Linux 3.11-rc3
[cris-mirror.git] / arch / sparc / mm / srmmu.c
blob5d721df48a72d10dfe56095e0a8cf67d258fd7f9
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/seq_file.h>
12 #include <linux/spinlock.h>
13 #include <linux/bootmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kdebug.h>
17 #include <linux/kernel.h>
18 #include <linux/init.h>
19 #include <linux/log2.h>
20 #include <linux/gfp.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
24 #include <asm/mmu_context.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/io-unit.h>
28 #include <asm/pgalloc.h>
29 #include <asm/pgtable.h>
30 #include <asm/bitext.h>
31 #include <asm/vaddrs.h>
32 #include <asm/cache.h>
33 #include <asm/traps.h>
34 #include <asm/oplib.h>
35 #include <asm/mbus.h>
36 #include <asm/page.h>
37 #include <asm/asi.h>
38 #include <asm/msi.h>
39 #include <asm/smp.h>
40 #include <asm/io.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/turbosparc.h>
44 #include <asm/tsunami.h>
45 #include <asm/viking.h>
46 #include <asm/swift.h>
47 #include <asm/leon.h>
48 #include <asm/mxcc.h>
49 #include <asm/ross.h>
51 #include "srmmu.h"
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
58 extern struct resource sparc_iomap;
60 extern unsigned long last_valid_pfn;
62 static pgd_t *srmmu_swapper_pg_dir;
64 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66 #ifdef CONFIG_SMP
67 const struct sparc32_cachetlb_ops *local_ops;
69 #define FLUSH_BEGIN(mm)
70 #define FLUSH_END
71 #else
72 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
73 #define FLUSH_END }
74 #endif
76 int flush_page_for_dma_global = 1;
78 char *srmmu_name;
80 ctxd_t *srmmu_ctx_table_phys;
81 static ctxd_t *srmmu_context_table;
83 int viking_mxcc_present;
84 static DEFINE_SPINLOCK(srmmu_context_spinlock);
86 static int is_hypersparc;
88 static int srmmu_cache_pagetables;
90 /* these will be initialized in srmmu_nocache_calcsize() */
91 static unsigned long srmmu_nocache_size;
92 static unsigned long srmmu_nocache_end;
94 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
97 /* The context table is a nocache user with the biggest alignment needs. */
98 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
100 void *srmmu_nocache_pool;
101 void *srmmu_nocache_bitmap;
102 static struct bit_map srmmu_nocache_map;
104 static inline int srmmu_pmd_none(pmd_t pmd)
105 { return !(pmd_val(pmd) & 0xFFFFFFF); }
107 /* XXX should we hyper_flush_whole_icache here - Anton */
108 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
109 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
111 void pmd_set(pmd_t *pmdp, pte_t *ptep)
113 unsigned long ptp; /* Physical address, shifted right by 4 */
114 int i;
116 ptp = __nocache_pa((unsigned long) ptep) >> 4;
117 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
118 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
119 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
123 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
125 unsigned long ptp; /* Physical address, shifted right by 4 */
126 int i;
128 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
129 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
130 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
131 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
135 /* Find an entry in the third-level page table.. */
136 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
138 void *pte;
140 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141 return (pte_t *) pte +
142 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
146 * size: bytes to allocate in the nocache area.
147 * align: bytes, number to align at.
148 * Returns the virtual address of the allocated area.
150 static void *__srmmu_get_nocache(int size, int align)
152 int offset;
153 unsigned long addr;
155 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
156 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157 size);
158 size = SRMMU_NOCACHE_BITMAP_SHIFT;
160 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162 size);
163 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
165 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167 offset = bit_map_string_get(&srmmu_nocache_map,
168 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
170 if (offset == -1) {
171 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172 size, (int) srmmu_nocache_size,
173 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
174 return 0;
177 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178 return (void *)addr;
181 void *srmmu_get_nocache(int size, int align)
183 void *tmp;
185 tmp = __srmmu_get_nocache(size, align);
187 if (tmp)
188 memset(tmp, 0, size);
190 return tmp;
193 void srmmu_free_nocache(void *addr, int size)
195 unsigned long vaddr;
196 int offset;
198 vaddr = (unsigned long)addr;
199 if (vaddr < SRMMU_NOCACHE_VADDR) {
200 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 BUG();
204 if (vaddr + size > srmmu_nocache_end) {
205 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206 vaddr, srmmu_nocache_end);
207 BUG();
209 if (!is_power_of_2(size)) {
210 printk("Size 0x%x is not a power of 2\n", size);
211 BUG();
213 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214 printk("Size 0x%x is too small\n", size);
215 BUG();
217 if (vaddr & (size - 1)) {
218 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219 BUG();
222 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
225 bit_map_clear(&srmmu_nocache_map, offset, size);
228 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 unsigned long end);
231 /* Return how much physical memory we have. */
232 static unsigned long __init probe_memory(void)
234 unsigned long total = 0;
235 int i;
237 for (i = 0; sp_banks[i].num_bytes; i++)
238 total += sp_banks[i].num_bytes;
240 return total;
244 * Reserve nocache dynamically proportionally to the amount of
245 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
247 static void __init srmmu_nocache_calcsize(void)
249 unsigned long sysmemavail = probe_memory() / 1024;
250 int srmmu_nocache_npages;
252 srmmu_nocache_npages =
253 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
255 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
256 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
