2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements functions needed to recover from unclean un-mounts.
25 * When UBIFS is mounted, it checks a flag on the master node to determine if
26 * an un-mount was completed successfully. If not, the process of mounting
27 * incorporates additional checking and fixing of on-flash data structures.
28 * UBIFS always cleans away all remnants of an unclean un-mount, so that
29 * errors do not accumulate. However UBIFS defers recovery if it is mounted
30 * read-only, and the flash is not modified in that case.
32 * The general UBIFS approach to the recovery is that it recovers from
33 * corruptions which could be caused by power cuts, but it refuses to recover
34 * from corruption caused by other reasons. And UBIFS tries to distinguish
35 * between these 2 reasons of corruptions and silently recover in the former
36 * case and loudly complain in the latter case.
38 * UBIFS writes only to erased LEBs, so it writes only to the flash space
39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning
40 * of the LEB to the end. And UBIFS assumes that the underlying flash media
41 * writes in @c->max_write_size bytes at a time.
43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min.
44 * I/O unit corresponding to offset X to contain corrupted data, all the
45 * following min. I/O units have to contain empty space (all 0xFFs). If this is
46 * not true, the corruption cannot be the result of a power cut, and UBIFS
50 #include <linux/crc32.h>
51 #include <linux/slab.h>
55 * is_empty - determine whether a buffer is empty (contains all 0xff).
56 * @buf: buffer to clean
57 * @len: length of buffer
59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
62 static int is_empty(void *buf
, int len
)
67 for (i
= 0; i
< len
; i
++)
74 * first_non_ff - find offset of the first non-0xff byte.
75 * @buf: buffer to search in
76 * @len: length of buffer
78 * This function returns offset of the first non-0xff byte in @buf or %-1 if
79 * the buffer contains only 0xff bytes.
81 static int first_non_ff(void *buf
, int len
)
86 for (i
= 0; i
< len
; i
++)
93 * get_master_node - get the last valid master node allowing for corruption.
94 * @c: UBIFS file-system description object
96 * @pbuf: buffer containing the LEB read, is returned here
97 * @mst: master node, if found, is returned here
98 * @cor: corruption, if found, is returned here
100 * This function allocates a buffer, reads the LEB into it, and finds and
101 * returns the last valid master node allowing for one area of corruption.
102 * The corrupt area, if there is one, must be consistent with the assumption
103 * that it is the result of an unclean unmount while the master node was being
104 * written. Under those circumstances, it is valid to use the previously written
107 * This function returns %0 on success and a negative error code on failure.
109 static int get_master_node(const struct ubifs_info
*c
, int lnum
, void **pbuf
,
110 struct ubifs_mst_node
**mst
, void **cor
)
112 const int sz
= c
->mst_node_alsz
;
116 sbuf
= vmalloc(c
->leb_size
);
120 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, c
->leb_size
);
121 if (err
&& err
!= -EBADMSG
)
124 /* Find the first position that is definitely not a node */
128 while (offs
+ UBIFS_MST_NODE_SZ
<= c
->leb_size
) {
129 struct ubifs_ch
*ch
= buf
;
131 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
)
137 /* See if there was a valid master node before that */
144 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
145 if (ret
!= SCANNED_A_NODE
&& offs
) {
146 /* Could have been corruption so check one place back */
150 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, 1);
151 if (ret
!= SCANNED_A_NODE
)
153 * We accept only one area of corruption because
154 * we are assuming that it was caused while
155 * trying to write a master node.
159 if (ret
== SCANNED_A_NODE
) {
160 struct ubifs_ch
*ch
= buf
;
162 if (ch
->node_type
!= UBIFS_MST_NODE
)
164 dbg_rcvry("found a master node at %d:%d", lnum
, offs
);
171 /* Check for corruption */
172 if (offs
< c
->leb_size
) {
173 if (!is_empty(buf
, min_t(int, len
, sz
))) {
175 dbg_rcvry("found corruption at %d:%d", lnum
, offs
);
181 /* Check remaining empty space */
182 if (offs
< c
->leb_size
)
183 if (!is_empty(buf
, len
))
198 * write_rcvrd_mst_node - write recovered master node.
199 * @c: UBIFS file-system description object
202 * This function returns %0 on success and a negative error code on failure.
204 static int write_rcvrd_mst_node(struct ubifs_info
*c
,
205 struct ubifs_mst_node
*mst
)
207 int err
= 0, lnum
= UBIFS_MST_LNUM
, sz
= c
->mst_node_alsz
;
210 dbg_rcvry("recovery");
212 save_flags
= mst
->flags
;
213 mst
->flags
|= cpu_to_le32(UBIFS_MST_RCVRY
);
215 ubifs_prepare_node(c
, mst
, UBIFS_MST_NODE_SZ
, 1);
216 err
= ubi_leb_change(c
->ubi
, lnum
, mst
, sz
, UBI_SHORTTERM
);
219 err
= ubi_leb_change(c
->ubi
, lnum
+ 1, mst
, sz
, UBI_SHORTTERM
);
223 mst
->flags
= save_flags
;
228 * ubifs_recover_master_node - recover the master node.
