2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_ipv4.c,v 1.240 2002/02/01 22:01:04 davem Exp $
10 * IPv4 specific functions
15 * linux/ipv4/tcp_input.c
16 * linux/ipv4/tcp_output.c
18 * See tcp.c for author information
20 * This program is free software; you can redistribute it and/or
21 * modify it under the terms of the GNU General Public License
22 * as published by the Free Software Foundation; either version
23 * 2 of the License, or (at your option) any later version.
28 * David S. Miller : New socket lookup architecture.
29 * This code is dedicated to John Dyson.
30 * David S. Miller : Change semantics of established hash,
31 * half is devoted to TIME_WAIT sockets
32 * and the rest go in the other half.
33 * Andi Kleen : Add support for syncookies and fixed
34 * some bugs: ip options weren't passed to
35 * the TCP layer, missed a check for an
37 * Andi Kleen : Implemented fast path mtu discovery.
38 * Fixed many serious bugs in the
39 * request_sock handling and moved
40 * most of it into the af independent code.
41 * Added tail drop and some other bugfixes.
42 * Added new listen semantics.
43 * Mike McLagan : Routing by source
44 * Juan Jose Ciarlante: ip_dynaddr bits
45 * Andi Kleen: various fixes.
46 * Vitaly E. Lavrov : Transparent proxy revived after year
48 * Andi Kleen : Fix new listen.
49 * Andi Kleen : Fix accept error reporting.
50 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
51 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
52 * a single port at the same time.
56 #include <linux/types.h>
57 #include <linux/fcntl.h>
58 #include <linux/module.h>
59 #include <linux/random.h>
60 #include <linux/cache.h>
61 #include <linux/jhash.h>
62 #include <linux/init.h>
63 #include <linux/times.h>
66 #include <net/inet_hashtables.h>
68 #include <net/transp_v6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 int sysctl_tcp_tw_reuse __read_mostly
;
82 int sysctl_tcp_low_latency __read_mostly
;
84 /* Check TCP sequence numbers in ICMP packets. */
85 #define ICMP_MIN_LENGTH 8
87 /* Socket used for sending RSTs */
88 static struct socket
*tcp_socket
;
90 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
);
92 struct inet_hashinfo __cacheline_aligned tcp_hashinfo
= {
93 .lhash_lock
= __RW_LOCK_UNLOCKED(tcp_hashinfo
.lhash_lock
),
94 .lhash_users
= ATOMIC_INIT(0),
95 .lhash_wait
= __WAIT_QUEUE_HEAD_INITIALIZER(tcp_hashinfo
.lhash_wait
),
98 static int tcp_v4_get_port(struct sock
*sk
, unsigned short snum
)
100 return inet_csk_get_port(&tcp_hashinfo
, sk
, snum
,
101 inet_csk_bind_conflict
);
104 static void tcp_v4_hash(struct sock
*sk
)
106 inet_hash(&tcp_hashinfo
, sk
);
109 void tcp_unhash(struct sock
*sk
)
111 inet_unhash(&tcp_hashinfo
, sk
);
114 static inline __u32
tcp_v4_init_sequence(struct sock
*sk
, struct sk_buff
*skb
)
116 return secure_tcp_sequence_number(skb
->nh
.iph
->daddr
,
122 int tcp_twsk_unique(struct sock
*sk
, struct sock
*sktw
, void *twp
)
124 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sktw
);
125 struct tcp_sock
*tp
= tcp_sk(sk
);
127 /* With PAWS, it is safe from the viewpoint
128 of data integrity. Even without PAWS it is safe provided sequence
129 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
131 Actually, the idea is close to VJ's one, only timestamp cache is
132 held not per host, but per port pair and TW bucket is used as state
135 If TW bucket has been already destroyed we fall back to VJ's scheme
136 and use initial timestamp retrieved from peer table.
138 if (tcptw
->tw_ts_recent_stamp
&&
139 (twp
== NULL
|| (sysctl_tcp_tw_reuse
&&
140 xtime
.tv_sec
- tcptw
->tw_ts_recent_stamp
> 1))) {
141 tp
->write_seq
= tcptw
->tw_snd_nxt
+ 65535 + 2;
142 if (tp
->write_seq
== 0)
144 tp
->rx_opt
.ts_recent
= tcptw
->tw_ts_recent
;
145 tp
->rx_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
153 EXPORT_SYMBOL_GPL(tcp_twsk_unique
);
155 /* This will initiate an outgoing connection. */
156 int tcp_v4_connect(struct sock
*sk
, struct sockaddr
*uaddr
, int addr_len
)
158 struct inet_sock
*inet
= inet_sk(sk
);
159 struct tcp_sock
*tp
= tcp_sk(sk
);
160 struct sockaddr_in
*usin
= (struct sockaddr_in
*)uaddr
;
162 __be32 daddr
, nexthop
;
166 if (addr_len
< sizeof(struct sockaddr_in
))
169 if (usin
->sin_family
!= AF_INET
)
170 return -EAFNOSUPPORT
;
172 nexthop
= daddr
= usin
->sin_addr
.s_addr
;
173 if (inet
->opt
&& inet
->opt
->srr
) {
176 nexthop
= inet
->opt
->faddr
;
179 tmp
= ip_route_connect(&rt
, nexthop
, inet
->saddr
,
180 RT_CONN_FLAGS(sk
), sk
->sk_bound_dev_if
,
182 inet
->sport
, usin
->sin_port
, sk
);
186 if (rt
->rt_flags
& (RTCF_MULTICAST
| RTCF_BROADCAST
)) {
191 if (!inet
->opt
|| !inet
->opt
->srr
)
195 inet
->saddr
= rt
->rt_src
;
196 inet
->rcv_saddr
= inet
->saddr
;
198 if (tp
->rx_opt
.ts_recent_stamp
&& inet
->daddr
!= daddr
) {
199 /* Reset inherited state */
200 tp
->rx_opt
.ts_recent
= 0;
201 tp
->rx_opt
.ts_recent_stamp
= 0;
205 if (tcp_death_row
.sysctl_tw_recycle
&&
206 !tp
->rx_opt
.ts_recent_stamp
&& rt
->rt_dst
== daddr
) {
207 struct inet_peer
*peer
= rt_get_peer(rt
);
209 /* VJ's idea. We save last timestamp seen from
210 * the destination in peer table, when entering state TIME-WAIT
211 * and initialize rx_opt.ts_recent from it, when trying new connection.
214 if (peer
&& peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
>= xtime
.tv_sec
) {
215 tp
->rx_opt
.ts_recent_stamp
= peer
->tcp_ts_stamp
;
216 tp
->rx_opt
.ts_recent
= peer
->tcp_ts
;
220 inet
->dport
= usin
->sin_port
;
223 inet_csk(sk
)->icsk_ext_hdr_len
= 0;
225 inet_csk(sk
)->icsk_ext_hdr_len
= inet
->opt
->optlen
;
227 tp
->rx_opt
.mss_clamp
= 536;
229 /* Socket identity is still unknown (sport may be zero).
230 * However we set state to SYN-SENT and not releasing socket
231 * lock select source port, enter ourselves into the hash tables and
232 * complete initialization after this.