257 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
258 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
260 /* anything above 1280 blows up */
261 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
262 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
264 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
265 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
268 static void __init srmmu_nocache_init(void)
270 unsigned int bitmap_bits;
271 pgd_t *pgd;
272 pmd_t *pmd;
273 pte_t *pte;
274 unsigned long paddr, vaddr;
275 unsigned long pteval;
277 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
279 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
280 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
281 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
283 srmmu_nocache_bitmap =
284 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
285 SMP_CACHE_BYTES, 0UL);
286 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
288 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
289 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
290 init_mm.pgd = srmmu_swapper_pg_dir;
292 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
294 paddr = __pa((unsigned long)srmmu_nocache_pool);
295 vaddr = SRMMU_NOCACHE_VADDR;
297 while (vaddr < srmmu_nocache_end) {
298 pgd = pgd_offset_k(vaddr);
299 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
300 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
302 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
304 if (srmmu_cache_pagetables)
305 pteval |= SRMMU_CACHE;
307 set_pte(__nocache_fix(pte), __pte(pteval));
309 vaddr += PAGE_SIZE;
310 paddr += PAGE_SIZE;
313 flush_cache_all();
314 flush_tlb_all();
317 pgd_t *get_pgd_fast(void)
319 pgd_t *pgd = NULL;
321 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
322 if (pgd) {
323 pgd_t *init = pgd_offset_k(0);
324 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
325 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
326 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
329 return pgd;
333 * Hardware needs alignment to 256 only, but we align to whole page size
334 * to reduce fragmentation problems due to the buddy principle.
335 * XXX Provide actual fragmentation statistics in /proc.
337 * Alignments up to the page size are the same for physical and virtual
338 * addresses of the nocache area.
340 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
342 unsigned long pte;
343 struct page *page;
345 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
346 return NULL;
347 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
348 pgtable_page_ctor(page);
349 return page;
352 void pte_free(struct mm_struct *mm, pgtable_t pte)
354 unsigned long p;
356 pgtable_page_dtor(pte);
357 p = (unsigned long)page_address(pte); /* Cached address (for test) */
358 if (p == 0)
359 BUG();
360 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
362 /* free non cached virtual address*/
363 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
366 /* context handling - a dynamically sized pool is used */
367 #define NO_CONTEXT -1
369 struct ctx_list {
370 struct ctx_list *next;
371 struct ctx_list *prev;
372 unsigned int ctx_number;
373 struct mm_struct *ctx_mm;
376 static struct ctx_list *ctx_list_pool;
377 static struct ctx_list ctx_free;
378 static struct ctx_list ctx_used;
380 /* At boot time we determine the number of contexts */
381 static int num_contexts;
383 static inline void remove_from_ctx_list(struct ctx_list *entry)
385 entry->next->prev = entry->prev;
386 entry->prev->next = entry->next;
389 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
391 entry->next = head;
392 (entry->prev = head->prev)->next = entry;
393 head->prev = entry;
395 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
396 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
399 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
401 struct ctx_list *ctxp;
403 ctxp = ctx_free.next;
404 if (ctxp != &ctx_free) {
405 remove_from_ctx_list(ctxp);
406 add_to_used_ctxlist(ctxp);
407 mm->context = ctxp->ctx_number;
408 ctxp->ctx_mm = mm;
409 return;
411 ctxp = ctx_used.next;
412 if (ctxp->ctx_mm == old_mm)
413 ctxp = ctxp->next;
414 if (ctxp == &ctx_used)
415 panic("out of mmu contexts");
416 flush_cache_mm(ctxp->ctx_mm);
417 flush_tlb_mm(ctxp->ctx_mm);
418 remove_from_ctx_list(ctxp);
419 add_to_used_ctxlist(ctxp);
420 ctxp->ctx_mm->context = NO_CONTEXT;
421 ctxp->ctx_mm = mm;
422 mm->context = ctxp->ctx_number;
425 static inline void free_context(int context)
427 struct ctx_list *ctx_old;
429 ctx_old = ctx_list_pool + context;
430 remove_from_ctx_list(ctx_old);
431 add_to_free_ctxlist(ctx_old);
434 static void __init sparc_context_init(int numctx)
436 int ctx;
437 unsigned long size;
439 size = numctx * sizeof(struct ctx_list);
440 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
442 for (ctx = 0; ctx < numctx; ctx++) {
443 struct ctx_list *clist;
445 clist = (ctx_list_pool + ctx);
446 clist->ctx_number = ctx;
447 clist->ctx_mm = NULL;
449 ctx_free.next = ctx_free.prev = &ctx_free;
450 ctx_used.next = ctx_used.prev = &ctx_used;
451 for (ctx = 0; ctx < numctx; ctx++)
452 add_to_free_ctxlist(ctx_list_pool + ctx);
455 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
456 struct task_struct *tsk)
458 if (mm->context == NO_CONTEXT) {
459 spin_lock(&srmmu_context_spinlock);
460 alloc_context(old_mm, mm);
461 spin_unlock(&srmmu_context_spinlock);
462 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
465 if (sparc_cpu_model == sparc_leon)
466 leon_switch_mm();
468 if (is_hypersparc)
469 hyper_flush_whole_icache();
471 srmmu_set_context(mm->context);
474 /* Low level IO area allocation on the SRMMU. */
475 static inline void srmmu_mapioaddr(unsigned long physaddr,
476 unsigned long virt_addr, int bus_type)
478 pgd_t *pgdp;
479 pmd_t *pmdp;
480 pte_t *ptep;
481 unsigned long tmp;
483 physaddr &= PAGE_MASK;
484 pgdp = pgd_offset_k(virt_addr);
485 pmdp = pmd_offset(pgdp, virt_addr);
486 ptep = pte_offset_kernel(pmdp, virt_addr);
487 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
489 /* I need to test whether this is consistent over all
490 * sun4m's. The bus_type represents the upper 4 bits of
491 * 36-bit physical address on the I/O space lines...