229 * @c: UBIFS file-system description object
231 * This function recovers the master node from corruption that may occur due to
232 * an unclean unmount.
234 * This function returns %0 on success and a negative error code on failure.
236 int ubifs_recover_master_node(struct ubifs_info
*c
)
238 void *buf1
= NULL
, *buf2
= NULL
, *cor1
= NULL
, *cor2
= NULL
;
239 struct ubifs_mst_node
*mst1
= NULL
, *mst2
= NULL
, *mst
;
240 const int sz
= c
->mst_node_alsz
;
241 int err
, offs1
, offs2
;
243 dbg_rcvry("recovery");
245 err
= get_master_node(c
, UBIFS_MST_LNUM
, &buf1
, &mst1
, &cor1
);
249 err
= get_master_node(c
, UBIFS_MST_LNUM
+ 1, &buf2
, &mst2
, &cor2
);
254 offs1
= (void *)mst1
- buf1
;
255 if ((le32_to_cpu(mst1
->flags
) & UBIFS_MST_RCVRY
) &&
256 (offs1
== 0 && !cor1
)) {
258 * mst1 was written by recovery at offset 0 with no
261 dbg_rcvry("recovery recovery");
264 offs2
= (void *)mst2
- buf2
;
265 if (offs1
== offs2
) {
266 /* Same offset, so must be the same */
267 if (memcmp((void *)mst1
+ UBIFS_CH_SZ
,
268 (void *)mst2
+ UBIFS_CH_SZ
,
269 UBIFS_MST_NODE_SZ
- UBIFS_CH_SZ
))
272 } else if (offs2
+ sz
== offs1
) {
273 /* 1st LEB was written, 2nd was not */
277 } else if (offs1
== 0 && offs2
+ sz
>= c
->leb_size
) {
278 /* 1st LEB was unmapped and written, 2nd not */
286 * 2nd LEB was unmapped and about to be written, so
287 * there must be only one master node in the first LEB
290 if (offs1
!= 0 || cor1
)
298 * 1st LEB was unmapped and about to be written, so there must
299 * be no room left in 2nd LEB.
301 offs2
= (void *)mst2
- buf2
;
302 if (offs2
+ sz
+ sz
<= c
->leb_size
)
307 ubifs_msg("recovered master node from LEB %d",
308 (mst
== mst1
? UBIFS_MST_LNUM
: UBIFS_MST_LNUM
+ 1));
310 memcpy(c
->mst_node
, mst
, UBIFS_MST_NODE_SZ
);
313 /* Read-only mode. Keep a copy for switching to rw mode */
314 c
->rcvrd_mst_node
= kmalloc(sz
, GFP_KERNEL
);
315 if (!c
->rcvrd_mst_node
) {
319 memcpy(c
->rcvrd_mst_node
, c
->mst_node
, UBIFS_MST_NODE_SZ
);
321 /* Write the recovered master node */
322 c
->max_sqnum
= le64_to_cpu(mst
->ch
.sqnum
) - 1;
323 err
= write_rcvrd_mst_node(c
, c
->mst_node
);
336 ubifs_err("failed to recover master node");
338 dbg_err("dumping first master node");
339 dbg_dump_node(c
, mst1
);
342 dbg_err("dumping second master node");
343 dbg_dump_node(c
, mst2
);
351 * ubifs_write_rcvrd_mst_node - write the recovered master node.
352 * @c: UBIFS file-system description object
354 * This function writes the master node that was recovered during mounting in
355 * read-only mode and must now be written because we are remounting rw.
357 * This function returns %0 on success and a negative error code on failure.
359 int ubifs_write_rcvrd_mst_node(struct ubifs_info
*c
)
363 if (!c
->rcvrd_mst_node
)
365 c
->rcvrd_mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
366 c
->mst_node
->flags
|= cpu_to_le32(UBIFS_MST_DIRTY
);
367 err
= write_rcvrd_mst_node(c
, c
->rcvrd_mst_node
);
370 kfree(c
->rcvrd_mst_node
);
371 c
->rcvrd_mst_node
= NULL
;
376 * is_last_write - determine if an offset was in the last write to a LEB.
377 * @c: UBIFS file-system description object
378 * @buf: buffer to check
379 * @offs: offset to check
381 * This function returns %1 if @offs was in the last write to the LEB whose data
382 * is in @buf, otherwise %0 is returned. The determination is made by checking
383 * for subsequent empty space starting from the next @c->max_write_size
386 static int is_last_write(const struct ubifs_info
*c
, void *buf
, int offs
)
388 int empty_offs
, check_len
;
392 * Round up to the next @c->max_write_size boundary i.e. @offs is in
393 * the last wbuf written. After that should be empty space.
395 empty_offs
= ALIGN(offs
+ 1, c
->max_write_size
);
396 check_len
= c
->leb_size
- empty_offs
;
397 p
= buf
+ empty_offs
- offs
;
398 return is_empty(p
, check_len
);
402 * clean_buf - clean the data from an LEB sitting in a buffer.