234 tcp_set_state(sk
, TCP_SYN_SENT
);
235 err
= inet_hash_connect(&tcp_death_row
, sk
);
239 err
= ip_route_newports(&rt
, IPPROTO_TCP
, inet
->sport
, inet
->dport
, sk
);
243 /* OK, now commit destination to socket. */
244 sk
->sk_gso_type
= SKB_GSO_TCPV4
;
245 sk_setup_caps(sk
, &rt
->u
.dst
);
248 tp
->write_seq
= secure_tcp_sequence_number(inet
->saddr
,
253 inet
->id
= tp
->write_seq
^ jiffies
;
255 err
= tcp_connect(sk
);
263 /* This unhashes the socket and releases the local port, if necessary. */
264 tcp_set_state(sk
, TCP_CLOSE
);
266 sk
->sk_route_caps
= 0;
272 * This routine does path mtu discovery as defined in RFC1191.
274 static void do_pmtu_discovery(struct sock
*sk
, struct iphdr
*iph
, u32 mtu
)
276 struct dst_entry
*dst
;
277 struct inet_sock
*inet
= inet_sk(sk
);
279 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
280 * send out by Linux are always <576bytes so they should go through
283 if (sk
->sk_state
== TCP_LISTEN
)
286 /* We don't check in the destentry if pmtu discovery is forbidden
287 * on this route. We just assume that no packet_to_big packets
288 * are send back when pmtu discovery is not active.
289 * There is a small race when the user changes this flag in the
290 * route, but I think that's acceptable.
292 if ((dst
= __sk_dst_check(sk
, 0)) == NULL
)
295 dst
->ops
->update_pmtu(dst
, mtu
);
297 /* Something is about to be wrong... Remember soft error
298 * for the case, if this connection will not able to recover.
300 if (mtu
< dst_mtu(dst
) && ip_dont_fragment(sk
, dst
))
301 sk
->sk_err_soft
= EMSGSIZE
;
305 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
&&
306 inet_csk(sk
)->icsk_pmtu_cookie
> mtu
) {
307 tcp_sync_mss(sk
, mtu
);
309 /* Resend the TCP packet because it's
310 * clear that the old packet has been
311 * dropped. This is the new "fast" path mtu
314 tcp_simple_retransmit(sk
);
315 } /* else let the usual retransmit timer handle it */
319 * This routine is called by the ICMP module when it gets some
320 * sort of error condition. If err < 0 then the socket should
321 * be closed and the error returned to the user. If err > 0
322 * it's just the icmp type << 8 | icmp code. After adjustment
323 * header points to the first 8 bytes of the tcp header. We need
324 * to find the appropriate port.
326 * The locking strategy used here is very "optimistic". When
327 * someone else accesses the socket the ICMP is just dropped
328 * and for some paths there is no check at all.
329 * A more general error queue to queue errors for later handling
330 * is probably better.
334 void tcp_v4_err(struct sk_buff
*skb
, u32 info
)
336 struct iphdr
*iph
= (struct iphdr
*)skb
->data
;
337 struct tcphdr
*th
= (struct tcphdr
*)(skb
->data
+ (iph
->ihl
<< 2));
339 struct inet_sock
*inet
;
340 int type
= skb
->h
.icmph
->type
;
341 int code
= skb
->h
.icmph
->code
;
346 if (skb
->len
< (iph
->ihl
<< 2) + 8) {
347 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS
);
351 sk
= inet_lookup(&tcp_hashinfo
, iph
->daddr
, th
->dest
, iph
->saddr
,
352 th
->source
, inet_iif(skb
));
354 ICMP_INC_STATS_BH(ICMP_MIB_INERRORS
);
357 if (sk
->sk_state
== TCP_TIME_WAIT
) {
358 inet_twsk_put(inet_twsk(sk
));
363 /* If too many ICMPs get dropped on busy
364 * servers this needs to be solved differently.
366 if (sock_owned_by_user(sk
))
367 NET_INC_STATS_BH(LINUX_MIB_LOCKDROPPEDICMPS
);
369 if (sk
->sk_state
== TCP_CLOSE
)
373 seq
= ntohl(th
->seq
);
374 if (sk
->sk_state
!= TCP_LISTEN
&&
375 !between(seq
, tp
->snd_una
, tp
->snd_nxt
)) {
376 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS
);
381 case ICMP_SOURCE_QUENCH
:
382 /* Just silently ignore these. */
384 case ICMP_PARAMETERPROB
:
387 case ICMP_DEST_UNREACH
:
388 if (code
> NR_ICMP_UNREACH
)
391 if (code
== ICMP_FRAG_NEEDED
) { /* PMTU discovery (RFC1191) */
392 if (!sock_owned_by_user(sk
))
393 do_pmtu_discovery(sk
, iph
, info
);
397 err
= icmp_err_convert
[code
].errno
;
399 case ICMP_TIME_EXCEEDED
:
406 switch (sk
->sk_state
) {
407 struct request_sock
*req
, **prev
;
409 if (sock_owned_by_user(sk
))
412 req
= inet_csk_search_req(sk
, &prev
, th
->dest
,
413 iph
->daddr
, iph
->saddr
);
417 /* ICMPs are not backlogged, hence we cannot get
418 an established socket here.
422 if (seq
!= tcp_rsk(req
)->snt_isn
) {
423 NET_INC_STATS_BH(LINUX_MIB_OUTOFWINDOWICMPS
);
428 * Still in SYN_RECV, just remove it silently.
429 * There is no good way to pass the error to the newly
430 * created socket, and POSIX does not want network
431 * errors returned from accept().
433 inet_csk_reqsk_queue_drop(sk
, req
, prev
);
437 case TCP_SYN_RECV
: /* Cannot happen.
438 It can f.e. if SYNs crossed.
440 if (!sock_owned_by_user(sk
)) {
443 sk
->sk_error_report(sk
);
447 sk
->sk_err_soft
= err
;
452 /* If we've already connected we will keep trying
453 * until we time out, or the user gives up.
455 * rfc1122 4.2.3.9 allows to consider as hard errors
456 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
457 * but it is obsoleted by pmtu discovery).
459 * Note, that in modern internet, where routing is unreliable
460 * and in each dark corner broken firewalls sit, sending random
461 * errors ordered by their masters even this two messages finally lose
462 * their original sense (even Linux sends invalid PORT_UNREACHs)
464 * Now we are in compliance with RFCs.
469 if (!sock_owned_by_user(sk
) && inet
->recverr
) {
471 sk
->sk_error_report(sk
);
472 } else { /* Only an error on timeout */
473 sk
->sk_err_soft
= err
;
481 /* This routine computes an IPv4 TCP checksum. */
482 void tcp_v4_send_check(struct sock
*sk
, int len
, struct sk_buff
*skb
)
484 struct inet_sock
*inet
= inet_sk(sk
);
485 struct tcphdr
*th
= skb
->h
.th
;
487 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
488 th
->check
= ~tcp_v4_check(th
, len
, inet
->saddr
, inet
->daddr
, 0);
489 skb
->csum
= offsetof(struct tcphdr
, check
);
491 th
->check
= tcp_v4_check(th
, len
, inet
->saddr
, inet
->daddr
,
492 csum_partial((char *)th
,
498 int tcp_v4_gso_send_check(struct sk_buff
*skb
)
503 if (!pskb_may_pull(skb
, sizeof(*th
)))
510 th
->check
= ~tcp_v4_check(th
, skb
->len
, iph
->saddr
, iph
->daddr
, 0);
511 skb
->csum
= offsetof(struct tcphdr
, check
);
512 skb
->ip_summed
= CHECKSUM_PARTIAL
;
517 * This routine will send an RST to the other tcp.
