2 * Handle unaligned accesses by emulation.
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
8 * Copyright (C) 1996, 1998, 1999, 2002 by Ralf Baechle
9 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * This file contains exception handler for address error exception with the
12 * special capability to execute faulting instructions in software. The
13 * handler does not try to handle the case when the program counter points
14 * to an address not aligned to a word boundary.
16 * Putting data to unaligned addresses is a bad practice even on Intel where
17 * only the performance is affected. Much worse is that such code is non-
18 * portable. Due to several programs that die on MIPS due to alignment
19 * problems I decided to implement this handler anyway though I originally
20 * didn't intend to do this at all for user code.
22 * For now I enable fixing of address errors by default to make life easier.
23 * I however intend to disable this somewhen in the future when the alignment
24 * problems with user programs have been fixed. For programmers this is the
27 * Fixing address errors is a per process option. The option is inherited
28 * across fork(2) and execve(2) calls. If you really want to use the
29 * option in your user programs - I discourage the use of the software
30 * emulation strongly - use the following code in your userland stuff:
32 * #include <sys/sysmips.h>
35 * sysmips(MIPS_FIXADE, x);
38 * The argument x is 0 for disabling software emulation, enabled otherwise.
40 * Below a little program to play around with this feature.
43 * #include <sys/sysmips.h>
46 * unsigned char bar[8];
49 * main(int argc, char *argv[])
51 * struct foo x = {0, 1, 2, 3, 4, 5, 6, 7};
52 * unsigned int *p = (unsigned int *) (x.bar + 3);
56 * sysmips(MIPS_FIXADE, atoi(argv[1]));
58 * printf("*p = %08lx\n", *p);
62 * for(i = 0; i <= 7; i++)
63 * printf("%02x ", x.bar[i]);
67 * Coprocessor loads are not supported; I think this case is unimportant
70 * TODO: Handle ndc (attempted store to doubleword in uncached memory)
71 * exception for the R6000.
72 * A store crossing a page boundary might be executed only partially.
73 * Undo the partial store in this case.
75 #include <linux/context_tracking.h>
77 #include <linux/signal.h>
78 #include <linux/smp.h>
79 #include <linux/sched.h>
80 #include <linux/debugfs.h>
81 #include <linux/perf_event.h>
84 #include <asm/branch.h>
85 #include <asm/byteorder.h>
88 #include <asm/fpu_emulator.h>
90 #include <asm/uaccess.h>
92 #include <asm/fpu_emulator.h>
94 #define STR(x) __STR(x)
98 UNALIGNED_ACTION_QUIET
,
99 UNALIGNED_ACTION_SIGNAL
,
100 UNALIGNED_ACTION_SHOW
,
102 #ifdef CONFIG_DEBUG_FS
103 static u32 unaligned_instructions
;
104 static u32 unaligned_action
;
106 #define unaligned_action UNALIGNED_ACTION_QUIET
108 extern void show_registers(struct pt_regs
*regs
);
111 #define LoadHW(addr, value, res) \
112 __asm__ __volatile__ (".set\tnoat\n" \
113 "1:\tlb\t%0, 0(%2)\n" \
114 "2:\tlbu\t$1, 1(%2)\n\t" \
120 ".section\t.fixup,\"ax\"\n\t" \
121 "4:\tli\t%1, %3\n\t" \
124 ".section\t__ex_table,\"a\"\n\t" \
125 STR(PTR)"\t1b, 4b\n\t" \
126 STR(PTR)"\t2b, 4b\n\t" \
128 : "=&r" (value), "=r" (res) \
129 : "r" (addr), "i" (-EFAULT));
131 #define LoadW(addr, value, res) \
132 __asm__ __volatile__ ( \
133 "1:\tlwl\t%0, (%2)\n" \
134 "2:\tlwr\t%0, 3(%2)\n\t" \
138 ".section\t.fixup,\"ax\"\n\t" \
139 "4:\tli\t%1, %3\n\t" \