403 * @c: UBIFS file-system description object
404 * @buf: buffer to clean
405 * @lnum: LEB number to clean
406 * @offs: offset from which to clean
407 * @len: length of buffer
409 * This function pads up to the next min_io_size boundary (if there is one) and
410 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
411 * @c->min_io_size boundary.
413 static void clean_buf(const struct ubifs_info
*c
, void **buf
, int lnum
,
416 int empty_offs
, pad_len
;
419 dbg_rcvry("cleaning corruption at %d:%d", lnum
, *offs
);
421 ubifs_assert(!(*offs
& 7));
422 empty_offs
= ALIGN(*offs
, c
->min_io_size
);
423 pad_len
= empty_offs
- *offs
;
424 ubifs_pad(c
, *buf
, pad_len
);
428 memset(*buf
, 0xff, c
->leb_size
- empty_offs
);
432 * no_more_nodes - determine if there are no more nodes in a buffer.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to check
435 * @len: length of buffer
436 * @lnum: LEB number of the LEB from which @buf was read
437 * @offs: offset from which @buf was read
439 * This function ensures that the corrupted node at @offs is the last thing
440 * written to a LEB. This function returns %1 if more data is not found and
441 * %0 if more data is found.
443 static int no_more_nodes(const struct ubifs_info
*c
, void *buf
, int len
,
446 struct ubifs_ch
*ch
= buf
;
447 int skip
, dlen
= le32_to_cpu(ch
->len
);
449 /* Check for empty space after the corrupt node's common header */
450 skip
= ALIGN(offs
+ UBIFS_CH_SZ
, c
->max_write_size
) - offs
;
451 if (is_empty(buf
+ skip
, len
- skip
))
454 * The area after the common header size is not empty, so the common
455 * header must be intact. Check it.
457 if (ubifs_check_node(c
, buf
, lnum
, offs
, 1, 0) != -EUCLEAN
) {
458 dbg_rcvry("unexpected bad common header at %d:%d", lnum
, offs
);
461 /* Now we know the corrupt node's length we can skip over it */
462 skip
= ALIGN(offs
+ dlen
, c
->max_write_size
) - offs
;
463 /* After which there should be empty space */
464 if (is_empty(buf
+ skip
, len
- skip
))
466 dbg_rcvry("unexpected data at %d:%d", lnum
, offs
+ skip
);
471 * fix_unclean_leb - fix an unclean LEB.
472 * @c: UBIFS file-system description object
473 * @sleb: scanned LEB information
474 * @start: offset where scan started
476 static int fix_unclean_leb(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
479 int lnum
= sleb
->lnum
, endpt
= start
;
481 /* Get the end offset of the last node we are keeping */
482 if (!list_empty(&sleb
->nodes
)) {
483 struct ubifs_scan_node
*snod
;
485 snod
= list_entry(sleb
->nodes
.prev
,
486 struct ubifs_scan_node
, list
);
487 endpt
= snod
->offs
+ snod
->len
;
490 if (c
->ro_mount
&& !c
->remounting_rw
) {
491 /* Add to recovery list */
492 struct ubifs_unclean_leb
*ucleb
;
494 dbg_rcvry("need to fix LEB %d start %d endpt %d",
495 lnum
, start
, sleb
->endpt
);
496 ucleb
= kzalloc(sizeof(struct ubifs_unclean_leb
), GFP_NOFS
);
500 ucleb
->endpt
= endpt
;
501 list_add_tail(&ucleb
->list
, &c
->unclean_leb_list
);
503 /* Write the fixed LEB back to flash */
506 dbg_rcvry("fixing LEB %d start %d endpt %d",
507 lnum
, start
, sleb
->endpt
);
509 err
= ubifs_leb_unmap(c
, lnum
);
513 int len
= ALIGN(endpt
, c
->min_io_size
);
516 err
= ubi_read(c
->ubi
, lnum
, sleb
->buf
, 0,
521 /* Pad to min_io_size */
523 int pad_len
= len
- ALIGN(endpt
, 8);
526 void *buf
= sleb
->buf
+ len
- pad_len
;
528 ubifs_pad(c
, buf
, pad_len
);
531 err
= ubi_leb_change(c
->ubi
, lnum
, sleb
->buf
, len
,
541 * drop_incomplete_group - drop nodes from an incomplete group.
542 * @sleb: scanned LEB information
543 * @offs: offset of dropped nodes is returned here
545 * This function returns %1 if nodes are dropped and %0 otherwise.
547 static int drop_incomplete_group(struct ubifs_scan_leb
*sleb
, int *offs
)
551 while (!list_empty(&sleb
->nodes
)) {
552 struct ubifs_scan_node
*snod
;
555 snod
= list_entry(sleb
->nodes
.prev
, struct ubifs_scan_node
,
558 if (ch
->group_type
!= UBIFS_IN_NODE_GROUP
)
560 dbg_rcvry("dropping node at %d:%d", sleb
->lnum
, snod
->offs
);
562 list_del(&snod
->list
);
564 sleb
->nodes_cnt
-= 1;
571 * ubifs_recover_leb - scan and recover a LEB.
572 * @c: UBIFS file-system description object
575 * @sbuf: LEB-sized buffer to use
576 * @grouped: nodes may be grouped for recovery
578 * This function does a scan of a LEB, but caters for errors that might have
579 * been caused by the unclean unmount from which we are attempting to recover.