519 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
521 * Answer: if a packet caused RST, it is not for a socket
522 * existing in our system, if it is matched to a socket,
523 * it is just duplicate segment or bug in other side's TCP.
524 * So that we build reply only basing on parameters
525 * arrived with segment.
526 * Exception: precedence violation. We do not implement it in any case.
529 static void tcp_v4_send_reset(struct sk_buff
*skb
)
531 struct tcphdr
*th
= skb
->h
.th
;
533 struct ip_reply_arg arg
;
535 /* Never send a reset in response to a reset. */
539 if (((struct rtable
*)skb
->dst
)->rt_type
!= RTN_LOCAL
)
542 /* Swap the send and the receive. */
543 memset(&rth
, 0, sizeof(struct tcphdr
));
544 rth
.dest
= th
->source
;
545 rth
.source
= th
->dest
;
546 rth
.doff
= sizeof(struct tcphdr
) / 4;
550 rth
.seq
= th
->ack_seq
;
553 rth
.ack_seq
= htonl(ntohl(th
->seq
) + th
->syn
+ th
->fin
+
554 skb
->len
- (th
->doff
<< 2));
557 memset(&arg
, 0, sizeof arg
);
558 arg
.iov
[0].iov_base
= (unsigned char *)&rth
;
559 arg
.iov
[0].iov_len
= sizeof rth
;
560 arg
.csum
= csum_tcpudp_nofold(skb
->nh
.iph
->daddr
,
561 skb
->nh
.iph
->saddr
, /*XXX*/
562 sizeof(struct tcphdr
), IPPROTO_TCP
, 0);
563 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
565 ip_send_reply(tcp_socket
->sk
, skb
, &arg
, sizeof rth
);
567 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS
);
568 TCP_INC_STATS_BH(TCP_MIB_OUTRSTS
);
571 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
572 outside socket context is ugly, certainly. What can I do?
575 static void tcp_v4_send_ack(struct sk_buff
*skb
, u32 seq
, u32 ack
,
578 struct tcphdr
*th
= skb
->h
.th
;
581 u32 tsopt
[TCPOLEN_TSTAMP_ALIGNED
>> 2];
583 struct ip_reply_arg arg
;
585 memset(&rep
.th
, 0, sizeof(struct tcphdr
));
586 memset(&arg
, 0, sizeof arg
);
588 arg
.iov
[0].iov_base
= (unsigned char *)&rep
;
589 arg
.iov
[0].iov_len
= sizeof(rep
.th
);
591 rep
.tsopt
[0] = htonl((TCPOPT_NOP
<< 24) | (TCPOPT_NOP
<< 16) |
592 (TCPOPT_TIMESTAMP
<< 8) |
594 rep
.tsopt
[1] = htonl(tcp_time_stamp
);
595 rep
.tsopt
[2] = htonl(ts
);
596 arg
.iov
[0].iov_len
= sizeof(rep
);
599 /* Swap the send and the receive. */
600 rep
.th
.dest
= th
->source
;
601 rep
.th
.source
= th
->dest
;
602 rep
.th
.doff
= arg
.iov
[0].iov_len
/ 4;
603 rep
.th
.seq
= htonl(seq
);
604 rep
.th
.ack_seq
= htonl(ack
);
606 rep
.th
.window
= htons(win
);
608 arg
.csum
= csum_tcpudp_nofold(skb
->nh
.iph
->daddr
,
609 skb
->nh
.iph
->saddr
, /*XXX*/
610 arg
.iov
[0].iov_len
, IPPROTO_TCP
, 0);
611 arg
.csumoffset
= offsetof(struct tcphdr
, check
) / 2;
613 ip_send_reply(tcp_socket
->sk
, skb
, &arg
, arg
.iov
[0].iov_len
);
615 TCP_INC_STATS_BH(TCP_MIB_OUTSEGS
);
618 static void tcp_v4_timewait_ack(struct sock
*sk
, struct sk_buff
*skb
)
620 struct inet_timewait_sock
*tw
= inet_twsk(sk
);
621 const struct tcp_timewait_sock
*tcptw
= tcp_twsk(sk
);
623 tcp_v4_send_ack(skb
, tcptw
->tw_snd_nxt
, tcptw
->tw_rcv_nxt
,
624 tcptw
->tw_rcv_wnd
>> tw
->tw_rcv_wscale
, tcptw
->tw_ts_recent
);
629 static void tcp_v4_reqsk_send_ack(struct sk_buff
*skb
, struct request_sock
*req
)
631 tcp_v4_send_ack(skb
, tcp_rsk(req
)->snt_isn
+ 1, tcp_rsk(req
)->rcv_isn
+ 1, req
->rcv_wnd
,
636 * Send a SYN-ACK after having received an ACK.
637 * This still operates on a request_sock only, not on a big
640 static int tcp_v4_send_synack(struct sock
*sk
, struct request_sock
*req
,
641 struct dst_entry
*dst
)
643 const struct inet_request_sock
*ireq
= inet_rsk(req
);
645 struct sk_buff
* skb
;
647 /* First, grab a route. */
648 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
651 skb
= tcp_make_synack(sk
, dst
, req
);
654 struct tcphdr
*th
= skb
->h
.th
;
656 th
->check
= tcp_v4_check(th
, skb
->len
,
659 csum_partial((char *)th
, skb
->len
,
662 err
= ip_build_and_send_pkt(skb
, sk
, ireq
->loc_addr
,
665 if (err
== NET_XMIT_CN
)
675 * IPv4 request_sock destructor.
677 static void tcp_v4_reqsk_destructor(struct request_sock
*req
)
679 kfree(inet_rsk(req
)->opt
);
682 #ifdef CONFIG_SYN_COOKIES
683 static void syn_flood_warning(struct sk_buff
*skb
)
685 static unsigned long warntime
;
687 if (time_after(jiffies
, (warntime
+ HZ
* 60))) {
690 "possible SYN flooding on port %d. Sending cookies.\n",
691 ntohs(skb
->h
.th
->dest
));
697 * Save and compile IPv4 options into the request_sock if needed.
699 static struct ip_options
*tcp_v4_save_options(struct sock
*sk
,
702 struct ip_options
*opt
= &(IPCB(skb
)->opt
);
703 struct ip_options
*dopt
= NULL
;
705 if (opt
&& opt
->optlen
) {
706 int opt_size
= optlength(opt
);
707 dopt
= kmalloc(opt_size
, GFP_ATOMIC
);
709 if (ip_options_echo(dopt
, skb
)) {
718 struct request_sock_ops tcp_request_sock_ops
= {
720 .obj_size
= sizeof(struct tcp_request_sock
),
721 .rtx_syn_ack
= tcp_v4_send_synack
,
722 .send_ack
= tcp_v4_reqsk_send_ack
,
723 .destructor
= tcp_v4_reqsk_destructor
,
724 .send_reset
= tcp_v4_send_reset
,
727 static struct timewait_sock_ops tcp_timewait_sock_ops
= {
728 .twsk_obj_size
= sizeof(struct tcp_timewait_sock
),
729 .twsk_unique
= tcp_twsk_unique
,
732 int tcp_v4_conn_request(struct sock
*sk
, struct sk_buff
*skb
)
734 struct inet_request_sock
*ireq
;
735 struct tcp_options_received tmp_opt
;
736 struct request_sock
*req
;
737 __be32 saddr
= skb
->nh
.iph
->saddr
;
738 __be32 daddr
= skb
->nh
.iph
->daddr
;
739 __u32 isn
= TCP_SKB_CB(skb
)->when
;
740 struct dst_entry
*dst
= NULL
;
741 #ifdef CONFIG_SYN_COOKIES
744 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
747 /* Never answer to SYNs send to broadcast or multicast */
748 if (((struct rtable
*)skb
->dst
)->rt_flags
&
749 (RTCF_BROADCAST
| RTCF_MULTICAST
))
752 /* TW buckets are converted to open requests without
753 * limitations, they conserve resources and peer is
754 * evidently real one.