142 ".section\t__ex_table,\"a\"\n\t" \
143 STR(PTR)"\t1b, 4b\n\t" \
144 STR(PTR)"\t2b, 4b\n\t" \
146 : "=&r" (value), "=r" (res) \
147 : "r" (addr), "i" (-EFAULT));
149 #define LoadHWU(addr, value, res) \
150 __asm__ __volatile__ ( \
152 "1:\tlbu\t%0, 0(%2)\n" \
153 "2:\tlbu\t$1, 1(%2)\n\t" \
160 ".section\t.fixup,\"ax\"\n\t" \
161 "4:\tli\t%1, %3\n\t" \
164 ".section\t__ex_table,\"a\"\n\t" \
165 STR(PTR)"\t1b, 4b\n\t" \
166 STR(PTR)"\t2b, 4b\n\t" \
168 : "=&r" (value), "=r" (res) \
169 : "r" (addr), "i" (-EFAULT));
171 #define LoadWU(addr, value, res) \
172 __asm__ __volatile__ ( \
173 "1:\tlwl\t%0, (%2)\n" \
174 "2:\tlwr\t%0, 3(%2)\n\t" \
175 "dsll\t%0, %0, 32\n\t" \
176 "dsrl\t%0, %0, 32\n\t" \
180 "\t.section\t.fixup,\"ax\"\n\t" \
181 "4:\tli\t%1, %3\n\t" \
184 ".section\t__ex_table,\"a\"\n\t" \
185 STR(PTR)"\t1b, 4b\n\t" \
186 STR(PTR)"\t2b, 4b\n\t" \
188 : "=&r" (value), "=r" (res) \
189 : "r" (addr), "i" (-EFAULT));
191 #define LoadDW(addr, value, res) \
192 __asm__ __volatile__ ( \
193 "1:\tldl\t%0, (%2)\n" \
194 "2:\tldr\t%0, 7(%2)\n\t" \
198 "\t.section\t.fixup,\"ax\"\n\t" \
199 "4:\tli\t%1, %3\n\t" \
202 ".section\t__ex_table,\"a\"\n\t" \
203 STR(PTR)"\t1b, 4b\n\t" \
204 STR(PTR)"\t2b, 4b\n\t" \
206 : "=&r" (value), "=r" (res) \
207 : "r" (addr), "i" (-EFAULT));
209 #define StoreHW(addr, value, res) \
210 __asm__ __volatile__ ( \
212 "1:\tsb\t%1, 1(%2)\n\t" \
213 "srl\t$1, %1, 0x8\n" \
214 "2:\tsb\t$1, 0(%2)\n\t" \
219 ".section\t.fixup,\"ax\"\n\t" \
220 "4:\tli\t%0, %3\n\t" \
223 ".section\t__ex_table,\"a\"\n\t" \
224 STR(PTR)"\t1b, 4b\n\t" \
225 STR(PTR)"\t2b, 4b\n\t" \
228 : "r" (value), "r" (addr), "i" (-EFAULT));
230 #define StoreW(addr, value, res) \
231 __asm__ __volatile__ ( \
232 "1:\tswl\t%1,(%2)\n" \
233 "2:\tswr\t%1, 3(%2)\n\t" \
237 ".section\t.fixup,\"ax\"\n\t" \
238 "4:\tli\t%0, %3\n\t" \
241 ".section\t__ex_table,\"a\"\n\t" \
242 STR(PTR)"\t1b, 4b\n\t" \
243 STR(PTR)"\t2b, 4b\n\t" \
246 : "r" (value), "r" (addr), "i" (-EFAULT));
248 #define StoreDW(addr, value, res) \
249 __asm__ __volatile__ ( \
250 "1:\tsdl\t%1,(%2)\n" \
251 "2:\tsdr\t%1, 7(%2)\n\t" \
255 ".section\t.fixup,\"ax\"\n\t" \
256 "4:\tli\t%0, %3\n\t" \
259 ".section\t__ex_table,\"a\"\n\t" \
260 STR(PTR)"\t1b, 4b\n\t" \
261 STR(PTR)"\t2b, 4b\n\t" \
264 : "r" (value), "r" (addr), "i" (-EFAULT));
267 #ifdef __LITTLE_ENDIAN
268 #define LoadHW(addr, value, res) \
269 __asm__ __volatile__ (".set\tnoat\n" \
270 "1:\tlb\t%0, 1(%2)\n" \
271 "2:\tlbu\t$1, 0(%2)\n\t" \
277 ".section\t.fixup,\"ax\"\n\t" \
278 "4:\tli\t%1, %3\n\t" \
281 ".section\t__ex_table,\"a\"\n\t" \
282 STR(PTR)"\t1b, 4b\n\t" \
283 STR(PTR)"\t2b, 4b\n\t" \
285 : "=&r" (value), "=r" (res) \
286 : "r" (addr), "i" (-EFAULT));
288 #define LoadW(addr, value, res) \
289 __asm__ __volatile__ ( \
290 "1:\tlwl\t%0, 3(%2)\n" \
291 "2:\tlwr\t%0, (%2)\n\t" \
295 ".section\t.fixup,\"ax\"\n\t" \
296 "4:\tli\t%1, %3\n\t" \
299 ".section\t__ex_table,\"a\"\n\t" \
300 STR(PTR)"\t1b, 4b\n\t" \
301 STR(PTR)"\t2b, 4b\n\t" \
303 : "=&r" (value), "=r" (res) \
304 : "r" (addr), "i" (-EFAULT));
306 #define LoadHWU(addr, value, res) \
307 __asm__ __volatile__ ( \
309 "1:\tlbu\t%0, 1(%2)\n" \
310 "2:\tlbu\t$1, 0(%2)\n\t" \
317 ".section\t.fixup,\"ax\"\n\t" \
318 "4:\tli\t%1, %3\n\t" \
321 ".section\t__ex_table,\"a\"\n\t" \
322 STR(PTR)"\t1b, 4b\n\t" \
323 STR(PTR)"\t2b, 4b\n\t" \
325 : "=&r" (value), "=r" (res) \
326 : "r" (addr), "i" (-EFAULT));