580 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is
581 * found, and a negative error code in case of failure.
583 struct ubifs_scan_leb
*ubifs_recover_leb(struct ubifs_info
*c
, int lnum
,
584 int offs
, void *sbuf
, int grouped
)
586 int err
, len
= c
->leb_size
- offs
, need_clean
= 0, quiet
= 1;
587 int empty_chkd
= 0, start
= offs
;
588 struct ubifs_scan_leb
*sleb
;
589 void *buf
= sbuf
+ offs
;
591 dbg_rcvry("%d:%d", lnum
, offs
);
593 sleb
= ubifs_start_scan(c
, lnum
, offs
, sbuf
);
603 dbg_scan("look at LEB %d:%d (%d bytes left)",
609 * Scan quietly until there is an error from which we cannot
612 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
614 if (ret
== SCANNED_A_NODE
) {
615 /* A valid node, and not a padding node */
616 struct ubifs_ch
*ch
= buf
;
619 err
= ubifs_add_snod(c
, sleb
, buf
, offs
);
622 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
630 /* Padding bytes or a valid padding node */
637 if (ret
== SCANNED_EMPTY_SPACE
) {
638 if (!is_empty(buf
, len
)) {
639 if (!is_last_write(c
, buf
, offs
))
641 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
648 if (ret
== SCANNED_GARBAGE
|| ret
== SCANNED_A_BAD_PAD_NODE
)
649 if (is_last_write(c
, buf
, offs
)) {
650 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
656 if (ret
== SCANNED_A_CORRUPT_NODE
)
657 if (no_more_nodes(c
, buf
, len
, lnum
, offs
)) {
658 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
665 /* Redo the last scan but noisily */
671 case SCANNED_GARBAGE
:
674 case SCANNED_A_CORRUPT_NODE
:
675 case SCANNED_A_BAD_PAD_NODE
:
685 if (!empty_chkd
&& !is_empty(buf
, len
)) {
686 if (is_last_write(c
, buf
, offs
)) {
687 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
690 int corruption
= first_non_ff(buf
, len
);
693 * See header comment for this file for more
694 * explanations about the reasons we have this check.
696 ubifs_err("corrupt empty space LEB %d:%d, corruption "
697 "starts at %d", lnum
, offs
, corruption
);
698 /* Make sure we dump interesting non-0xFF data */
705 /* Drop nodes from incomplete group */
706 if (grouped
&& drop_incomplete_group(sleb
, &offs
)) {
708 len
= c
->leb_size
- offs
;
709 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
713 if (offs
% c
->min_io_size
) {
714 clean_buf(c
, &buf
, lnum
, &offs
, &len
);
718 ubifs_end_scan(c
, sleb
, lnum
, offs
);
721 err
= fix_unclean_leb(c
, sleb
, start
);
729 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
732 ubifs_err("LEB %d scanning failed", lnum
);
733 ubifs_scan_destroy(sleb
);
738 * get_cs_sqnum - get commit start sequence number.
739 * @c: UBIFS file-system description object
740 * @lnum: LEB number of commit start node
741 * @offs: offset of commit start node
742 * @cs_sqnum: commit start sequence number is returned here
744 * This function returns %0 on success and a negative error code on failure.
746 static int get_cs_sqnum(struct ubifs_info
*c
, int lnum
, int offs
,
747 unsigned long long *cs_sqnum
)
749 struct ubifs_cs_node
*cs_node
= NULL
;
752 dbg_rcvry("at %d:%d", lnum
, offs
);
753 cs_node
= kmalloc(UBIFS_CS_NODE_SZ
, GFP_KERNEL
);
756 if (c
->leb_size
- offs
< UBIFS_CS_NODE_SZ
)
758 err
= ubi_read(c
->ubi
, lnum
, (void *)cs_node
, offs
, UBIFS_CS_NODE_SZ
);
759 if (err
&& err
!= -EBADMSG
)
761 ret
= ubifs_scan_a_node(c
, cs_node
, UBIFS_CS_NODE_SZ
, lnum
, offs
, 0);
762 if (ret
!= SCANNED_A_NODE
) {
763 dbg_err("Not a valid node");
766 if (cs_node
->ch
.node_type
!= UBIFS_CS_NODE
) {
767 dbg_err("Node a CS node, type is %d", cs_node
->ch
.node_type
);
770 if (le64_to_cpu(cs_node
->cmt_no
) != c
->cmt_no
) {
771 dbg_err("CS node cmt_no %llu != current cmt_no %llu",
772 (unsigned long long)le64_to_cpu(cs_node
->cmt_no
),
776 *cs_sqnum
= le64_to_cpu(cs_node
->ch
.sqnum
);
777 dbg_rcvry("commit start sqnum %llu", *cs_sqnum
);
784 ubifs_err("failed to get CS sqnum");
790 * ubifs_recover_log_leb - scan and recover a log LEB.