756 if (inet_csk_reqsk_queue_is_full(sk
) && !isn
) {
757 #ifdef CONFIG_SYN_COOKIES
758 if (sysctl_tcp_syncookies
) {
765 /* Accept backlog is full. If we have already queued enough
766 * of warm entries in syn queue, drop request. It is better than
767 * clogging syn queue with openreqs with exponentially increasing
770 if (sk_acceptq_is_full(sk
) && inet_csk_reqsk_queue_young(sk
) > 1)
773 req
= reqsk_alloc(&tcp_request_sock_ops
);
777 tcp_clear_options(&tmp_opt
);
778 tmp_opt
.mss_clamp
= 536;
779 tmp_opt
.user_mss
= tcp_sk(sk
)->rx_opt
.user_mss
;
781 tcp_parse_options(skb
, &tmp_opt
, 0);
784 tcp_clear_options(&tmp_opt
);
785 tmp_opt
.saw_tstamp
= 0;
788 if (tmp_opt
.saw_tstamp
&& !tmp_opt
.rcv_tsval
) {
789 /* Some OSes (unknown ones, but I see them on web server, which
790 * contains information interesting only for windows'
791 * users) do not send their stamp in SYN. It is easy case.
792 * We simply do not advertise TS support.
794 tmp_opt
.saw_tstamp
= 0;
795 tmp_opt
.tstamp_ok
= 0;
797 tmp_opt
.tstamp_ok
= tmp_opt
.saw_tstamp
;
799 tcp_openreq_init(req
, &tmp_opt
, skb
);
801 if (security_inet_conn_request(sk
, skb
, req
))
804 ireq
= inet_rsk(req
);
805 ireq
->loc_addr
= daddr
;
806 ireq
->rmt_addr
= saddr
;
807 ireq
->opt
= tcp_v4_save_options(sk
, skb
);
809 TCP_ECN_create_request(req
, skb
->h
.th
);
812 #ifdef CONFIG_SYN_COOKIES
813 syn_flood_warning(skb
);
815 isn
= cookie_v4_init_sequence(sk
, skb
, &req
->mss
);
817 struct inet_peer
*peer
= NULL
;
819 /* VJ's idea. We save last timestamp seen
820 * from the destination in peer table, when entering
821 * state TIME-WAIT, and check against it before
822 * accepting new connection request.
824 * If "isn" is not zero, this request hit alive
825 * timewait bucket, so that all the necessary checks
826 * are made in the function processing timewait state.
828 if (tmp_opt
.saw_tstamp
&&
829 tcp_death_row
.sysctl_tw_recycle
&&
830 (dst
= inet_csk_route_req(sk
, req
)) != NULL
&&
831 (peer
= rt_get_peer((struct rtable
*)dst
)) != NULL
&&
832 peer
->v4daddr
== saddr
) {
833 if (xtime
.tv_sec
< peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
&&
834 (s32
)(peer
->tcp_ts
- req
->ts_recent
) >
836 NET_INC_STATS_BH(LINUX_MIB_PAWSPASSIVEREJECTED
);
841 /* Kill the following clause, if you dislike this way. */
842 else if (!sysctl_tcp_syncookies
&&
843 (sysctl_max_syn_backlog
- inet_csk_reqsk_queue_len(sk
) <
844 (sysctl_max_syn_backlog
>> 2)) &&
845 (!peer
|| !peer
->tcp_ts_stamp
) &&
846 (!dst
|| !dst_metric(dst
, RTAX_RTT
))) {
847 /* Without syncookies last quarter of
848 * backlog is filled with destinations,
849 * proven to be alive.
850 * It means that we continue to communicate
851 * to destinations, already remembered
852 * to the moment of synflood.
854 LIMIT_NETDEBUG(KERN_DEBUG
"TCP: drop open "
855 "request from %u.%u.%u.%u/%u\n",
857 ntohs(skb
->h
.th
->source
));
862 isn
= tcp_v4_init_sequence(sk
, skb
);
864 tcp_rsk(req
)->snt_isn
= isn
;
866 if (tcp_v4_send_synack(sk
, req
, dst
))
872 inet_csk_reqsk_queue_hash_add(sk
, req
, TCP_TIMEOUT_INIT
);
884 * The three way handshake has completed - we got a valid synack -
885 * now create the new socket.
887 struct sock
*tcp_v4_syn_recv_sock(struct sock
*sk
, struct sk_buff
*skb
,
888 struct request_sock
*req
,
889 struct dst_entry
*dst
)
891 struct inet_request_sock
*ireq
;
892 struct inet_sock
*newinet
;
893 struct tcp_sock
*newtp
;
896 if (sk_acceptq_is_full(sk
))
899 if (!dst
&& (dst
= inet_csk_route_req(sk
, req
)) == NULL
)
902 newsk
= tcp_create_openreq_child(sk
, req
, skb
);
906 newsk
->sk_gso_type
= SKB_GSO_TCPV4
;
907 sk_setup_caps(newsk
, dst
);
909 newtp
= tcp_sk(newsk
);
910 newinet
= inet_sk(newsk
);
911 ireq
= inet_rsk(req
);
912 newinet
->daddr
= ireq
->rmt_addr
;
913 newinet
->rcv_saddr
= ireq
->loc_addr
;
914 newinet
->saddr
= ireq
->loc_addr
;
915 newinet
->opt
= ireq
->opt
;
917 newinet
->mc_index
= inet_iif(skb
);
918 newinet
->mc_ttl
= skb
->nh
.iph
->ttl
;
919 inet_csk(newsk
)->icsk_ext_hdr_len
= 0;
921 inet_csk(newsk
)->icsk_ext_hdr_len
= newinet
->opt
->optlen
;
922 newinet
->id
= newtp
->write_seq
^ jiffies
;
924 tcp_mtup_init(newsk
);
925 tcp_sync_mss(newsk
, dst_mtu(dst
));
926 newtp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
927 tcp_initialize_rcv_mss(newsk
);
929 __inet_hash(&tcp_hashinfo
, newsk
, 0);
930 __inet_inherit_port(&tcp_hashinfo
, sk
, newsk
);
935 NET_INC_STATS_BH(LINUX_MIB_LISTENOVERFLOWS
);
937 NET_INC_STATS_BH(LINUX_MIB_LISTENDROPS
);
942 static struct sock
*tcp_v4_hnd_req(struct sock
*sk
, struct sk_buff
*skb
)
944 struct tcphdr
*th
= skb
->h
.th
;
945 struct iphdr
*iph
= skb
->nh
.iph
;
947 struct request_sock
**prev
;
948 /* Find possible connection requests. */
949 struct request_sock
*req
= inet_csk_search_req(sk
, &prev
, th
->source
,
950 iph
->saddr
, iph
->daddr
);
952 return tcp_check_req(sk
, skb
, req
, prev
);
954 nsk
= inet_lookup_established(&tcp_hashinfo
, skb
->nh
.iph
->saddr
,
955 th
->source
, skb
->nh
.iph
->daddr
,
956 th
->dest
, inet_iif(skb
));
959 if (nsk
->sk_state
!= TCP_TIME_WAIT
) {
963 inet_twsk_put(inet_twsk(nsk
));
967 #ifdef CONFIG_SYN_COOKIES
968 if (!th
->rst
&& !th
->syn
&& th
->ack
)
969 sk
= cookie_v4_check(sk
, skb
, &(IPCB(skb
)->opt
));
974 static int tcp_v4_checksum_init(struct sk_buff
*skb
)
976 if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
977 if (!tcp_v4_check(skb
->h
.th
, skb
->len
, skb
->nh
.iph
->saddr
,
978 skb
->nh
.iph
->daddr
, skb
->csum
)) {
979 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
984 skb
->csum
= csum_tcpudp_nofold(skb
->nh
.iph
->saddr
, skb
->nh
.iph
->daddr
,
985 skb
->len
, IPPROTO_TCP
, 0);
987 if (skb
->len
<= 76) {
988 return __skb_checksum_complete(skb
);
994 /* The socket must have it's spinlock held when we get
997 * We have a potential double-lock case here, so even when
998 * doing backlog processing we use the BH locking scheme.