328 #define LoadWU(addr, value, res) \
329 __asm__ __volatile__ ( \
330 "1:\tlwl\t%0, 3(%2)\n" \
331 "2:\tlwr\t%0, (%2)\n\t" \
332 "dsll\t%0, %0, 32\n\t" \
333 "dsrl\t%0, %0, 32\n\t" \
337 "\t.section\t.fixup,\"ax\"\n\t" \
338 "4:\tli\t%1, %3\n\t" \
341 ".section\t__ex_table,\"a\"\n\t" \
342 STR(PTR)"\t1b, 4b\n\t" \
343 STR(PTR)"\t2b, 4b\n\t" \
345 : "=&r" (value), "=r" (res) \
346 : "r" (addr), "i" (-EFAULT));
348 #define LoadDW(addr, value, res) \
349 __asm__ __volatile__ ( \
350 "1:\tldl\t%0, 7(%2)\n" \
351 "2:\tldr\t%0, (%2)\n\t" \
355 "\t.section\t.fixup,\"ax\"\n\t" \
356 "4:\tli\t%1, %3\n\t" \
359 ".section\t__ex_table,\"a\"\n\t" \
360 STR(PTR)"\t1b, 4b\n\t" \
361 STR(PTR)"\t2b, 4b\n\t" \
363 : "=&r" (value), "=r" (res) \
364 : "r" (addr), "i" (-EFAULT));
366 #define StoreHW(addr, value, res) \
367 __asm__ __volatile__ ( \
369 "1:\tsb\t%1, 0(%2)\n\t" \
370 "srl\t$1,%1, 0x8\n" \
371 "2:\tsb\t$1, 1(%2)\n\t" \
376 ".section\t.fixup,\"ax\"\n\t" \
377 "4:\tli\t%0, %3\n\t" \
380 ".section\t__ex_table,\"a\"\n\t" \
381 STR(PTR)"\t1b, 4b\n\t" \
382 STR(PTR)"\t2b, 4b\n\t" \
385 : "r" (value), "r" (addr), "i" (-EFAULT));
387 #define StoreW(addr, value, res) \
388 __asm__ __volatile__ ( \
389 "1:\tswl\t%1, 3(%2)\n" \
390 "2:\tswr\t%1, (%2)\n\t" \
394 ".section\t.fixup,\"ax\"\n\t" \
395 "4:\tli\t%0, %3\n\t" \
398 ".section\t__ex_table,\"a\"\n\t" \
399 STR(PTR)"\t1b, 4b\n\t" \
400 STR(PTR)"\t2b, 4b\n\t" \
403 : "r" (value), "r" (addr), "i" (-EFAULT));
405 #define StoreDW(addr, value, res) \
406 __asm__ __volatile__ ( \
407 "1:\tsdl\t%1, 7(%2)\n" \
408 "2:\tsdr\t%1, (%2)\n\t" \
412 ".section\t.fixup,\"ax\"\n\t" \
413 "4:\tli\t%0, %3\n\t" \
416 ".section\t__ex_table,\"a\"\n\t" \
417 STR(PTR)"\t1b, 4b\n\t" \
418 STR(PTR)"\t2b, 4b\n\t" \
421 : "r" (value), "r" (addr), "i" (-EFAULT));
424 static void emulate_load_store_insn(struct pt_regs
*regs
,
425 void __user
*addr
, unsigned int __user
*pc
)
427 union mips_instruction insn
;
430 unsigned long origpc
;
431 unsigned long orig31
;
432 void __user
*fault_addr
= NULL
;
434 origpc
= (unsigned long)pc
;
435 orig31
= regs
->regs
[31];
437 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, regs
, 0);
440 * This load never faults.
442 __get_user(insn
.word
, pc
);
444 switch (insn
.i_format
.opcode
) {
446 * These are instructions that a compiler doesn't generate. We
447 * can assume therefore that the code is MIPS-aware and
448 * really buggy. Emulating these instructions would break the
457 * For these instructions the only way to create an address
458 * error is an attempted access to kernel/supervisor address
475 * The remaining opcodes are the ones that are really of
479 if (!access_ok(VERIFY_READ
, addr
, 2))
482 LoadHW(addr
, value
, res
);
485 compute_return_epc(regs
);
486 regs
->regs
[insn
.i_format
.rt
] = value
;
490 if (!access_ok(VERIFY_READ
, addr
, 4))
493 LoadW(addr
, value
, res
);
496 compute_return_epc(regs
);
497 regs
->regs
[insn
.i_format
.rt
] = value
;
501 if (!access_ok(VERIFY_READ
, addr
, 2))
504 LoadHWU(addr
, value
, res
);
507 compute_return_epc(regs
);
508 regs
->regs
[insn
.i_format
.rt
] = value
;
514 * A 32-bit kernel might be running on a 64-bit processor. But
515 * if we're on a 32-bit processor and an i-cache incoherency
516 * or race makes us see a 64-bit instruction here the sdl/sdr
517 * would blow up, so for now we don't handle unaligned 64-bit
518 * instructions on 32-bit kernels.