791 * @c: UBIFS file-system description object
794 * @sbuf: LEB-sized buffer to use
796 * This function does a scan of a LEB, but caters for errors that might have
797 * been caused by unclean reboots from which we are attempting to recover
798 * (assume that only the last log LEB can be corrupted by an unclean reboot).
800 * This function returns %0 on success and a negative error code on failure.
802 struct ubifs_scan_leb
*ubifs_recover_log_leb(struct ubifs_info
*c
, int lnum
,
803 int offs
, void *sbuf
)
805 struct ubifs_scan_leb
*sleb
;
808 dbg_rcvry("LEB %d", lnum
);
809 next_lnum
= lnum
+ 1;
810 if (next_lnum
>= UBIFS_LOG_LNUM
+ c
->log_lebs
)
811 next_lnum
= UBIFS_LOG_LNUM
;
812 if (next_lnum
!= c
->ltail_lnum
) {
814 * We can only recover at the end of the log, so check that the
815 * next log LEB is empty or out of date.
817 sleb
= ubifs_scan(c
, next_lnum
, 0, sbuf
, 0);
820 if (sleb
->nodes_cnt
) {
821 struct ubifs_scan_node
*snod
;
822 unsigned long long cs_sqnum
= c
->cs_sqnum
;
824 snod
= list_entry(sleb
->nodes
.next
,
825 struct ubifs_scan_node
, list
);
829 err
= get_cs_sqnum(c
, lnum
, offs
, &cs_sqnum
);
831 ubifs_scan_destroy(sleb
);
835 if (snod
->sqnum
> cs_sqnum
) {
836 ubifs_err("unrecoverable log corruption "
838 ubifs_scan_destroy(sleb
);
839 return ERR_PTR(-EUCLEAN
);
842 ubifs_scan_destroy(sleb
);
844 return ubifs_recover_leb(c
, lnum
, offs
, sbuf
, 0);
848 * recover_head - recover a head.
849 * @c: UBIFS file-system description object
850 * @lnum: LEB number of head to recover
851 * @offs: offset of head to recover
852 * @sbuf: LEB-sized buffer to use
854 * This function ensures that there is no data on the flash at a head location.
856 * This function returns %0 on success and a negative error code on failure.
858 static int recover_head(const struct ubifs_info
*c
, int lnum
, int offs
,
861 int len
= c
->max_write_size
, err
;
863 if (offs
+ len
> c
->leb_size
)
864 len
= c
->leb_size
- offs
;
869 /* Read at the head location and check it is empty flash */
870 err
= ubi_read(c
->ubi
, lnum
, sbuf
, offs
, len
);
871 if (err
|| !is_empty(sbuf
, len
)) {
872 dbg_rcvry("cleaning head at %d:%d", lnum
, offs
);
874 return ubifs_leb_unmap(c
, lnum
);
875 err
= ubi_read(c
->ubi
, lnum
, sbuf
, 0, offs
);
878 return ubi_leb_change(c
->ubi
, lnum
, sbuf
, offs
, UBI_UNKNOWN
);
885 * ubifs_recover_inl_heads - recover index and LPT heads.
886 * @c: UBIFS file-system description object
887 * @sbuf: LEB-sized buffer to use
889 * This function ensures that there is no data on the flash at the index and
890 * LPT head locations.
892 * This deals with the recovery of a half-completed journal commit. UBIFS is
893 * careful never to overwrite the last version of the index or the LPT. Because
894 * the index and LPT are wandering trees, data from a half-completed commit will
895 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
896 * assumed to be empty and will be unmapped anyway before use, or in the index
899 * This function returns %0 on success and a negative error code on failure.
901 int ubifs_recover_inl_heads(const struct ubifs_info
*c
, void *sbuf
)
905 ubifs_assert(!c
->ro_mount
|| c
->remounting_rw
);
907 dbg_rcvry("checking index head at %d:%d", c
->ihead_lnum
, c
->ihead_offs
);
908 err
= recover_head(c
, c
->ihead_lnum
, c
->ihead_offs
, sbuf
);
912 dbg_rcvry("checking LPT head at %d:%d", c
->nhead_lnum
, c
->nhead_offs
);
913 err
= recover_head(c
, c
->nhead_lnum
, c
->nhead_offs
, sbuf
);
921 * clean_an_unclean_leb - read and write a LEB to remove corruption.
922 * @c: UBIFS file-system description object
923 * @ucleb: unclean LEB information
924 * @sbuf: LEB-sized buffer to use
926 * This function reads a LEB up to a point pre-determined by the mount recovery,
927 * checks the nodes, and writes the result back to the flash, thereby cleaning
928 * off any following corruption, or non-fatal ECC errors.
930 * This function returns %0 on success and a negative error code on failure.