999 * This is because we cannot sleep with the original spinlock
1002 int tcp_v4_do_rcv(struct sock
*sk
, struct sk_buff
*skb
)
1004 if (sk
->sk_state
== TCP_ESTABLISHED
) { /* Fast path */
1005 TCP_CHECK_TIMER(sk
);
1006 if (tcp_rcv_established(sk
, skb
, skb
->h
.th
, skb
->len
))
1008 TCP_CHECK_TIMER(sk
);
1012 if (skb
->len
< (skb
->h
.th
->doff
<< 2) || tcp_checksum_complete(skb
))
1015 if (sk
->sk_state
== TCP_LISTEN
) {
1016 struct sock
*nsk
= tcp_v4_hnd_req(sk
, skb
);
1021 if (tcp_child_process(sk
, nsk
, skb
))
1027 TCP_CHECK_TIMER(sk
);
1028 if (tcp_rcv_state_process(sk
, skb
, skb
->h
.th
, skb
->len
))
1030 TCP_CHECK_TIMER(sk
);
1034 tcp_v4_send_reset(skb
);
1037 /* Be careful here. If this function gets more complicated and
1038 * gcc suffers from register pressure on the x86, sk (in %ebx)
1039 * might be destroyed here. This current version compiles correctly,
1040 * but you have been warned.
1045 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1053 int tcp_v4_rcv(struct sk_buff
*skb
)
1059 if (skb
->pkt_type
!= PACKET_HOST
)
1062 /* Count it even if it's bad */
1063 TCP_INC_STATS_BH(TCP_MIB_INSEGS
);
1065 if (!pskb_may_pull(skb
, sizeof(struct tcphdr
)))
1070 if (th
->doff
< sizeof(struct tcphdr
) / 4)
1072 if (!pskb_may_pull(skb
, th
->doff
* 4))
1075 /* An explanation is required here, I think.
1076 * Packet length and doff are validated by header prediction,
1077 * provided case of th->doff==0 is eliminated.
1078 * So, we defer the checks. */
1079 if ((skb
->ip_summed
!= CHECKSUM_UNNECESSARY
&&
1080 tcp_v4_checksum_init(skb
)))
1084 TCP_SKB_CB(skb
)->seq
= ntohl(th
->seq
);
1085 TCP_SKB_CB(skb
)->end_seq
= (TCP_SKB_CB(skb
)->seq
+ th
->syn
+ th
->fin
+
1086 skb
->len
- th
->doff
* 4);
1087 TCP_SKB_CB(skb
)->ack_seq
= ntohl(th
->ack_seq
);
1088 TCP_SKB_CB(skb
)->when
= 0;
1089 TCP_SKB_CB(skb
)->flags
= skb
->nh
.iph
->tos
;
1090 TCP_SKB_CB(skb
)->sacked
= 0;
1092 sk
= __inet_lookup(&tcp_hashinfo
, skb
->nh
.iph
->saddr
, th
->source
,
1093 skb
->nh
.iph
->daddr
, th
->dest
,
1100 if (sk
->sk_state
== TCP_TIME_WAIT
)
1103 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1104 goto discard_and_relse
;
1107 if (sk_filter(sk
, skb
))
1108 goto discard_and_relse
;
1112 bh_lock_sock_nested(sk
);
1114 if (!sock_owned_by_user(sk
)) {
1115 #ifdef CONFIG_NET_DMA
1116 struct tcp_sock
*tp
= tcp_sk(sk
);
1117 if (!tp
->ucopy
.dma_chan
&& tp
->ucopy
.pinned_list
)
1118 tp
->ucopy
.dma_chan
= get_softnet_dma();
1119 if (tp
->ucopy
.dma_chan
)
1120 ret
= tcp_v4_do_rcv(sk
, skb
);
1124 if (!tcp_prequeue(sk
, skb
))
1125 ret
= tcp_v4_do_rcv(sk
, skb
);
1128 sk_add_backlog(sk
, skb
);
1136 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1139 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1141 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1143 tcp_v4_send_reset(skb
);
1147 /* Discard frame. */
1156 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
)) {
1157 inet_twsk_put(inet_twsk(sk
));
1161 if (skb
->len
< (th
->doff
<< 2) || tcp_checksum_complete(skb
)) {
1162 TCP_INC_STATS_BH(TCP_MIB_INERRS
);
1163 inet_twsk_put(inet_twsk(sk
));
1166 switch (tcp_timewait_state_process(inet_twsk(sk
), skb
, th
)) {
1168 struct sock
*sk2
= inet_lookup_listener(&tcp_hashinfo
,
1173 inet_twsk_deschedule(inet_twsk(sk
), &tcp_death_row
);
1174 inet_twsk_put(inet_twsk(sk
));
1178 /* Fall through to ACK */
1181 tcp_v4_timewait_ack(sk
, skb
);
1185 case TCP_TW_SUCCESS
:;
1190 /* VJ's idea. Save last timestamp seen from this destination
1191 * and hold it at least for normal timewait interval to use for duplicate
1192 * segment detection in subsequent connections, before they enter synchronized
1196 int tcp_v4_remember_stamp(struct sock
*sk
)
1198 struct inet_sock
*inet
= inet_sk(sk
);
1199 struct tcp_sock
*tp
= tcp_sk(sk
);
1200 struct rtable
*rt
= (struct rtable
*)__sk_dst_get(sk
);
1201 struct inet_peer
*peer
= NULL
;
1204 if (!rt
|| rt
->rt_dst
!= inet
->daddr
) {
1205 peer
= inet_getpeer(inet
->daddr
, 1);
1209 rt_bind_peer(rt
, 1);
1214 if ((s32
)(peer
->tcp_ts
- tp
->rx_opt
.ts_recent
) <= 0 ||
1215 (peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
< xtime
.tv_sec
&&
1216 peer
->tcp_ts_stamp
<= tp
->rx_opt
.ts_recent_stamp
)) {
1217 peer
->tcp_ts_stamp
= tp
->rx_opt
.ts_recent_stamp
;
1218 peer
->tcp_ts
= tp
->rx_opt
.ts_recent
;
1228 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock
*tw
)
1230 struct inet_peer
*peer
= inet_getpeer(tw
->tw_daddr
, 1);
1233 const struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
1235 if ((s32
)(peer
->tcp_ts
- tcptw
->tw_ts_recent
) <= 0 ||
1236 (peer
->tcp_ts_stamp
+ TCP_PAWS_MSL
< xtime
.tv_sec
&&
1237 peer
->tcp_ts_stamp
<= tcptw
->tw_ts_recent_stamp
)) {
1238 peer
->tcp_ts_stamp
= tcptw
->tw_ts_recent_stamp
;
1239 peer
->tcp_ts
= tcptw
->tw_ts_recent
;
1248 struct inet_connection_sock_af_ops ipv4_specific
= {
1249 .queue_xmit
= ip_queue_xmit
,
1250 .send_check
= tcp_v4_send_check
,
1251 .rebuild_header
= inet_sk_rebuild_header
,
1252 .conn_request
= tcp_v4_conn_request
,
1253 .syn_recv_sock
= tcp_v4_syn_recv_sock
,
1254 .remember_stamp
= tcp_v4_remember_stamp
,
1255 .net_header_len
= sizeof(struct iphdr
),
1256 .setsockopt
= ip_setsockopt
,
1257 .getsockopt
= ip_getsockopt
,
1258 .addr2sockaddr
= inet_csk_addr2sockaddr
,
1259 .sockaddr_len
= sizeof(struct sockaddr_in
),
1260 #ifdef CONFIG_COMPAT
1261 .compat_setsockopt
= compat_ip_setsockopt
,
1262 .compat_getsockopt
= compat_ip_getsockopt
,
1266 /* NOTE: A lot of things set to zero explicitly by call to
1267 * sk_alloc() so need not be done here.