493 tmp |= (bus_type << 28);
494 tmp |= SRMMU_PRIV;
495 __flush_page_to_ram(virt_addr);
496 set_pte(ptep, __pte(tmp));
499 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
500 unsigned long xva, unsigned int len)
502 while (len != 0) {
503 len -= PAGE_SIZE;
504 srmmu_mapioaddr(xpa, xva, bus);
505 xva += PAGE_SIZE;
506 xpa += PAGE_SIZE;
508 flush_tlb_all();
511 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
513 pgd_t *pgdp;
514 pmd_t *pmdp;
515 pte_t *ptep;
517 pgdp = pgd_offset_k(virt_addr);
518 pmdp = pmd_offset(pgdp, virt_addr);
519 ptep = pte_offset_kernel(pmdp, virt_addr);
521 /* No need to flush uncacheable page. */
522 __pte_clear(ptep);
525 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
527 while (len != 0) {
528 len -= PAGE_SIZE;
529 srmmu_unmapioaddr(virt_addr);
530 virt_addr += PAGE_SIZE;
532 flush_tlb_all();
535 /* tsunami.S */
536 extern void tsunami_flush_cache_all(void);
537 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
538 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
539 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
540 extern void tsunami_flush_page_to_ram(unsigned long page);
541 extern void tsunami_flush_page_for_dma(unsigned long page);
542 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
543 extern void tsunami_flush_tlb_all(void);
544 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
545 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
546 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
547 extern void tsunami_setup_blockops(void);
549 /* swift.S */
550 extern void swift_flush_cache_all(void);
551 extern void swift_flush_cache_mm(struct mm_struct *mm);
552 extern void swift_flush_cache_range(struct vm_area_struct *vma,
553 unsigned long start, unsigned long end);
554 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
555 extern void swift_flush_page_to_ram(unsigned long page);
556 extern void swift_flush_page_for_dma(unsigned long page);
557 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
558 extern void swift_flush_tlb_all(void);
559 extern void swift_flush_tlb_mm(struct mm_struct *mm);
560 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
561 unsigned long start, unsigned long end);
562 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
564 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
565 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
567 int cctx, ctx1;
569 page &= PAGE_MASK;
570 if ((ctx1 = vma->vm_mm->context) != -1) {
571 cctx = srmmu_get_context();
572 /* Is context # ever different from current context? P3 */
573 if (cctx != ctx1) {
574 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
575 srmmu_set_context(ctx1);
576 swift_flush_page(page);
577 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
578 "r" (page), "i" (ASI_M_FLUSH_PROBE));
579 srmmu_set_context(cctx);
580 } else {
581 /* Rm. prot. bits from virt. c. */
582 /* swift_flush_cache_all(); */
583 /* swift_flush_cache_page(vma, page); */
584 swift_flush_page(page);
586 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
587 "r" (page), "i" (ASI_M_FLUSH_PROBE));
588 /* same as above: srmmu_flush_tlb_page() */
592 #endif
595 * The following are all MBUS based SRMMU modules, and therefore could
596 * be found in a multiprocessor configuration. On the whole, these
597 * chips seems to be much more touchy about DVMA and page tables
598 * with respect to cache coherency.
601 /* viking.S */
602 extern void viking_flush_cache_all(void);
603 extern void viking_flush_cache_mm(struct mm_struct *mm);
604 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
605 unsigned long end);
606 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
607 extern void viking_flush_page_to_ram(unsigned long page);
608 extern void viking_flush_page_for_dma(unsigned long page);
609 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
610 extern void viking_flush_page(unsigned long page);
611 extern void viking_mxcc_flush_page(unsigned long page);
612 extern void viking_flush_tlb_all(void);
613 extern void viking_flush_tlb_mm(struct mm_struct *mm);
614 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
615 unsigned long end);
616 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
617 unsigned long page);
618 extern void sun4dsmp_flush_tlb_all(void);
619 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
620 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
621 unsigned long end);
622 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
623 unsigned long page);
625 /* hypersparc.S */
626 extern void hypersparc_flush_cache_all(void);
627 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
628 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
629 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
630 extern void hypersparc_flush_page_to_ram(unsigned long page);
631 extern void hypersparc_flush_page_for_dma(unsigned long page);
632 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
633 extern void hypersparc_flush_tlb_all(void);
634 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
635 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
636 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
637 extern void hypersparc_setup_blockops(void);
640 * NOTE: All of this startup code assumes the low 16mb (approx.) of
641 * kernel mappings are done with one single contiguous chunk of
642 * ram. On small ram machines (classics mainly) we only get
643 * around 8mb mapped for us.