932 static int clean_an_unclean_leb(const struct ubifs_info
*c
,
933 struct ubifs_unclean_leb
*ucleb
, void *sbuf
)
935 int err
, lnum
= ucleb
->lnum
, offs
= 0, len
= ucleb
->endpt
, quiet
= 1;
938 dbg_rcvry("LEB %d len %d", lnum
, len
);
941 /* Nothing to read, just unmap it */
942 err
= ubifs_leb_unmap(c
, lnum
);
948 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
949 if (err
&& err
!= -EBADMSG
)
957 /* Scan quietly until there is an error */
958 ret
= ubifs_scan_a_node(c
, buf
, len
, lnum
, offs
, quiet
);
960 if (ret
== SCANNED_A_NODE
) {
961 /* A valid node, and not a padding node */
962 struct ubifs_ch
*ch
= buf
;
965 node_len
= ALIGN(le32_to_cpu(ch
->len
), 8);
973 /* Padding bytes or a valid padding node */
980 if (ret
== SCANNED_EMPTY_SPACE
) {
981 ubifs_err("unexpected empty space at %d:%d",
987 /* Redo the last scan but noisily */
992 ubifs_scanned_corruption(c
, lnum
, offs
, buf
);
996 /* Pad to min_io_size */
997 len
= ALIGN(ucleb
->endpt
, c
->min_io_size
);
998 if (len
> ucleb
->endpt
) {
999 int pad_len
= len
- ALIGN(ucleb
->endpt
, 8);
1002 buf
= c
->sbuf
+ len
- pad_len
;
1003 ubifs_pad(c
, buf
, pad_len
);
1007 /* Write back the LEB atomically */
1008 err
= ubi_leb_change(c
->ubi
, lnum
, sbuf
, len
, UBI_UNKNOWN
);
1012 dbg_rcvry("cleaned LEB %d", lnum
);
1018 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
1019 * @c: UBIFS file-system description object
1020 * @sbuf: LEB-sized buffer to use
1022 * This function cleans a LEB identified during recovery that needs to be
1023 * written but was not because UBIFS was mounted read-only. This happens when
1024 * remounting to read-write mode.
1026 * This function returns %0 on success and a negative error code on failure.
1028 int ubifs_clean_lebs(const struct ubifs_info
*c
, void *sbuf
)
1030 dbg_rcvry("recovery");
1031 while (!list_empty(&c
->unclean_leb_list
)) {
1032 struct ubifs_unclean_leb
*ucleb
;
1035 ucleb
= list_entry(c
->unclean_leb_list
.next
,
1036 struct ubifs_unclean_leb
, list
);
1037 err
= clean_an_unclean_leb(c
, ucleb
, sbuf
);
1040 list_del(&ucleb
->list
);
1047 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
1048 * @c: UBIFS file-system description object
1050 * Out-of-place garbage collection requires always one empty LEB with which to
1051 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
1052 * written to the master node on unmounting. In the case of an unclean unmount
1053 * the value of gc_lnum recorded in the master node is out of date and cannot
1054 * be used. Instead, recovery must allocate an empty LEB for this purpose.
1055 * However, there may not be enough empty space, in which case it must be
1056 * possible to GC the dirtiest LEB into the GC head LEB.
1058 * This function also runs the commit which causes the TNC updates from
1059 * size-recovery and orphans to be written to the flash. That is important to
1060 * ensure correct replay order for subsequent mounts.
1062 * This function returns %0 on success and a negative error code on failure.
1064 int ubifs_rcvry_gc_commit(struct ubifs_info
*c
)
1066 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
1067 struct ubifs_lprops lp
;
1071 if (wbuf
->lnum
== -1) {
1072 dbg_rcvry("no GC head LEB");
1076 * See whether the used space in the dirtiest LEB fits in the GC head
1079 if (wbuf
->offs
== c
->leb_size
) {
1080 dbg_rcvry("no room in GC head LEB");
1083 err
= ubifs_find_dirty_leb(c
, &lp
, wbuf
->offs
, 2);
1086 * There are no dirty or empty LEBs subject to here being
1087 * enough for the index. Try to use
1088 * 'ubifs_find_free_leb_for_idx()', which will return any empty
1089 * LEBs (ignoring index requirements). If the index then
1090 * doesn't have enough LEBs the recovery commit will fail -
1091 * which is the same result anyway i.e. recovery fails. So
1092 * there is no problem ignoring index requirements and just
1093 * grabbing a free LEB since we have already established there
1094 * is not a dirty LEB we could have used instead.
1096 if (err
== -ENOSPC
) {
1097 dbg_rcvry("could not find a dirty LEB");
1102 ubifs_assert(!(lp
.flags
& LPROPS_INDEX
));
1104 if (lp
.free
+ lp
.dirty
== c
->leb_size
) {
1105 /* An empty LEB was returned */
1106 if (lp
.free
!= c
->leb_size
) {
1107 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
,
1112 err
= ubifs_leb_unmap(c
, lnum
);
1116 dbg_rcvry("allocated LEB %d for GC", lnum
);
1117 /* Run the commit */
1118 dbg_rcvry("committing");
1119 return ubifs_run_commit(c
);
1122 * There was no empty LEB so the used space in the dirtiest LEB must fit
1123 * in the GC head LEB.
1125 if (lp
.free
+ lp
.dirty
< wbuf
->offs
) {
1126 dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
1127 lnum
, wbuf
->lnum
, wbuf
->offs
);
1128 err
= ubifs_return_leb(c
, lnum
);
1134 * We run the commit before garbage collection otherwise subsequent
1135 * mounts will see the GC and orphan deletion in a different order.