520 if (!access_ok(VERIFY_READ
, addr
, 4))
523 LoadWU(addr
, value
, res
);
526 compute_return_epc(regs
);
527 regs
->regs
[insn
.i_format
.rt
] = value
;
529 #endif /* CONFIG_64BIT */
531 /* Cannot handle 64-bit instructions in 32-bit kernel */
537 * A 32-bit kernel might be running on a 64-bit processor. But
538 * if we're on a 32-bit processor and an i-cache incoherency
539 * or race makes us see a 64-bit instruction here the sdl/sdr
540 * would blow up, so for now we don't handle unaligned 64-bit
541 * instructions on 32-bit kernels.
543 if (!access_ok(VERIFY_READ
, addr
, 8))
546 LoadDW(addr
, value
, res
);
549 compute_return_epc(regs
);
550 regs
->regs
[insn
.i_format
.rt
] = value
;
552 #endif /* CONFIG_64BIT */
554 /* Cannot handle 64-bit instructions in 32-bit kernel */
558 if (!access_ok(VERIFY_WRITE
, addr
, 2))
561 compute_return_epc(regs
);
562 value
= regs
->regs
[insn
.i_format
.rt
];
563 StoreHW(addr
, value
, res
);
569 if (!access_ok(VERIFY_WRITE
, addr
, 4))
572 compute_return_epc(regs
);
573 value
= regs
->regs
[insn
.i_format
.rt
];
574 StoreW(addr
, value
, res
);
582 * A 32-bit kernel might be running on a 64-bit processor. But
583 * if we're on a 32-bit processor and an i-cache incoherency
584 * or race makes us see a 64-bit instruction here the sdl/sdr
585 * would blow up, so for now we don't handle unaligned 64-bit
586 * instructions on 32-bit kernels.
588 if (!access_ok(VERIFY_WRITE
, addr
, 8))
591 compute_return_epc(regs
);
592 value
= regs
->regs
[insn
.i_format
.rt
];
593 StoreDW(addr
, value
, res
);
597 #endif /* CONFIG_64BIT */
599 /* Cannot handle 64-bit instructions in 32-bit kernel */
606 die_if_kernel("Unaligned FP access in kernel code", regs
);
607 BUG_ON(!used_math());
608 BUG_ON(!is_fpu_owner());
610 lose_fpu(1); /* Save FPU state for the emulator. */
611 res
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
613 own_fpu(1); /* Restore FPU state. */
615 /* Signal if something went wrong. */
616 process_fpemu_return(res
, fault_addr
);
623 * COP2 is available to implementor for application specific use.
624 * It's up to applications to register a notifier chain and do
625 * whatever they have to do, including possible sending of signals.
628 cu2_notifier_call_chain(CU2_LWC2_OP
, regs
);
632 cu2_notifier_call_chain(CU2_LDC2_OP
, regs
);
636 cu2_notifier_call_chain(CU2_SWC2_OP
, regs
);
640 cu2_notifier_call_chain(CU2_SDC2_OP
, regs
);
645 * Pheeee... We encountered an yet unknown instruction or
646 * cache coherence problem. Die sucker, die ...
651 #ifdef CONFIG_DEBUG_FS
652 unaligned_instructions
++;
658 /* roll back jump/branch */
659 regs
->cp0_epc
= origpc
;
660 regs
->regs
[31] = orig31
;
661 /* Did we have an exception handler installed? */
662 if (fixup_exception(regs
))
665 die_if_kernel("Unhandled kernel unaligned access", regs
);
666 force_sig(SIGSEGV
, current
);
671 die_if_kernel("Unhandled kernel unaligned access", regs
);
672 force_sig(SIGBUS
, current
);
678 ("Unhandled kernel unaligned access or invalid instruction", regs
);
679 force_sig(SIGILL
, current
);
682 /* Recode table from 16-bit register notation to 32-bit GPR. */
683 const int reg16to32
[] = { 16, 17, 2, 3, 4, 5, 6, 7 };
685 /* Recode table from 16-bit STORE register notation to 32-bit GPR. */
686 const int reg16to32st
[] = { 0, 17, 2, 3, 4, 5, 6, 7 };
688 static void emulate_load_store_microMIPS(struct pt_regs
*regs
,
694 unsigned int reg
= 0, rvar
;
695 unsigned long orig31
;
699 unsigned long origpc
, contpc
;
700 union mips_instruction insn
;
701 struct mm_decoded_insn mminsn
;
702 void __user
*fault_addr
= NULL
;
704 origpc
= regs
->cp0_epc
;
705 orig31
= regs
->regs
[31];
707 mminsn
.micro_mips_mode
= 1;
710 * This load never faults.