646 static void __init early_pgtable_allocfail(char *type)
648 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
649 prom_halt();
652 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
653 unsigned long end)
655 pgd_t *pgdp;
656 pmd_t *pmdp;
657 pte_t *ptep;
659 while (start < end) {
660 pgdp = pgd_offset_k(start);
661 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
662 pmdp = __srmmu_get_nocache(
663 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
664 if (pmdp == NULL)
665 early_pgtable_allocfail("pmd");
666 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
667 pgd_set(__nocache_fix(pgdp), pmdp);
669 pmdp = pmd_offset(__nocache_fix(pgdp), start);
670 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
671 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
672 if (ptep == NULL)
673 early_pgtable_allocfail("pte");
674 memset(__nocache_fix(ptep), 0, PTE_SIZE);
675 pmd_set(__nocache_fix(pmdp), ptep);
677 if (start > (0xffffffffUL - PMD_SIZE))
678 break;
679 start = (start + PMD_SIZE) & PMD_MASK;
683 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
684 unsigned long end)
686 pgd_t *pgdp;
687 pmd_t *pmdp;
688 pte_t *ptep;
690 while (start < end) {
691 pgdp = pgd_offset_k(start);
692 if (pgd_none(*pgdp)) {
693 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
694 if (pmdp == NULL)
695 early_pgtable_allocfail("pmd");
696 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
697 pgd_set(pgdp, pmdp);
699 pmdp = pmd_offset(pgdp, start);
700 if (srmmu_pmd_none(*pmdp)) {
701 ptep = __srmmu_get_nocache(PTE_SIZE,
702 PTE_SIZE);
703 if (ptep == NULL)
704 early_pgtable_allocfail("pte");
705 memset(ptep, 0, PTE_SIZE);
706 pmd_set(pmdp, ptep);
708 if (start > (0xffffffffUL - PMD_SIZE))
709 break;
710 start = (start + PMD_SIZE) & PMD_MASK;
714 /* These flush types are not available on all chips... */
715 static inline unsigned long srmmu_probe(unsigned long vaddr)
717 unsigned long retval;
719 if (sparc_cpu_model != sparc_leon) {
721 vaddr &= PAGE_MASK;
722 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
723 "=r" (retval) :
724 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
725 } else {
726 retval = leon_swprobe(vaddr, 0);
728 return retval;
732 * This is much cleaner than poking around physical address space
733 * looking at the prom's page table directly which is what most
734 * other OS's do. Yuck... this is much better.
736 static void __init srmmu_inherit_prom_mappings(unsigned long start,
737 unsigned long end)
739 unsigned long probed;
740 unsigned long addr;
741 pgd_t *pgdp;
742 pmd_t *pmdp;
743 pte_t *ptep;
744 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
746 while (start <= end) {
747 if (start == 0)
748 break; /* probably wrap around */
749 if (start == 0xfef00000)
750 start = KADB_DEBUGGER_BEGVM;
751 probed = srmmu_probe(start);
752 if (!probed) {
753 /* continue probing until we find an entry */
754 start += PAGE_SIZE;
755 continue;
758 /* A red snapper, see what it really is. */
759 what = 0;
760 addr = start - PAGE_SIZE;
762 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
763 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
764 what = 1;
767 if (!(start & ~(SRMMU_PGDIR_MASK))) {
768 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
769 what = 2;
772 pgdp = pgd_offset_k(start);
773 if (what == 2) {
774 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
775 start += SRMMU_PGDIR_SIZE;
776 continue;
778 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
779 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
780 SRMMU_PMD_TABLE_SIZE);
781 if (pmdp == NULL)
782 early_pgtable_allocfail("pmd");
783 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
784 pgd_set(__nocache_fix(pgdp), pmdp);
786 pmdp = pmd_offset(__nocache_fix(pgdp), start);
787 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
788 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
789 if (ptep == NULL)
790 early_pgtable_allocfail("pte");
791 memset(__nocache_fix(ptep), 0, PTE_SIZE);
792 pmd_set(__nocache_fix(pmdp), ptep);
794 if (what == 1) {
795 /* We bend the rule where all 16 PTPs in a pmd_t point
796 * inside the same PTE page, and we leak a perfectly
797 * good hardware PTE piece. Alternatives seem worse.
