out_ro;
1056 if (old_dir != new_dir) {
1057 offs += ALIGN(plen, 8);
1058 ino_key_init(c, &key, new_dir->i_ino);
1059 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1060 if (err)
1061 goto out_ro;
1064 finish_reservation(c);
1065 if (new_inode) {
1066 mark_inode_clean(c, new_ui);
1067 spin_lock(&new_ui->ui_lock);
1068 new_ui->synced_i_size = new_ui->ui_size;
1069 spin_unlock(&new_ui->ui_lock);
1071 mark_inode_clean(c, ubifs_inode(old_dir));
1072 if (move)
1073 mark_inode_clean(c, ubifs_inode(new_dir));
1074 kfree(dent);
1075 return 0;
1077 out_release:
1078 release_head(c, BASEHD);
1079 out_ro:
1080 ubifs_ro_mode(c, err);
1081 if (last_reference)
1082 ubifs_delete_orphan(c, new_inode->i_ino);
1083 out_finish:
1084 finish_reservation(c);
1085 out_free:
1086 kfree(dent);
1087 return err;
1091 * recomp_data_node - re-compress a truncated data node.
1092 * @dn: data node to re-compress
1093 * @new_len: new length
1095 * This function is used when an inode is truncated and the last data node of
1096 * the inode has to be re-compressed and re-written.
1098 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1100 void *buf;
1101 int err, len, compr_type, out_len;
1103 out_len = le32_to_cpu(dn->size);
1104 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1105 if (!buf)
1106 return -ENOMEM;
1108 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1109 compr_type = le16_to_cpu(dn->compr_type);
1110 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1111 if (err)
1112 goto out;
1114 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1115 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1116 dn->compr_type = cpu_to_le16(compr_type);
1117 dn->size = cpu_to_le32(*new_len);
1118 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1119 out:
1120 kfree(buf);
1121 return err;
1125 * ubifs_jnl_truncate - update the journal for a truncation.
1126 * @c: UBIFS file-system description object
1127 * @inode: inode to truncate
1128 * @old_size: old size
1129 * @new_size: new size
1131 * When the size of a file decreases due to truncation, a truncation node is
1132 * written, the journal tree is updated, and the last data block is re-written
1133 * if it has been affected. The inode is also updated in order to synchronize
1134 * the new inode size.
1136 * This function marks the inode as clean and returns zero on success. In case
1137 * of failure, a negative error code is returned.
1139 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1140 loff_t old_size, loff_t new_size)
1142 union ubifs_key key, to_key;
1143 struct ubifs_ino_node *ino;
1144 struct ubifs_trun_node *trun;
1145 struct ubifs_data_node *uninitialized_var(dn);
1146 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1147 struct ubifs_inode *ui = ubifs_inode(inode);
1148 ino_t inum = inode->i_ino;
1149 unsigned int blk;
1151 dbg_jnl("ino %lu, size %lld -> %lld",
1152 (unsigned long)inum, old_size, new_size);
1153 ubifs_assert(!ui->data_len);
1154 ubifs_assert(S_ISREG(inode->i_mode));
1155 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1157 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1158 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1159 ino = kmalloc(sz, GFP_NOFS);
1160 if (!ino)
1161 return -ENOMEM;
1163 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1164 trun->ch.node_type = UBIFS_TRUN_NODE;
1165 trun->inum = cpu_to_le32(inum);
1166 trun->old_size = cpu_to_le64(old_size);
1167 trun->new_size = cpu_to_le64(new_size);
1168 zero_trun_node_unused(trun);
1170 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1171 if (dlen) {
1172 /* Get last data block so it can be truncated */
1173 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1174 blk = new_size >> UBIFS_BLOCK_SHIFT;
1175 data_key_init(c, &key, inum, blk);
1176 dbg_jnl("last block key %s", DBGKEY(&key));
1177 err = ubifs_tnc_lookup(c, &key, dn);
1178 if (err == -ENOENT)
1179 dlen = 0; /* Not found (so it is a hole) */
1180 else if (err)
1181 goto out_free;
1182 else {
1183 if (le32_to_cpu(dn->size) <= dlen)
1184 dlen = 0; /* Nothing to do */
1185 else {
1186 int compr_type = le16_to_cpu(dn->compr_type);
1188 if (compr_type != UBIFS_COMPR_NONE) {
1189 err = recomp_data_node(dn, &dlen);
1190 if (err)
1191 goto out_free;
1192 } else {
1193 dn->size = cpu_to_le32(dlen);
1194 dlen += UBIFS_DATA_NODE_SZ;
1196 zero_data_node_unused(dn);
1201 /* Must make reservation before allocating sequence numbers */