1269 static int tcp_v4_init_sock(struct sock
*sk
)
1271 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1272 struct tcp_sock
*tp
= tcp_sk(sk
);
1274 skb_queue_head_init(&tp
->out_of_order_queue
);
1275 tcp_init_xmit_timers(sk
);
1276 tcp_prequeue_init(tp
);
1278 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
1279 tp
->mdev
= TCP_TIMEOUT_INIT
;
1281 /* So many TCP implementations out there (incorrectly) count the
1282 * initial SYN frame in their delayed-ACK and congestion control
1283 * algorithms that we must have the following bandaid to talk
1284 * efficiently to them. -DaveM
1288 /* See draft-stevens-tcpca-spec-01 for discussion of the
1289 * initialization of these values.
1291 tp
->snd_ssthresh
= 0x7fffffff; /* Infinity */
1292 tp
->snd_cwnd_clamp
= ~0;
1293 tp
->mss_cache
= 536;
1295 tp
->reordering
= sysctl_tcp_reordering
;
1296 icsk
->icsk_ca_ops
= &tcp_init_congestion_ops
;
1298 sk
->sk_state
= TCP_CLOSE
;
1300 sk
->sk_write_space
= sk_stream_write_space
;
1301 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
1303 icsk
->icsk_af_ops
= &ipv4_specific
;
1304 icsk
->icsk_sync_mss
= tcp_sync_mss
;
1306 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
1307 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
1309 atomic_inc(&tcp_sockets_allocated
);
1314 int tcp_v4_destroy_sock(struct sock
*sk
)
1316 struct tcp_sock
*tp
= tcp_sk(sk
);
1318 tcp_clear_xmit_timers(sk
);
1320 tcp_cleanup_congestion_control(sk
);
1322 /* Cleanup up the write buffer. */
1323 sk_stream_writequeue_purge(sk
);
1325 /* Cleans up our, hopefully empty, out_of_order_queue. */
1326 __skb_queue_purge(&tp
->out_of_order_queue
);
1328 #ifdef CONFIG_NET_DMA
1329 /* Cleans up our sk_async_wait_queue */
1330 __skb_queue_purge(&sk
->sk_async_wait_queue
);
1333 /* Clean prequeue, it must be empty really */
1334 __skb_queue_purge(&tp
->ucopy
.prequeue
);
1336 /* Clean up a referenced TCP bind bucket. */
1337 if (inet_csk(sk
)->icsk_bind_hash
)
1338 inet_put_port(&tcp_hashinfo
, sk
);
1341 * If sendmsg cached page exists, toss it.
1343 if (sk
->sk_sndmsg_page
) {
1344 __free_page(sk
->sk_sndmsg_page
);
1345 sk
->sk_sndmsg_page
= NULL
;
1348 atomic_dec(&tcp_sockets_allocated
);
1353 EXPORT_SYMBOL(tcp_v4_destroy_sock
);
1355 #ifdef CONFIG_PROC_FS
1356 /* Proc filesystem TCP sock list dumping. */
1358 static inline struct inet_timewait_sock
*tw_head(struct hlist_head
*head
)
1360 return hlist_empty(head
) ? NULL
:
1361 list_entry(head
->first
, struct inet_timewait_sock
, tw_node
);
1364 static inline struct inet_timewait_sock
*tw_next(struct inet_timewait_sock
*tw
)
1366 return tw
->tw_node
.next
?