799 unsigned int x; /* Index of HW PMD in soft cluster */
800 unsigned long *val;
801 x = (start >> PMD_SHIFT) & 15;
802 val = &pmdp->pmdv[x];
803 *(unsigned long *)__nocache_fix(val) = probed;
804 start += SRMMU_REAL_PMD_SIZE;
805 continue;
807 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
808 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
809 start += PAGE_SIZE;
813 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
815 /* Create a third-level SRMMU 16MB page mapping. */
816 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
818 pgd_t *pgdp = pgd_offset_k(vaddr);
819 unsigned long big_pte;
821 big_pte = KERNEL_PTE(phys_base >> 4);
822 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
825 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
826 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
828 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
829 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
830 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
831 /* Map "low" memory only */
832 const unsigned long min_vaddr = PAGE_OFFSET;
833 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
835 if (vstart < min_vaddr || vstart >= max_vaddr)
836 return vstart;
838 if (vend > max_vaddr || vend < min_vaddr)
839 vend = max_vaddr;
841 while (vstart < vend) {
842 do_large_mapping(vstart, pstart);
843 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
845 return vstart;
848 static void __init map_kernel(void)
850 int i;
852 if (phys_base > 0) {
853 do_large_mapping(PAGE_OFFSET, phys_base);
856 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
857 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
861 void (*poke_srmmu)(void) = NULL;
863 extern unsigned long bootmem_init(unsigned long *pages_avail);
865 void __init srmmu_paging_init(void)
867 int i;
868 phandle cpunode;
869 char node_str[128];
870 pgd_t *pgd;
871 pmd_t *pmd;
872 pte_t *pte;
873 unsigned long pages_avail;
875 init_mm.context = (unsigned long) NO_CONTEXT;
876 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
878 if (sparc_cpu_model == sun4d)
879 num_contexts = 65536; /* We know it is Viking */
880 else {
881 /* Find the number of contexts on the srmmu. */
882 cpunode = prom_getchild(prom_root_node);
883 num_contexts = 0;
884 while (cpunode != 0) {
885 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
886 if (!strcmp(node_str, "cpu")) {
887 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
888 break;
890 cpunode = prom_getsibling(cpunode);
894 if (!num_contexts) {
895 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
896 prom_halt();
899 pages_avail = 0;
900 last_valid_pfn = bootmem_init(&pages_avail);
902 srmmu_nocache_calcsize();
903 srmmu_nocache_init();
904 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
905 map_kernel();
907 /* ctx table has to be physically aligned to its size */
908 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
909 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
911 for (i = 0; i < num_contexts; i++)
912 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
914 flush_cache_all();
915 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
916 #ifdef CONFIG_SMP
917 /* Stop from hanging here... */
918 local_ops->tlb_all();
919 #else
920 flush_tlb_all();
921 #endif
922 poke_srmmu();
924 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
925 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
927 srmmu_allocate_ptable_skeleton(
928 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
929 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
931 pgd = pgd_offset_k(PKMAP_BASE);
932 pmd = pmd_offset(pgd, PKMAP_BASE);
933 pte = pte_offset_kernel(pmd, PKMAP_BASE);
934 pkmap_page_table = pte;
936 flush_cache_all();
937 flush_tlb_all();
939 sparc_context_init(num_contexts);
941 kmap_init();
944 unsigned long zones_size[MAX_NR_ZONES];
945 unsigned long zholes_size[MAX_NR_ZONES];
946 unsigned long npages;
947 int znum;
949 for (znum = 0; znum < MAX_NR_ZONES; znum++)
950 zones_size[znum] = zholes_size[znum] = 0;
952 npages = max_low_pfn - pfn_base;
954 zones_size[ZONE_DMA] = npages;
955 zholes_size[ZONE_DMA] = npages - pages_avail;
957 npages = highend_pfn - max_low_pfn;
958 zones_size[ZONE_HIGHMEM] = npages;
959 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
961 free_area_init_node(0, zones_size, pfn_base, zholes_size);
965 void mmu_info(struct seq_file *m)
967 seq_printf(m,
968 "MMU type\t: %s\n"
969 "contexts\t: %d\n"
970 "nocache total\t: %ld\n"
971 "nocache used\t: %d\n",
972 srmmu_name,
973 num_contexts,
974 srmmu_nocache_size,
975 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
978 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
980 mm->context = NO_CONTEXT;
981 return 0;
984 void destroy_context(struct mm_struct *mm)
987 if (mm->context != NO_CONTEXT) {
988 flush_cache_mm(mm);
989 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
990 flush_tlb_mm(mm);
991 spin_lock(&srmmu_context_spinlock);
992 free_context(mm->context);
993 spin_unlock(&srmmu_context_spinlock);
994 mm->context = NO_CONTEXT;
998 /* Init various srmmu chip types. */
999 static void __init srmmu_is_bad(void)
1001 prom_printf("Could not determine SRMMU chip type.\n");
1002 prom_halt();
1005 static void __init init_vac_layout(void)
1007 phandle nd;
1008 int cache_lines;
1009 char node_str[128];
1010 #ifdef CONFIG_SMP
1011 int cpu = 0;
1012 unsigned long max_size = 0;
1013 unsigned long min_line_size = 0x10000000;
1014 #endif
1016 nd = prom_getchild(prom_root_node);
1017 while ((nd = prom_getsibling(nd)) != 0) {
1018 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1019 if (!strcmp(node_str, "cpu")) {
1020 vac_line_size = prom_getint(nd, "cache-line-size");
1021 if (vac_line_size == -1) {
1022 prom_printf("can't determine cache-line-size, halting.\n");
1023 prom_halt();
1025 cache_lines = prom_getint(nd, "cache-nlines");
1026 if (cache_lines == -1) {
1027 prom_printf("can't determine cache-nlines, halting.\n");
1028 prom_halt();
1031 vac_cache_size = cache_lines * vac_line_size;
1032 #ifdef CONFIG_SMP
1033 if (vac_cache_size > max_size)
1034 max_size = vac_cache_size;
1035 if (vac_line_size < min_line_size)
1036 min_line_size = vac_line_size;
1037 //FIXME: cpus not contiguous!!