712 pc16
= (unsigned short __user
*)msk_isa16_mode(regs
->cp0_epc
);
713 __get_user(halfword
, pc16
);
715 contpc
= regs
->cp0_epc
+ 2;
716 word
= ((unsigned int)halfword
<< 16);
719 if (!mm_insn_16bit(halfword
)) {
720 __get_user(halfword
, pc16
);
722 contpc
= regs
->cp0_epc
+ 4;
728 if (get_user(halfword
, pc16
))
730 mminsn
.next_pc_inc
= 2;
731 word
= ((unsigned int)halfword
<< 16);
733 if (!mm_insn_16bit(halfword
)) {
735 if (get_user(halfword
, pc16
))
737 mminsn
.next_pc_inc
= 4;
740 mminsn
.next_insn
= word
;
742 insn
= (union mips_instruction
)(mminsn
.insn
);
743 if (mm_isBranchInstr(regs
, mminsn
, &contpc
))
744 insn
= (union mips_instruction
)(mminsn
.next_insn
);
746 /* Parse instruction to find what to do */
748 switch (insn
.mm_i_format
.opcode
) {
751 switch (insn
.mm_x_format
.func
) {
753 reg
= insn
.mm_x_format
.rd
;
760 switch (insn
.mm_m_format
.func
) {
762 reg
= insn
.mm_m_format
.rd
;
766 if (!access_ok(VERIFY_READ
, addr
, 8))
769 LoadW(addr
, value
, res
);
772 regs
->regs
[reg
] = value
;
774 LoadW(addr
, value
, res
);
777 regs
->regs
[reg
+ 1] = value
;
781 reg
= insn
.mm_m_format
.rd
;
785 if (!access_ok(VERIFY_WRITE
, addr
, 8))
788 value
= regs
->regs
[reg
];
789 StoreW(addr
, value
, res
);
793 value
= regs
->regs
[reg
+ 1];
794 StoreW(addr
, value
, res
);
801 reg
= insn
.mm_m_format
.rd
;
805 if (!access_ok(VERIFY_READ
, addr
, 16))
808 LoadDW(addr
, value
, res
);
811 regs
->regs
[reg
] = value
;
813 LoadDW(addr
, value
, res
);
816 regs
->regs
[reg
+ 1] = value
;
818 #endif /* CONFIG_64BIT */
824 reg
= insn
.mm_m_format
.rd
;
828 if (!access_ok(VERIFY_WRITE
, addr
, 16))
831 value
= regs
->regs
[reg
];
832 StoreDW(addr
, value
, res
);
836 value
= regs
->regs
[reg
+ 1];
837 StoreDW(addr
, value
, res
);
841 #endif /* CONFIG_64BIT */
846 reg
= insn
.mm_m_format
.rd
;
848 if ((rvar
> 9) || !reg
)
852 (VERIFY_READ
, addr
, 4 * (rvar
+ 1)))
855 if (!access_ok(VERIFY_READ
, addr
, 4 * rvar
))
860 for (i
= 16; rvar
; rvar
--, i
++) {
861 LoadW(addr
, value
, res
);
865 regs
->regs
[i
] = value
;
867 if ((reg
& 0xf) == 9) {
868 LoadW(addr
, value
, res
);
872 regs
->regs
[30] = value
;
875 LoadW(addr
, value
, res
);
878 regs
->regs
[31] = value
;
883 reg
= insn
.mm_m_format
.rd
;
885 if ((rvar
> 9) || !reg
)
889 (VERIFY_WRITE
, addr
, 4 * (rvar
+ 1)))
892 if (!access_ok(VERIFY_WRITE
, addr
, 4 * rvar
))
897 for (i
= 16; rvar
; rvar
--, i
++) {
898 value
= regs
->regs
[i
];
899 StoreW(addr
, value
, res
);
904 if ((reg
& 0xf) == 9) {
905 value
= regs
->regs
[30];
906 StoreW(addr
, value
, res
);
912 value
= regs
->regs
[31];
913 StoreW(addr
, value
, res
);
921 reg
= insn
.mm_m_format
.rd
;
923 if ((rvar
> 9) || !reg
)
927 (VERIFY_READ
, addr
, 8 * (rvar
+ 1)))
930 if (!access_ok(VERIFY_READ
, addr
, 8 * rvar
))
936 for (i
= 16; rvar
; rvar
--, i
++) {
937 LoadDW(addr
, value
, res
);
941 regs
->regs
[i
] = value
;
943 if ((reg
& 0xf) == 9) {
944 LoadDW(addr
, value
, res
);
948 regs
->regs
[30] = value
;
951 LoadDW(addr
, value
, res
);
954 regs
->regs
[31] = value
;
957 #endif /* CONFIG_64BIT */
963 reg
= insn
.mm_m_format
.rd
;
965 if ((rvar
> 9) || !reg
)
969 (VERIFY_WRITE
, addr
, 8 * (rvar
+ 1)))
972 if (!access_ok(VERIFY_WRITE
, addr
, 8 * rvar
))
978 for (i
= 16; rvar
; rvar
--, i
++) {
979 value
= regs
->regs
[i
];
980 StoreDW(addr
, value
, res
);
985 if ((reg
& 0xf) == 9) {
986 value
= regs
->regs
[30];
987 StoreDW(addr
, value
, res
);
993 value
= regs
->regs
[31];
994 StoreDW(addr
, value
, res
);
999 #endif /* CONFIG_64BIT */
1003 /* LWC2, SWC2, LDC2, SDC2 are not serviced */
1009 switch (insn
.mm_m_format
.func
) {