1202 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1203 if (dlen)
1204 len += dlen;
1205 err = make_reservation(c, BASEHD, len);
1206 if (err)
1207 goto out_free;
1209 pack_inode(c, ino, inode, 0);
1210 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1211 if (dlen)
1212 ubifs_prep_grp_node(c, dn, dlen, 1);
1214 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1215 if (err)
1216 goto out_release;
1217 if (!sync)
1218 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1219 release_head(c, BASEHD);
1221 if (dlen) {
1222 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1223 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1224 if (err)
1225 goto out_ro;
1228 ino_key_init(c, &key, inum);
1229 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1230 if (err)
1231 goto out_ro;
1233 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1234 if (err)
1235 goto out_ro;
1237 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1238 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1239 data_key_init(c, &key, inum, blk);
1241 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1242 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1243 data_key_init(c, &to_key, inum, blk);
1245 err = ubifs_tnc_remove_range(c, &key, &to_key);
1246 if (err)
1247 goto out_ro;
1249 finish_reservation(c);
1250 spin_lock(&ui->ui_lock);
1251 ui->synced_i_size = ui->ui_size;
1252 spin_unlock(&ui->ui_lock);
1253 mark_inode_clean(c, ui);
1254 kfree(ino);
1255 return 0;
1257 out_release:
1258 release_head(c, BASEHD);
1259 out_ro:
1260 ubifs_ro_mode(c, err);
1261 finish_reservation(c);
1262 out_free:
1263 kfree(ino);
1264 return err;
1267 #ifdef CONFIG_UBIFS_FS_XATTR
1270 * ubifs_jnl_delete_xattr - delete an extended attribute.
1271 * @c: UBIFS file-system description object
1272 * @host: host inode
1273 * @inode: extended attribute inode
1274 * @nm: extended attribute entry name
1276 * This function delete an extended attribute which is very similar to
1277 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1278 * updates the target inode. Returns zero in case of success and a negative
1279 * error code in case of failure.
1281 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1282 const struct inode *inode, const struct qstr *nm)
1284 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1285 struct ubifs_dent_node *xent;
1286 struct ubifs_ino_node *ino;
1287 union ubifs_key xent_key, key1, key2;
1288 int sync = IS_DIRSYNC(host);
1289 struct ubifs_inode *host_ui = ubifs_inode(host);
1291 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1292 host->i_ino, inode->i_ino, nm->name,
1293 ubifs_inode(inode)->data_len);
1294 ubifs_assert(inode->i_nlink == 0);
1295 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1298 * Since we are deleting the inode, we do not bother to attach any data
1299 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1301 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1302 aligned_xlen = ALIGN(xlen, 8);
1303 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1304 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1306 xent = kmalloc(len, GFP_NOFS);
1307 if (!xent)
1308 return -ENOMEM;
1310 /* Make reservation before allocating sequence numbers */
1311 err = make_reservation(c, BASEHD, len);
1312 if (err) {
1313 kfree(xent);
1314 return err;
1317 xent->ch.node_type = UBIFS_XENT_NODE;
1318 xent_key_init(c, &xent_key, host->i_ino, nm);
1319 key_write(c, &xent_key, xent->key);
1320 xent->inum = 0;
1321 xent->type = get_dent_type(inode->i_mode);
1322 xent->nlen = cpu_to_le16(nm->len);
1323 memcpy(xent->name, nm->name, nm->len);
1324 xent->name[nm->len] = '\0';
1325 zero_dent_node_unused(xent);
1326 ubifs_prep_grp_node(c, xent, xlen, 0);
1328 ino = (void *)xent + aligned_xlen;
1329 pack_inode(c, ino, inode, 0);
1330 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1331 pack_inode(c, ino, host, 1);
1333 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1334 if (!sync && !err)
1335 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1336 release_head(c, BASEHD);
1337 kfree(xent);
1338 if (err)
1339 goto out_ro;
1341 /* Remove the extended attribute entry from TNC */
1342 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1343 if (err)
1344 goto out_ro;
1345 err = ubifs_add_dirt(c, lnum, xlen);
1346 if (err)
1347 goto out_ro;
1350 * Remove all nodes belonging to the extended attribute inode from TNC.