1038 cpu++;
1039 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1040 break;
1041 #else
1042 break;
1043 #endif
1046 if (nd == 0) {
1047 prom_printf("No CPU nodes found, halting.\n");
1048 prom_halt();
1050 #ifdef CONFIG_SMP
1051 vac_cache_size = max_size;
1052 vac_line_size = min_line_size;
1053 #endif
1054 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1055 (int)vac_cache_size, (int)vac_line_size);
1058 static void poke_hypersparc(void)
1060 volatile unsigned long clear;
1061 unsigned long mreg = srmmu_get_mmureg();
1063 hyper_flush_unconditional_combined();
1065 mreg &= ~(HYPERSPARC_CWENABLE);
1066 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1067 mreg |= (HYPERSPARC_CMODE);
1069 srmmu_set_mmureg(mreg);
1071 #if 0 /* XXX I think this is bad news... -DaveM */
1072 hyper_clear_all_tags();
1073 #endif
1075 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1076 hyper_flush_whole_icache();
1077 clear = srmmu_get_faddr();
1078 clear = srmmu_get_fstatus();
1081 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1082 .cache_all = hypersparc_flush_cache_all,
1083 .cache_mm = hypersparc_flush_cache_mm,
1084 .cache_page = hypersparc_flush_cache_page,
1085 .cache_range = hypersparc_flush_cache_range,
1086 .tlb_all = hypersparc_flush_tlb_all,
1087 .tlb_mm = hypersparc_flush_tlb_mm,
1088 .tlb_page = hypersparc_flush_tlb_page,
1089 .tlb_range = hypersparc_flush_tlb_range,
1090 .page_to_ram = hypersparc_flush_page_to_ram,
1091 .sig_insns = hypersparc_flush_sig_insns,
1092 .page_for_dma = hypersparc_flush_page_for_dma,
1095 static void __init init_hypersparc(void)
1097 srmmu_name = "ROSS HyperSparc";
1098 srmmu_modtype = HyperSparc;
1100 init_vac_layout();
1102 is_hypersparc = 1;
1103 sparc32_cachetlb_ops = &hypersparc_ops;
1105 poke_srmmu = poke_hypersparc;
1107 hypersparc_setup_blockops();
1110 static void poke_swift(void)
1112 unsigned long mreg;
1114 /* Clear any crap from the cache or else... */
1115 swift_flush_cache_all();
1117 /* Enable I & D caches */
1118 mreg = srmmu_get_mmureg();
1119 mreg |= (SWIFT_IE | SWIFT_DE);
1121 * The Swift branch folding logic is completely broken. At
1122 * trap time, if things are just right, if can mistakenly
1123 * think that a trap is coming from kernel mode when in fact
1124 * it is coming from user mode (it mis-executes the branch in
1125 * the trap code). So you see things like crashme completely
1126 * hosing your machine which is completely unacceptable. Turn
1127 * this shit off... nice job Fujitsu.
1129 mreg &= ~(SWIFT_BF);
1130 srmmu_set_mmureg(mreg);
1133 static const struct sparc32_cachetlb_ops swift_ops = {
1134 .cache_all = swift_flush_cache_all,
1135 .cache_mm = swift_flush_cache_mm,
1136 .cache_page = swift_flush_cache_page,
1137 .cache_range = swift_flush_cache_range,
1138 .tlb_all = swift_flush_tlb_all,
1139 .tlb_mm = swift_flush_tlb_mm,
1140 .tlb_page = swift_flush_tlb_page,
1141 .tlb_range = swift_flush_tlb_range,
1142 .page_to_ram = swift_flush_page_to_ram,
1143 .sig_insns = swift_flush_sig_insns,
1144 .page_for_dma = swift_flush_page_for_dma,
1147 #define SWIFT_MASKID_ADDR 0x10003018
1148 static void __init init_swift(void)
1150 unsigned long swift_rev;
1152 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1153 "srl %0, 0x18, %0\n\t" :
1154 "=r" (swift_rev) :
1155 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1156 srmmu_name = "Fujitsu Swift";
1157 switch (swift_rev) {
1158 case 0x11:
1159 case 0x20:
1160 case 0x23:
1161 case 0x30:
1162 srmmu_modtype = Swift_lots_o_bugs;
1163 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1165 * Gee george, I wonder why Sun is so hush hush about
1166 * this hardware bug... really braindamage stuff going
1167 * on here. However I think we can find a way to avoid
1168 * all of the workaround overhead under Linux. Basically,
1169 * any page fault can cause kernel pages to become user
1170 * accessible (the mmu gets confused and clears some of
1171 * the ACC bits in kernel ptes). Aha, sounds pretty
1172 * horrible eh? But wait, after extensive testing it appears
1173 * that if you use pgd_t level large kernel pte's (like the
1174 * 4MB pages on the Pentium) the bug does not get tripped
1175 * at all. This avoids almost all of the major overhead.
1176 * Welcome to a world where your vendor tells you to,
1177 * "apply this kernel patch" instead of "sorry for the
1178 * broken hardware, send it back and we'll give you
1179 * properly functioning parts"
1181 break;
1182 case 0x25:
1183 case 0x31:
1184 srmmu_modtype = Swift_bad_c;
1185 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1187 * You see Sun allude to this hardware bug but never
1188 * admit things directly, they'll say things like,
1189 * "the Swift chip cache problems" or similar.