1137 dbg_rcvry("committing");
1138 err
= ubifs_run_commit(c
);
1142 * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
1143 * - use locking to keep 'ubifs_assert()' happy.
1145 dbg_rcvry("GC'ing LEB %d", lnum
);
1146 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1147 err
= ubifs_garbage_collect_leb(c
, &lp
);
1149 int err2
= ubifs_wbuf_sync_nolock(wbuf
);
1154 mutex_unlock(&wbuf
->io_mutex
);
1156 dbg_err("GC failed, error %d", err
);
1161 if (err
!= LEB_RETAINED
) {
1162 dbg_err("GC returned %d", err
);
1165 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
1168 dbg_rcvry("allocated LEB %d for GC", lnum
);
1173 * There is no GC head LEB or the free space in the GC head LEB is too
1174 * small, or there are not dirty LEBs. Allocate gc_lnum by calling
1175 * 'ubifs_find_free_leb_for_idx()' so GC is not run.
1177 lnum
= ubifs_find_free_leb_for_idx(c
);
1179 dbg_err("could not find an empty LEB");
1182 /* And reset the index flag */
1183 err
= ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
1188 dbg_rcvry("allocated LEB %d for GC", lnum
);
1189 /* Run the commit */
1190 dbg_rcvry("committing");
1191 return ubifs_run_commit(c
);
1195 * struct size_entry - inode size information for recovery.
1196 * @rb: link in the RB-tree of sizes
1197 * @inum: inode number
1198 * @i_size: size on inode
1199 * @d_size: maximum size based on data nodes
1200 * @exists: indicates whether the inode exists
1201 * @inode: inode if pinned in memory awaiting rw mode to fix it
1209 struct inode
*inode
;
1213 * add_ino - add an entry to the size tree.
1214 * @c: UBIFS file-system description object
1215 * @inum: inode number
1216 * @i_size: size on inode
1217 * @d_size: maximum size based on data nodes
1218 * @exists: indicates whether the inode exists
1220 static int add_ino(struct ubifs_info
*c
, ino_t inum
, loff_t i_size
,
1221 loff_t d_size
, int exists
)
1223 struct rb_node
**p
= &c
->size_tree
.rb_node
, *parent
= NULL
;
1224 struct size_entry
*e
;
1228 e
= rb_entry(parent
, struct size_entry
, rb
);
1232 p
= &(*p
)->rb_right
;
1235 e
= kzalloc(sizeof(struct size_entry
), GFP_KERNEL
);
1244 rb_link_node(&e
->rb
, parent
, p
);
1245 rb_insert_color(&e
->rb
, &c
->size_tree
);
1251 * find_ino - find an entry on the size tree.
1252 * @c: UBIFS file-system description object
1253 * @inum: inode number
1255 static struct size_entry
*find_ino(struct ubifs_info
*c
, ino_t inum
)
1257 struct rb_node
*p
= c
->size_tree
.rb_node
;
1258 struct size_entry
*e
;
1261 e
= rb_entry(p
, struct size_entry
, rb
);
1264 else if (inum
> e
->inum
)
1273 * remove_ino - remove an entry from the size tree.
1274 * @c: UBIFS file-system description object
1275 * @inum: inode number
1277 static void remove_ino(struct ubifs_info
*c
, ino_t inum
)
1279 struct size_entry
*e
= find_ino(c
, inum
);
1283 rb_erase(&e
->rb
, &c
->size_tree
);
1288 * ubifs_destroy_size_tree - free resources related to the size tree.
1289 * @c: UBIFS file-system description object
1291 void ubifs_destroy_size_tree(struct ubifs_info
*c
)
1293 struct rb_node
*this = c
->size_tree
.rb_node
;
1294 struct size_entry
*e
;
1297 if (this->rb_left
) {
1298 this = this->rb_left
;
1300 } else if (this->rb_right
) {
1301 this = this->rb_right
;
1304 e
= rb_entry(this, struct size_entry
, rb
);
1307 this = rb_parent(this);
1309 if (this->rb_left
== &e
->rb
)
1310 this->rb_left
= NULL
;
1312 this->rb_right
= NULL
;
1316 c
->size_tree
= RB_ROOT
;
1320 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
1321 * @c: UBIFS file-system description object
1323 * @deletion: node is for a deletion
1324 * @new_size: inode size
1326 * This function has two purposes:
1327 * 1) to ensure there are no data nodes that fall outside the inode size
1328 * 2) to ensure there are no data nodes for inodes that do not exist
1329 * To accomplish those purposes, a rb-tree is constructed containing an entry
1330 * for each inode number in the journal that has not been deleted, and recording
1331 * the size from the inode node, the maximum size of any data node (also altered
1332 * by truncations) and a flag indicating a inode number for which no inode node
1333 * was present in the journal.
1335 * Note that there is still the possibility that there are data nodes that have
1336 * been committed that are beyond the inode size, however the only way to find
1337 * them would be to scan the entire index. Alternatively, some provision could
1338 * be made to record the size of inodes at the start of commit, which would seem
1339 * very cumbersome for a scenario that is quite unlikely and the only negative
1340 * consequence of which is wasted space.