1011 reg
= insn
.mm_m_format
.rd
;
1015 /* LL,SC,LLD,SCD are not serviced */
1019 switch (insn
.mm_x_format
.func
) {
1034 /* roll back jump/branch */
1035 regs
->cp0_epc
= origpc
;
1036 regs
->regs
[31] = orig31
;
1038 die_if_kernel("Unaligned FP access in kernel code", regs
);
1039 BUG_ON(!used_math());
1040 BUG_ON(!is_fpu_owner());
1042 lose_fpu(1); /* save the FPU state for the emulator */
1043 res
= fpu_emulator_cop1Handler(regs
, ¤t
->thread
.fpu
, 1,
1045 own_fpu(1); /* restore FPU state */
1047 /* If something went wrong, signal */
1048 process_fpemu_return(res
, fault_addr
);
1055 reg
= insn
.mm_i_format
.rt
;
1059 reg
= insn
.mm_i_format
.rt
;
1063 reg
= insn
.mm_i_format
.rt
;
1067 reg
= insn
.mm_i_format
.rt
;
1071 reg
= insn
.mm_i_format
.rt
;
1075 reg
= insn
.mm_i_format
.rt
;
1079 reg
= insn
.mm_i_format
.rt
;
1083 switch (insn
.mm16_m_format
.func
) {
1085 reg
= insn
.mm16_m_format
.rlist
;
1087 if (!access_ok(VERIFY_READ
, addr
, 4 * rvar
))
1090 for (i
= 16; rvar
; rvar
--, i
++) {
1091 LoadW(addr
, value
, res
);
1095 regs
->regs
[i
] = value
;
1097 LoadW(addr
, value
, res
);
1100 regs
->regs
[31] = value
;
1105 reg
= insn
.mm16_m_format
.rlist
;
1107 if (!access_ok(VERIFY_WRITE
, addr
, 4 * rvar
))
1110 for (i
= 16; rvar
; rvar
--, i
++) {
1111 value
= regs
->regs
[i
];
1112 StoreW(addr
, value
, res
);
1117 value
= regs
->regs
[31];
1118 StoreW(addr
, value
, res
);
1129 reg
= reg16to32
[insn
.mm16_rb_format
.rt
];
1133 reg
= reg16to32
[insn
.mm16_rb_format
.rt
];
1137 reg
= reg16to32st
[insn
.mm16_rb_format
.rt
];
1141 reg
= reg16to32st
[insn
.mm16_rb_format
.rt
];
1145 reg
= insn
.mm16_r5_format
.rt
;
1149 reg
= insn
.mm16_r5_format
.rt
;
1153 reg
= reg16to32
[insn
.mm16_r3_format
.rt
];
1161 if (!access_ok(VERIFY_READ
, addr
, 2))
1164 LoadHW(addr
, value
, res
);
1167 regs
->regs
[reg
] = value
;
1171 if (!access_ok(VERIFY_READ
, addr
, 2))
1174 LoadHWU(addr
, value
, res
);
1177 regs
->regs
[reg
] = value
;
1181 if (!access_ok(VERIFY_READ
, addr
, 4))
1184 LoadW(addr
, value
, res
);
1187 regs
->regs
[reg
] = value
;
1193 * A 32-bit kernel might be running on a 64-bit processor. But
1194 * if we're on a 32-bit processor and an i-cache incoherency
1195 * or race makes us see a 64-bit instruction here the sdl/sdr
1196 * would blow up, so for now we don't handle unaligned 64-bit
1197 * instructions on 32-bit kernels.
1199 if (!access_ok(VERIFY_READ
, addr
, 4))
1202 LoadWU(addr
, value
, res
);
1205 regs
->regs
[reg
] = value
;
1207 #endif /* CONFIG_64BIT */
1209 /* Cannot handle 64-bit instructions in 32-bit kernel */
1215 * A 32-bit kernel might be running on a 64-bit processor. But
1216 * if we're on a 32-bit processor and an i-cache incoherency
1217 * or race makes us see a 64-bit instruction here the sdl/sdr
1218 * would blow up, so for now we don't handle unaligned 64-bit
1219 * instructions on 32-bit kernels.
1221 if (!access_ok(VERIFY_READ
, addr
, 8))
1224 LoadDW(addr
, value
, res
);
1227 regs
->regs
[reg
] = value
;
1229 #endif /* CONFIG_64BIT */
1231 /* Cannot handle 64-bit instructions in 32-bit kernel */
1235 if (!access_ok(VERIFY_WRITE
, addr
, 2))
1238 value
= regs
->regs
[reg
];
1239 StoreHW(addr
, value
, res
);
1245 if (!access_ok(VERIFY_WRITE
, addr
, 4))
1248 value
= regs
->regs
[reg
];
1249 StoreW(addr
, value
, res
);
1257 * A 32-bit kernel might be running on a 64-bit processor. But
1258 * if we're on a 32-bit processor and an i-cache incoherency
1259 * or race makes us see a 64-bit instruction here the sdl/sdr
1260 * would blow up, so for now we don't handle unaligned 64-bit
1261 * instructions on 32-bit kernels.