1191 break;
1192 default:
1193 srmmu_modtype = Swift_ok;
1194 break;
1197 sparc32_cachetlb_ops = &swift_ops;
1198 flush_page_for_dma_global = 0;
1201 * Are you now convinced that the Swift is one of the
1202 * biggest VLSI abortions of all time? Bravo Fujitsu!
1203 * Fujitsu, the !#?!%$'d up processor people. I bet if
1204 * you examined the microcode of the Swift you'd find
1205 * XXX's all over the place.
1207 poke_srmmu = poke_swift;
1210 static void turbosparc_flush_cache_all(void)
1212 flush_user_windows();
1213 turbosparc_idflash_clear();
1216 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1218 FLUSH_BEGIN(mm)
1219 flush_user_windows();
1220 turbosparc_idflash_clear();
1221 FLUSH_END
1224 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1226 FLUSH_BEGIN(vma->vm_mm)
1227 flush_user_windows();
1228 turbosparc_idflash_clear();
1229 FLUSH_END
1232 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1234 FLUSH_BEGIN(vma->vm_mm)
1235 flush_user_windows();
1236 if (vma->vm_flags & VM_EXEC)
1237 turbosparc_flush_icache();
1238 turbosparc_flush_dcache();
1239 FLUSH_END
1242 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1243 static void turbosparc_flush_page_to_ram(unsigned long page)
1245 #ifdef TURBOSPARC_WRITEBACK
1246 volatile unsigned long clear;
1248 if (srmmu_probe(page))
1249 turbosparc_flush_page_cache(page);
1250 clear = srmmu_get_fstatus();
1251 #endif
1254 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1258 static void turbosparc_flush_page_for_dma(unsigned long page)
1260 turbosparc_flush_dcache();
1263 static void turbosparc_flush_tlb_all(void)
1265 srmmu_flush_whole_tlb();
1268 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1270 FLUSH_BEGIN(mm)
1271 srmmu_flush_whole_tlb();
1272 FLUSH_END
1275 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1277 FLUSH_BEGIN(vma->vm_mm)
1278 srmmu_flush_whole_tlb();
1279 FLUSH_END
1282 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1284 FLUSH_BEGIN(vma->vm_mm)
1285 srmmu_flush_whole_tlb();
1286 FLUSH_END
1290 static void poke_turbosparc(void)
1292 unsigned long mreg = srmmu_get_mmureg();
1293 unsigned long ccreg;
1295 /* Clear any crap from the cache or else... */
1296 turbosparc_flush_cache_all();
1297 /* Temporarily disable I & D caches */
1298 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1299 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1300 srmmu_set_mmureg(mreg);
1302 ccreg = turbosparc_get_ccreg();
1304 #ifdef TURBOSPARC_WRITEBACK
1305 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1306 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1307 /* Write-back D-cache, emulate VLSI
1308 * abortion number three, not number one */
1309 #else
1310 /* For now let's play safe, optimize later */
1311 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1312 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1313 ccreg &= ~(TURBOSPARC_uS2);
1314 /* Emulate VLSI abortion number three, not number one */
1315 #endif
1317 switch (ccreg & 7) {
1318 case 0: /* No SE cache */
1319 case 7: /* Test mode */
1320 break;
1321 default:
1322 ccreg |= (TURBOSPARC_SCENABLE);
1324 turbosparc_set_ccreg(ccreg);
1326 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1327 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1328 srmmu_set_mmureg(mreg);
1331 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1332 .cache_all = turbosparc_flush_cache_all,
1333 .cache_mm = turbosparc_flush_cache_mm,
1334 .cache_page = turbosparc_flush_cache_page,
1335 .cache_range = turbosparc_flush_cache_range,
1336 .tlb_all = turbosparc_flush_tlb_all,
1337 .tlb_mm = turbosparc_flush_tlb_mm,
1338 .tlb_page = turbosparc_flush_tlb_page,
1339 .tlb_range = turbosparc_flush_tlb_range,
1340 .page_to_ram = turbosparc_flush_page_to_ram,
1341 .sig_insns = turbosparc_flush_sig_insns,
1342 .page_for_dma = turbosparc_flush_page_for_dma,
1345 static void __init init_turbosparc(void)
1347 srmmu_name = "Fujitsu TurboSparc";
1348 srmmu_modtype = TurboSparc;
1349 sparc32_cachetlb_ops = &turbosparc_ops;
1350 poke_srmmu = poke_turbosparc;
1353 static void poke_tsunami(void)
1355 unsigned long mreg = srmmu_get_mmureg();
1357 tsunami_flush_icache();
1358 tsunami_flush_dcache();
1359 mreg &= ~TSUNAMI_ITD;
1360 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1361 srmmu_set_mmureg(mreg);
1364 static const struct sparc32_cachetlb_ops tsunami_ops = {
1365 .cache_all = tsunami_flush_cache_all,
1366 .cache_mm = tsunami_flush_cache_mm,
1367 .cache_page = tsunami_flush_cache_page,
1368 .cache_range = tsunami_flush_cache_range,
1369 .tlb_all = tsunami_flush_tlb_all,
1370 .tlb_mm = tsunami_flush_tlb_mm,
1371 .tlb_page = tsunami_flush_tlb_page,
1372 .tlb_range = tsunami_flush_tlb_range,
1373 .page_to_ram = tsunami_flush_page_to_ram,
1374 .sig_insns = tsunami_flush_sig_insns,
1375 .page_for_dma = tsunami_flush_page_for_dma,
1378 static void __init init_tsunami(void)
1381 * Tsunami's pretty sane, Sun and TI actually got it
1382 * somewhat right this time. Fujitsu should have
1383 * taken some lessons from them.