1367 hlist_entry(tw
->tw_node
.next
, typeof(*tw
), tw_node
) : NULL
;
1370 static void *listening_get_next(struct seq_file
*seq
, void *cur
)
1372 struct inet_connection_sock
*icsk
;
1373 struct hlist_node
*node
;
1374 struct sock
*sk
= cur
;
1375 struct tcp_iter_state
* st
= seq
->private;
1379 sk
= sk_head(&tcp_hashinfo
.listening_hash
[0]);
1385 if (st
->state
== TCP_SEQ_STATE_OPENREQ
) {
1386 struct request_sock
*req
= cur
;
1388 icsk
= inet_csk(st
->syn_wait_sk
);
1392 if (req
->rsk_ops
->family
== st
->family
) {
1398 if (++st
->sbucket
>= TCP_SYNQ_HSIZE
)
1401 req
= icsk
->icsk_accept_queue
.listen_opt
->syn_table
[st
->sbucket
];
1403 sk
= sk_next(st
->syn_wait_sk
);
1404 st
->state
= TCP_SEQ_STATE_LISTENING
;
1405 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1407 icsk
= inet_csk(sk
);
1408 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1409 if (reqsk_queue_len(&icsk
->icsk_accept_queue
))
1411 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1415 sk_for_each_from(sk
, node
) {
1416 if (sk
->sk_family
== st
->family
) {
1420 icsk
= inet_csk(sk
);
1421 read_lock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1422 if (reqsk_queue_len(&icsk
->icsk_accept_queue
)) {
1424 st
->uid
= sock_i_uid(sk
);
1425 st
->syn_wait_sk
= sk
;
1426 st
->state
= TCP_SEQ_STATE_OPENREQ
;
1430 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1432 if (++st
->bucket
< INET_LHTABLE_SIZE
) {
1433 sk
= sk_head(&tcp_hashinfo
.listening_hash
[st
->bucket
]);
1441 static void *listening_get_idx(struct seq_file
*seq
, loff_t
*pos
)
1443 void *rc
= listening_get_next(seq
, NULL
);
1445 while (rc
&& *pos
) {
1446 rc
= listening_get_next(seq
, rc
);
1452 static void *established_get_first(struct seq_file
*seq
)
1454 struct tcp_iter_state
* st
= seq
->private;
1457 for (st
->bucket
= 0; st
->bucket
< tcp_hashinfo
.ehash_size
; ++st
->bucket
) {
1459 struct hlist_node
*node
;
1460 struct inet_timewait_sock
*tw
;
1462 /* We can reschedule _before_ having picked the target: */
1463 cond_resched_softirq();
1465 read_lock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1466 sk_for_each(sk
, node
, &tcp_hashinfo
.ehash
[st
->bucket
].chain
) {
1467 if (sk
->sk_family
!= st
->family
) {
1473 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
1474 inet_twsk_for_each(tw
, node
,
1475 &tcp_hashinfo
.ehash
[st
->bucket
+ tcp_hashinfo
.ehash_size
].chain
) {
1476 if (tw
->tw_family
!= st
->family
) {
1482 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1483 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
1489 static void *established_get_next(struct seq_file
*seq
, void *cur
)
1491 struct sock
*sk
= cur
;
1492 struct inet_timewait_sock
*tw
;
1493 struct hlist_node
*node
;
1494 struct tcp_iter_state
* st
= seq
->private;
1498 if (st
->state
== TCP_SEQ_STATE_TIME_WAIT
) {
1502 while (tw
&& tw
->tw_family
!= st
->family
) {
1509 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1510 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
1512 /* We can reschedule between buckets: */
1513 cond_resched_softirq();
1515 if (++st
->bucket
< tcp_hashinfo
.ehash_size
) {
1516 read_lock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1517 sk
= sk_head(&tcp_hashinfo
.ehash
[st
->bucket
].chain
);
1525 sk_for_each_from(sk
, node
) {
1526 if (sk
->sk_family
== st
->family
)
1530 st
->state
= TCP_SEQ_STATE_TIME_WAIT
;
1531 tw
= tw_head(&tcp_hashinfo
.ehash
[st
->bucket
+ tcp_hashinfo
.ehash_size
].chain
);
1539 static void *established_get_idx(struct seq_file
*seq
, loff_t pos
)
1541 void *rc
= established_get_first(seq
);
1544 rc
= established_get_next(seq
, rc
);
1550 static void *tcp_get_idx(struct seq_file
*seq
, loff_t pos
)
1553 struct tcp_iter_state
* st
= seq
->private;
1555 inet_listen_lock(&tcp_hashinfo
);
1556 st
->state
= TCP_SEQ_STATE_LISTENING
;
1557 rc
= listening_get_idx(seq
, &pos
);
1560 inet_listen_unlock(&tcp_hashinfo
);
1562 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
1563 rc
= established_get_idx(seq
, pos
);
1569 static void *tcp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1571 struct tcp_iter_state
* st
= seq
->private;
1572 st
->state
= TCP_SEQ_STATE_LISTENING
;
1574 return *pos
? tcp_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
1577 static void *tcp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1580 struct tcp_iter_state
* st
;
1582 if (v
== SEQ_START_TOKEN
) {
1583 rc
= tcp_get_idx(seq
, 0);
1588 switch (st
->state
) {
1589 case TCP_SEQ_STATE_OPENREQ
:
1590 case TCP_SEQ_STATE_LISTENING
:
1591 rc
= listening_get_next(seq
, v
);
1593 inet_listen_unlock(&tcp_hashinfo
);
1595 st
->state
= TCP_SEQ_STATE_ESTABLISHED
;
1596 rc
= established_get_first(seq
);
1599 case TCP_SEQ_STATE_ESTABLISHED
:
1600 case TCP_SEQ_STATE_TIME_WAIT
:
1601 rc
= established_get_next(seq
, v
);
1609 static void tcp_seq_stop(struct seq_file
*seq
, void *v
)
1611 struct tcp_iter_state
* st
= seq
->private;
1613 switch (st
->state
) {
1614 case TCP_SEQ_STATE_OPENREQ
:
1616 struct inet_connection_sock
*icsk
= inet_csk(st
->syn_wait_sk
);
1617 read_unlock_bh(&icsk
->icsk_accept_queue
.syn_wait_lock
);
1619 case TCP_SEQ_STATE_LISTENING
:
1620 if (v
!= SEQ_START_TOKEN
)
1621 inet_listen_unlock(&tcp_hashinfo
);
1623 case TCP_SEQ_STATE_TIME_WAIT
:
1624 case TCP_SEQ_STATE_ESTABLISHED
:
1626 read_unlock(&tcp_hashinfo
.ehash
[st
->bucket
].lock
);
1632 static int tcp_seq_open(struct inode
*inode
, struct file
*file
)
1634 struct tcp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
1635 struct seq_file
*seq
;
1636 struct tcp_iter_state
*s
;
1639 if (unlikely(afinfo
== NULL
))
1642 s
= kzalloc(sizeof(*s
), GFP_KERNEL
);
1645 s
->family
= afinfo
->family
;
1646 s
->seq_ops
.start
= tcp_seq_start
;
1647 s
->seq_ops
.next
= tcp_seq_next
;
1648 s
->seq_ops
.show
= afinfo
->seq_show
;
1649 s
->seq_ops
.stop
= tcp_seq_stop
;
1651 rc
= seq_open(file
, &s
->seq_ops
);
1654 seq
= file
->private_data
;
1663 int tcp_proc_register(struct tcp_seq_afinfo
*afinfo
)
1666 struct proc_dir_entry
*p
;
1670 afinfo