1342 * This functions returns %0 on success and a negative error code on failure.
1344 int ubifs_recover_size_accum(struct ubifs_info
*c
, union ubifs_key
*key
,
1345 int deletion
, loff_t new_size
)
1347 ino_t inum
= key_inum(c
, key
);
1348 struct size_entry
*e
;
1351 switch (key_type(c
, key
)) {
1354 remove_ino(c
, inum
);
1356 e
= find_ino(c
, inum
);
1358 e
->i_size
= new_size
;
1361 err
= add_ino(c
, inum
, new_size
, 0, 1);
1367 case UBIFS_DATA_KEY
:
1368 e
= find_ino(c
, inum
);
1370 if (new_size
> e
->d_size
)
1371 e
->d_size
= new_size
;
1373 err
= add_ino(c
, inum
, 0, new_size
, 0);
1378 case UBIFS_TRUN_KEY
:
1379 e
= find_ino(c
, inum
);
1381 e
->d_size
= new_size
;
1388 * fix_size_in_place - fix inode size in place on flash.
1389 * @c: UBIFS file-system description object
1390 * @e: inode size information for recovery
1392 static int fix_size_in_place(struct ubifs_info
*c
, struct size_entry
*e
)
1394 struct ubifs_ino_node
*ino
= c
->sbuf
;
1396 union ubifs_key key
;
1397 int err
, lnum
, offs
, len
;
1401 /* Locate the inode node LEB number and offset */
1402 ino_key_init(c
, &key
, e
->inum
);
1403 err
= ubifs_tnc_locate(c
, &key
, ino
, &lnum
, &offs
);
1407 * If the size recorded on the inode node is greater than the size that
1408 * was calculated from nodes in the journal then don't change the inode.
1410 i_size
= le64_to_cpu(ino
->size
);
1411 if (i_size
>= e
->d_size
)
1414 err
= ubi_read(c
->ubi
, lnum
, c
->sbuf
, 0, c
->leb_size
);
1417 /* Change the size field and recalculate the CRC */
1418 ino
= c
->sbuf
+ offs
;
1419 ino
->size
= cpu_to_le64(e
->d_size
);
1420 len
= le32_to_cpu(ino
->ch
.len
);
1421 crc
= crc32(UBIFS_CRC32_INIT
, (void *)ino
+ 8, len
- 8);
1422 ino
->ch
.crc
= cpu_to_le32(crc
);
1423 /* Work out where data in the LEB ends and free space begins */
1425 len
= c
->leb_size
- 1;
1426 while (p
[len
] == 0xff)
1428 len
= ALIGN(len
+ 1, c
->min_io_size
);
1429 /* Atomically write the fixed LEB back again */
1430 err
= ubi_leb_change(c
->ubi
, lnum
, c
->sbuf
, len
, UBI_UNKNOWN
);
1433 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ",
1434 (unsigned long)e
->inum
, lnum
, offs
, i_size
, e
->d_size
);
1438 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
1439 (unsigned long)e
->inum
, e
->i_size
, e
->d_size
, err
);
1444 * ubifs_recover_size - recover inode size.
1445 * @c: UBIFS file-system description object
1447 * This function attempts to fix inode size discrepancies identified by the
1448 * 'ubifs_recover_size_accum()' function.
1450 * This functions returns %0 on success and a negative error code on failure.
1452 int ubifs_recover_size(struct ubifs_info
*c
)
1454 struct rb_node
*this = rb_first(&c
->size_tree
);
1457 struct size_entry
*e
;
1460 e
= rb_entry(this, struct size_entry
, rb
);
1462 union ubifs_key key
;
1464 ino_key_init(c
, &key
, e
->inum
);
1465 err
= ubifs_tnc_lookup(c
, &key
, c
->sbuf
);
1466 if (err
&& err
!= -ENOENT
)
1468 if (err
== -ENOENT
) {
1469 /* Remove data nodes that have no inode */
1470 dbg_rcvry("removing ino %lu",
1471 (unsigned long)e
->inum
);
1472 err
= ubifs_tnc_remove_ino(c
, e
->inum
);
1476 struct ubifs_ino_node
*ino
= c
->sbuf
;
1479 e
->i_size
= le64_to_cpu(ino
->size
);
1482 if (e
->exists
&& e
->i_size
< e
->d_size
) {
1483 if (!e
->inode
&& c
->ro_mount
) {
1484 /* Fix the inode size and pin it in memory */
1485 struct inode
*inode
;
1487 inode
= ubifs_iget(c
->vfs_sb
, e
->inum
);
1489 return PTR_ERR(inode
);
1490 if (inode
->i_size
< e
->d_size
) {
1491 dbg_rcvry("ino %lu size %lld -> %lld",
1492 (unsigned long)e
->inum
,
1493 e
->d_size
, inode
->i_size
);
1494 inode
->i_size
= e
->d_size
;
1495 ubifs_inode(inode
)->ui_size
= e
->d_size
;
1497 this = rb_next(this);
1502 /* Fix the size in place */
1503 err
= fix_size_in_place(c
, e
);
1510 this = rb_next(this);
1511 rb_erase(&e
->rb
, &c
->size_tree
);