1263 if (!access_ok(VERIFY_WRITE
, addr
, 8))
1266 value
= regs
->regs
[reg
];
1267 StoreDW(addr
, value
, res
);
1271 #endif /* CONFIG_64BIT */
1273 /* Cannot handle 64-bit instructions in 32-bit kernel */
1277 regs
->cp0_epc
= contpc
; /* advance or branch */
1279 #ifdef CONFIG_DEBUG_FS
1280 unaligned_instructions
++;
1285 /* roll back jump/branch */
1286 regs
->cp0_epc
= origpc
;
1287 regs
->regs
[31] = orig31
;
1288 /* Did we have an exception handler installed? */
1289 if (fixup_exception(regs
))
1292 die_if_kernel("Unhandled kernel unaligned access", regs
);
1293 force_sig(SIGSEGV
, current
);
1298 die_if_kernel("Unhandled kernel unaligned access", regs
);
1299 force_sig(SIGBUS
, current
);
1305 ("Unhandled kernel unaligned access or invalid instruction", regs
);
1306 force_sig(SIGILL
, current
);
1309 static void emulate_load_store_MIPS16e(struct pt_regs
*regs
, void __user
* addr
)
1311 unsigned long value
;
1314 unsigned long orig31
;
1316 unsigned long origpc
;
1317 union mips16e_instruction mips16inst
, oldinst
;
1319 origpc
= regs
->cp0_epc
;
1320 orig31
= regs
->regs
[31];
1321 pc16
= (unsigned short __user
*)msk_isa16_mode(origpc
);
1323 * This load never faults.
1325 __get_user(mips16inst
.full
, pc16
);
1326 oldinst
= mips16inst
;
1328 /* skip EXTEND instruction */
1329 if (mips16inst
.ri
.opcode
== MIPS16e_extend_op
) {
1331 __get_user(mips16inst
.full
, pc16
);
1332 } else if (delay_slot(regs
)) {
1333 /* skip jump instructions */
1334 /* JAL/JALX are 32 bits but have OPCODE in first short int */
1335 if (mips16inst
.ri
.opcode
== MIPS16e_jal_op
)
1338 if (get_user(mips16inst
.full
, pc16
))
1342 switch (mips16inst
.ri
.opcode
) {
1343 case MIPS16e_i64_op
: /* I64 or RI64 instruction */
1344 switch (mips16inst
.i64
.func
) { /* I64/RI64 func field check */
1345 case MIPS16e_ldpc_func
:
1346 case MIPS16e_ldsp_func
:
1347 reg
= reg16to32
[mips16inst
.ri64
.ry
];
1350 case MIPS16e_sdsp_func
:
1351 reg
= reg16to32
[mips16inst
.ri64
.ry
];
1354 case MIPS16e_sdrasp_func
:
1355 reg
= 29; /* GPRSP */
1361 case MIPS16e_swsp_op
:
1362 case MIPS16e_lwpc_op
:
1363 case MIPS16e_lwsp_op
:
1364 reg
= reg16to32
[mips16inst
.ri
.rx
];
1368 if (mips16inst
.i8
.func
!= MIPS16e_swrasp_func
)
1370 reg
= 29; /* GPRSP */
1374 reg
= reg16to32
[mips16inst
.rri
.ry
];
1378 switch (mips16inst
.ri
.opcode
) {
1381 case MIPS16e_lbu_op
:
1386 if (!access_ok(VERIFY_READ
, addr
, 2))
1389 LoadHW(addr
, value
, res
);
1392 MIPS16e_compute_return_epc(regs
, &oldinst
);
1393 regs
->regs
[reg
] = value
;
1396 case MIPS16e_lhu_op
:
1397 if (!access_ok(VERIFY_READ
, addr
, 2))
1400 LoadHWU(addr
, value
, res
);
1403 MIPS16e_compute_return_epc(regs
, &oldinst
);
1404 regs
->regs
[reg
] = value
;
1408 case MIPS16e_lwpc_op
:
1409 case MIPS16e_lwsp_op
:
1410 if (!access_ok(VERIFY_READ
, addr
, 4))
1413 LoadW(addr
, value
, res
);
1416 MIPS16e_compute_return_epc(regs
, &oldinst
);
1417 regs
->regs
[reg
] = value
;
1420 case MIPS16e_lwu_op
:
1423 * A 32-bit kernel might be running on a 64-bit processor. But
1424 * if we're on a 32-bit processor and an i-cache incoherency
1425 * or race makes us see a 64-bit instruction here the sdl/sdr
1426 * would blow up, so for now we don't handle unaligned 64-bit
1427 * instructions on 32-bit kernels.
1429 if (!access_ok(VERIFY_READ
, addr
, 4))
1432 LoadWU(addr
, value
, res
);
1435 MIPS16e_compute_return_epc(regs
, &oldinst
);
1436 regs
->regs
[reg
] = value
;
1438 #endif /* CONFIG_64BIT */
1440 /* Cannot handle 64-bit instructions in 32-bit kernel */
1447 * A 32-bit kernel might be running on a 64-bit processor. But
1448 * if we're on a 32-bit processor and an i-cache incoherency
1449 * or race makes us see a 64-bit instruction here the sdl/sdr
1450 * would blow up, so for now we don't handle unaligned 64-bit
1451 * instructions on 32-bit kernels.