->seq_fops
->owner
= afinfo
->owner
;
1671 afinfo
->seq_fops
->open
= tcp_seq_open
;
1672 afinfo
->seq_fops
->read
= seq_read
;
1673 afinfo
->seq_fops
->llseek
= seq_lseek
;
1674 afinfo
->seq_fops
->release
= seq_release_private
;
1676 p
= proc_net_fops_create(afinfo
->name
, S_IRUGO
, afinfo
->seq_fops
);
1684 void tcp_proc_unregister(struct tcp_seq_afinfo
*afinfo
)
1688 proc_net_remove(afinfo
->name
);
1689 memset(afinfo
->seq_fops
, 0, sizeof(*afinfo
->seq_fops
));
1692 static void get_openreq4(struct sock
*sk
, struct request_sock
*req
,
1693 char *tmpbuf
, int i
, int uid
)
1695 const struct inet_request_sock
*ireq
= inet_rsk(req
);
1696 int ttd
= req
->expires
- jiffies
;
1698 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X"
1699 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p",
1702 ntohs(inet_sk(sk
)->sport
),
1704 ntohs(ireq
->rmt_port
),
1706 0, 0, /* could print option size, but that is af dependent. */
1707 1, /* timers active (only the expire timer) */
1708 jiffies_to_clock_t(ttd
),
1711 0, /* non standard timer */
1712 0, /* open_requests have no inode */
1713 atomic_read(&sk
->sk_refcnt
),
1717 static void get_tcp4_sock(struct sock
*sp
, char *tmpbuf
, int i
)
1720 unsigned long timer_expires
;
1721 struct tcp_sock
*tp
= tcp_sk(sp
);
1722 const struct inet_connection_sock
*icsk
= inet_csk(sp
);
1723 struct inet_sock
*inet
= inet_sk(sp
);
1724 unsigned int dest
= inet
->daddr
;
1725 unsigned int src
= inet
->rcv_saddr
;
1726 __u16 destp
= ntohs(inet
->dport
);
1727 __u16 srcp
= ntohs(inet
->sport
);
1729 if (icsk
->icsk_pending
== ICSK_TIME_RETRANS
) {
1731 timer_expires
= icsk
->icsk_timeout
;
1732 } else if (icsk
->icsk_pending
== ICSK_TIME_PROBE0
) {
1734 timer_expires
= icsk
->icsk_timeout
;
1735 } else if (timer_pending(&sp
->sk_timer
)) {
1737 timer_expires
= sp
->sk_timer
.expires
;
1740 timer_expires
= jiffies
;
1743 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
1744 "%08X %5d %8d %lu %d %p %u %u %u %u %d",
1745 i
, src
, srcp
, dest
, destp
, sp
->sk_state
,
1746 tp
->write_seq
- tp
->snd_una
,
1747 (sp
->sk_state
== TCP_LISTEN
) ? sp
->sk_ack_backlog
: (tp
->rcv_nxt
- tp
->copied_seq
),
1749 jiffies_to_clock_t(timer_expires
- jiffies
),
1750 icsk
->icsk_retransmits
,
1752 icsk
->icsk_probes_out
,
1754 atomic_read(&sp
->sk_refcnt
), sp
,
1757 (icsk
->icsk_ack
.quick
<< 1) | icsk
->icsk_ack
.pingpong
,
1759 tp
->snd_ssthresh
>= 0xFFFF ? -1 : tp
->snd_ssthresh
);
1762 static void get_timewait4_sock(struct inet_timewait_sock
*tw
, char *tmpbuf
, int i
)
1766 int ttd
= tw
->tw_ttd
- jiffies
;
1771 dest
= tw
->tw_daddr
;
1772 src
= tw
->tw_rcv_saddr
;
1773 destp
= ntohs(tw
->tw_dport
);
1774 srcp
= ntohs(tw
->tw_sport
);
1776 sprintf(tmpbuf
, "%4d: %08X:%04X %08X:%04X"
1777 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p",
1778 i
, src
, srcp
, dest
, destp
, tw
->tw_substate
, 0, 0,
1779 3, jiffies_to_clock_t(ttd
), 0, 0, 0, 0,
1780 atomic_read(&tw
->tw_refcnt
), tw
);
1785 static int tcp4_seq_show(struct seq_file
*seq
, void *v
)
1787 struct tcp_iter_state
* st
;
1788 char tmpbuf
[TMPSZ
+ 1];
1790 if (v
== SEQ_START_TOKEN
) {
1791 seq_printf(seq
, "%-*s\n", TMPSZ
- 1,
1792 " sl local_address rem_address st tx_queue "
1793 "rx_queue tr tm->when retrnsmt uid timeout "
1799 switch (st
->state
) {
1800 case TCP_SEQ_STATE_LISTENING
:
1801 case TCP_SEQ_STATE_ESTABLISHED
:
1802 get_tcp4_sock(v
, tmpbuf
, st
->num
);
1804 case TCP_SEQ_STATE_OPENREQ
:
1805 get_openreq4(st
->syn_wait_sk
, v
, tmpbuf
, st
->num
, st
->uid
);
1807 case TCP_SEQ_STATE_TIME_WAIT
:
1808 get_timewait4_sock(v
, tmpbuf
, st
->num
);
1811 seq_printf(seq
, "%-*s\n", TMPSZ
- 1, tmpbuf
);
1816 static struct file_operations tcp4_seq_fops
;
1817 static struct tcp_seq_afinfo tcp4_seq_afinfo
= {
1818 .owner
= THIS_MODULE
,
1821 .seq_show
= tcp4_seq_show
,
1822 .seq_fops
= &tcp4_seq_fops
,
1825 int __init
tcp4_proc_init(void)
1827 return tcp_proc_register(&tcp4_seq_afinfo
);
1830 void tcp4_proc_exit(void)
1832 tcp_proc_unregister(&tcp4_seq_afinfo
);
1834 #endif /* CONFIG_PROC_FS */
1836 struct proto tcp_prot
= {
1838 .owner
= THIS_MODULE
,
1840 .connect
= tcp_v4_connect
,
1841 .disconnect
= tcp_disconnect
,
1842 .accept
= inet_csk_accept
,
1844 .init
= tcp_v4_init_sock
,
1845 .destroy
= tcp_v4_destroy_sock
,
1846 .shutdown
= tcp_shutdown
,
1847 .setsockopt
= tcp_setsockopt
,
1848 .getsockopt
= tcp_getsockopt
,
1849 .sendmsg
= tcp_sendmsg
,
1850 .recvmsg
= tcp_recvmsg
,
1851 .backlog_rcv
= tcp_v4_do_rcv
,
1852 .hash
= tcp_v4_hash
,
1853 .unhash
= tcp_unhash
,
1854 .get_port
= tcp_v4_get_port
,
1855 .enter_memory_pressure
= tcp_enter_memory_pressure
,
1856 .sockets_allocated
= &tcp_sockets_allocated
,
1857 .orphan_count
= &tcp_orphan_count
,
1858 .memory_allocated
= &tcp_memory_allocated
,
1859 .memory_pressure
= &tcp_memory_pressure
,
1860 .sysctl_mem
= sysctl_tcp_mem
,
1861 .sysctl_wmem
= sysctl_tcp_wmem
,
1862 .sysctl_rmem
= sysctl_tcp_rmem
,
1863 .max_header
= MAX_TCP_HEADER
,
1864 .obj_size
= sizeof(struct tcp_sock
),
1865 .twsk_prot
= &tcp_timewait_sock_ops
,
1866 .rsk_prot
= &tcp_request_sock_ops
,
1867 #ifdef CONFIG_COMPAT
1868 .compat_setsockopt
= compat_tcp_setsockopt
,
1869 .compat_getsockopt
= compat_tcp_getsockopt
,
1873 void __init
tcp_v4_init(struct net_proto_family
*ops
)
1875 if (inet_csk_ctl_sock_create(&tcp_socket
, PF_INET
, SOCK_RAW
, IPPROTO_TCP
) < 0)
1876 panic("Failed to create the TCP control socket.\n");
1879 EXPORT_SYMBOL(ipv4_specific
);
1880 EXPORT_SYMBOL(tcp_hashinfo
);
1881 EXPORT_SYMBOL(tcp_prot
);
1882 EXPORT_SYMBOL(tcp_unhash
);
1883 EXPORT_SYMBOL(tcp_v4_conn_request
);
1884 EXPORT_SYMBOL(tcp_v4_connect
);
1885 EXPORT_SYMBOL(tcp_v4_do_rcv
);
1886 EXPORT_SYMBOL(tcp_v4_remember_stamp
);
1887 EXPORT_SYMBOL(tcp_v4_send_check
);
1888 EXPORT_SYMBOL(tcp_v4_syn_recv_sock
);
1890 #ifdef CONFIG_PROC_FS
1891 EXPORT_SYMBOL(tcp_proc_register
);
1892 EXPORT_SYMBOL(tcp_proc_unregister
);
1894 EXPORT_SYMBOL(sysctl_local_port_range
);
1895 EXPORT_SYMBOL(sysctl_tcp_low_latency
);