1351 * Well, there actually must be only one node - the inode itself.
1353 lowest_ino_key(c, &key1, inode->i_ino);
1354 highest_ino_key(c, &key2, inode->i_ino);
1355 err = ubifs_tnc_remove_range(c, &key1, &key2);
1356 if (err)
1357 goto out_ro;
1358 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1359 if (err)
1360 goto out_ro;
1362 /* And update TNC with the new host inode position */
1363 ino_key_init(c, &key1, host->i_ino);
1364 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1365 if (err)
1366 goto out_ro;
1368 finish_reservation(c);
1369 spin_lock(&host_ui->ui_lock);
1370 host_ui->synced_i_size = host_ui->ui_size;
1371 spin_unlock(&host_ui->ui_lock);
1372 mark_inode_clean(c, host_ui);
1373 return 0;
1375 out_ro:
1376 ubifs_ro_mode(c, err);
1377 finish_reservation(c);
1378 return err;
1382 * ubifs_jnl_change_xattr - change an extended attribute.
1383 * @c: UBIFS file-system description object
1384 * @inode: extended attribute inode
1385 * @host: host inode
1387 * This function writes the updated version of an extended attribute inode and
1388 * the host inode to the journal (to the base head). The host inode is written
1389 * after the extended attribute inode in order to guarantee that the extended
1390 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1391 * consequently, the write-buffer is synchronized. This function returns zero
1392 * in case of success and a negative error code in case of failure.
1394 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1395 const struct inode *host)
1397 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1398 struct ubifs_inode *host_ui = ubifs_inode(host);
1399 struct ubifs_ino_node *ino;
1400 union ubifs_key key;
1401 int sync = IS_DIRSYNC(host);
1403 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1404 ubifs_assert(host->i_nlink > 0);
1405 ubifs_assert(inode->i_nlink > 0);
1406 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1408 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1409 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1410 aligned_len1 = ALIGN(len1, 8);
1411 aligned_len = aligned_len1 + ALIGN(len2, 8);
1413 ino = kmalloc(aligned_len, GFP_NOFS);
1414 if (!ino)
1415 return -ENOMEM;
1417 /* Make reservation before allocating sequence numbers */
1418 err = make_reservation(c, BASEHD, aligned_len);
1419 if (err)
1420 goto out_free;
1422 pack_inode(c, ino, host, 0);
1423 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1425 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1426 if (!sync && !err) {
1427 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1429 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1430 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1432 release_head(c, BASEHD);
1433 if (err)
1434 goto out_ro;
1436 ino_key_init(c, &key, host->i_ino);
1437 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1438 if (err)
1439 goto out_ro;
1441 ino_key_init(c, &key, inode->i_ino);
1442 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1443 if (err)
1444 goto out_ro;
1446 finish_reservation(c);
1447 spin_lock(&host_ui->ui_lock);
1448 host_ui->synced_i_size = host_ui->ui_size;
1449 spin_unlock(&host_ui->ui_lock);
1450 mark_inode_clean(c, host_ui);
1451 kfree(ino);
1452 return 0;
1454 out_ro:
1455 ubifs_ro_mode(c, err);
1456 finish_reservation(c);
1457 out_free:
1458 kfree(ino);
1459 return err;
1462 #endif /* CONFIG_UBIFS_FS_XATTR */