1453 if (!access_ok(VERIFY_READ
, addr
, 8))
1456 LoadDW(addr
, value
, res
);
1459 MIPS16e_compute_return_epc(regs
, &oldinst
);
1460 regs
->regs
[reg
] = value
;
1462 #endif /* CONFIG_64BIT */
1464 /* Cannot handle 64-bit instructions in 32-bit kernel */
1468 if (!access_ok(VERIFY_WRITE
, addr
, 2))
1471 MIPS16e_compute_return_epc(regs
, &oldinst
);
1472 value
= regs
->regs
[reg
];
1473 StoreHW(addr
, value
, res
);
1479 case MIPS16e_swsp_op
:
1480 case MIPS16e_i8_op
: /* actually - MIPS16e_swrasp_func */
1481 if (!access_ok(VERIFY_WRITE
, addr
, 4))
1484 MIPS16e_compute_return_epc(regs
, &oldinst
);
1485 value
= regs
->regs
[reg
];
1486 StoreW(addr
, value
, res
);
1495 * A 32-bit kernel might be running on a 64-bit processor. But
1496 * if we're on a 32-bit processor and an i-cache incoherency
1497 * or race makes us see a 64-bit instruction here the sdl/sdr
1498 * would blow up, so for now we don't handle unaligned 64-bit
1499 * instructions on 32-bit kernels.
1501 if (!access_ok(VERIFY_WRITE
, addr
, 8))
1504 MIPS16e_compute_return_epc(regs
, &oldinst
);
1505 value
= regs
->regs
[reg
];
1506 StoreDW(addr
, value
, res
);
1510 #endif /* CONFIG_64BIT */
1512 /* Cannot handle 64-bit instructions in 32-bit kernel */
1517 * Pheeee... We encountered an yet unknown instruction or
1518 * cache coherence problem. Die sucker, die ...
1523 #ifdef CONFIG_DEBUG_FS
1524 unaligned_instructions
++;
1530 /* roll back jump/branch */
1531 regs
->cp0_epc
= origpc
;
1532 regs
->regs
[31] = orig31
;
1533 /* Did we have an exception handler installed? */
1534 if (fixup_exception(regs
))
1537 die_if_kernel("Unhandled kernel unaligned access", regs
);
1538 force_sig(SIGSEGV
, current
);
1543 die_if_kernel("Unhandled kernel unaligned access", regs
);
1544 force_sig(SIGBUS
, current
);
1550 ("Unhandled kernel unaligned access or invalid instruction", regs
);
1551 force_sig(SIGILL
, current
);
1554 asmlinkage
void do_ade(struct pt_regs
*regs
)
1556 enum ctx_state prev_state
;
1557 unsigned int __user
*pc
;
1560 prev_state
= exception_enter();
1561 perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS
,
1562 1, regs
, regs
->cp0_badvaddr
);
1564 * Did we catch a fault trying to load an instruction?
1566 if (regs
->cp0_badvaddr
== regs
->cp0_epc
)
1569 if (user_mode(regs
) && !test_thread_flag(TIF_FIXADE
))
1571 if (unaligned_action
== UNALIGNED_ACTION_SIGNAL
)
1575 * Do branch emulation only if we didn't forward the exception.
1576 * This is all so but ugly ...
1580 * Are we running in microMIPS mode?
1582 if (get_isa16_mode(regs
->cp0_epc
)) {
1584 * Did we catch a fault trying to load an instruction in
1587 if (regs
->cp0_badvaddr
== msk_isa16_mode(regs
->cp0_epc
))
1589 if (unaligned_action
== UNALIGNED_ACTION_SHOW
)
1590 show_registers(regs
);
1592 if (cpu_has_mmips
) {
1594 if (!user_mode(regs
))
1596 emulate_load_store_microMIPS(regs
,
1597 (void __user
*)regs
->cp0_badvaddr
);
1603 if (cpu_has_mips16
) {
1605 if (!user_mode(regs
))
1607 emulate_load_store_MIPS16e(regs
,
1608 (void __user
*)regs
->cp0_badvaddr
);
1617 if (unaligned_action
== UNALIGNED_ACTION_SHOW
)
1618 show_registers(regs
);
1619 pc
= (unsigned int __user
*)exception_epc(regs
);
1622 if (!user_mode(regs
))
1624 emulate_load_store_insn(regs
, (void __user
*)regs
->cp0_badvaddr
, pc
);
1630 die_if_kernel("Kernel unaligned instruction access", regs
);
1631 force_sig(SIGBUS
, current
);
1634 * XXX On return from the signal handler we should advance the epc
1636 exception_exit(prev_state
);
1639 #ifdef CONFIG_DEBUG_FS
1640 extern struct dentry
*mips_debugfs_dir
;
1641 static int __init
debugfs_unaligned(void)
1645 if (!mips_debugfs_dir
)
1647 d
= debugfs_create_u32("unaligned_instructions", S_IRUGO
,
1648 mips_debugfs_dir
, &unaligned_instructions
);
1651 d
= debugfs_create_u32("unaligned_action", S_IRUGO
| S_IWUSR
,
1652 mips_debugfs_dir
, &unaligned_action
);
1657 __initcall(debugfs_unaligned
);