1386 srmmu_name = "TI Tsunami";
1387 srmmu_modtype = Tsunami;
1388 sparc32_cachetlb_ops = &tsunami_ops;
1389 poke_srmmu = poke_tsunami;
1391 tsunami_setup_blockops();
1394 static void poke_viking(void)
1396 unsigned long mreg = srmmu_get_mmureg();
1397 static int smp_catch;
1399 if (viking_mxcc_present) {
1400 unsigned long mxcc_control = mxcc_get_creg();
1402 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1403 mxcc_control &= ~(MXCC_CTL_RRC);
1404 mxcc_set_creg(mxcc_control);
1407 * We don't need memory parity checks.
1408 * XXX This is a mess, have to dig out later. ecd.
1409 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1412 /* We do cache ptables on MXCC. */
1413 mreg |= VIKING_TCENABLE;
1414 } else {
1415 unsigned long bpreg;
1417 mreg &= ~(VIKING_TCENABLE);
1418 if (smp_catch++) {
1419 /* Must disable mixed-cmd mode here for other cpu's. */
1420 bpreg = viking_get_bpreg();
1421 bpreg &= ~(VIKING_ACTION_MIX);
1422 viking_set_bpreg(bpreg);
1424 /* Just in case PROM does something funny. */
1425 msi_set_sync();
1429 mreg |= VIKING_SPENABLE;
1430 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1431 mreg |= VIKING_SBENABLE;
1432 mreg &= ~(VIKING_ACENABLE);
1433 srmmu_set_mmureg(mreg);
1436 static struct sparc32_cachetlb_ops viking_ops = {
1437 .cache_all = viking_flush_cache_all,
1438 .cache_mm = viking_flush_cache_mm,
1439 .cache_page = viking_flush_cache_page,
1440 .cache_range = viking_flush_cache_range,
1441 .tlb_all = viking_flush_tlb_all,
1442 .tlb_mm = viking_flush_tlb_mm,
1443 .tlb_page = viking_flush_tlb_page,
1444 .tlb_range = viking_flush_tlb_range,
1445 .page_to_ram = viking_flush_page_to_ram,
1446 .sig_insns = viking_flush_sig_insns,
1447 .page_for_dma = viking_flush_page_for_dma,
1450 #ifdef CONFIG_SMP
1451 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1452 * perform the local TLB flush and all the other cpus will see it.
1453 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1454 * that requires that we add some synchronization to these flushes.
1456 * The bug is that the fifo which keeps track of all the pending TLB
1457 * broadcasts in the system is an entry or two too small, so if we
1458 * have too many going at once we'll overflow that fifo and lose a TLB
1459 * flush resulting in corruption.
1461 * Our workaround is to take a global spinlock around the TLB flushes,
1462 * which guarentees we won't ever have too many pending. It's a big
1463 * hammer, but a semaphore like system to make sure we only have N TLB
1464 * flushes going at once will require SMP locking anyways so there's
1465 * no real value in trying any harder than this.
1467 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1468 .cache_all = viking_flush_cache_all,
1469 .cache_mm = viking_flush_cache_mm,
1470 .cache_page = viking_flush_cache_page,
1471 .cache_range = viking_flush_cache_range,
1472 .tlb_all = sun4dsmp_flush_tlb_all,
1473 .tlb_mm = sun4dsmp_flush_tlb_mm,
1474 .tlb_page = sun4dsmp_flush_tlb_page,
1475 .tlb_range = sun4dsmp_flush_tlb_range,
1476 .page_to_ram = viking_flush_page_to_ram,
1477 .sig_insns = viking_flush_sig_insns,
1478 .page_for_dma = viking_flush_page_for_dma,
1480 #endif
1482 static void __init init_viking(void)
1484 unsigned long mreg = srmmu_get_mmureg();
1486 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1487 if (mreg & VIKING_MMODE) {
1488 srmmu_name = "TI Viking";
1489 viking_mxcc_present = 0;
1490 msi_set_sync();
1493 * We need this to make sure old viking takes no hits
1494 * on it's cache for dma snoops to workaround the
1495 * "load from non-cacheable memory" interrupt bug.
1496 * This is only necessary because of the new way in
1497 * which we use the IOMMU.
1499 viking_ops.page_for_dma = viking_flush_page;
1500 #ifdef CONFIG_SMP
1501 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1502 #endif
1503 flush_page_for_dma_global = 0;
1504 } else {
1505 srmmu_name = "TI Viking/MXCC";
1506 viking_mxcc_present = 1;
1507 srmmu_cache_pagetables = 1;
1510 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1511 &viking_ops;
1512 #ifdef CONFIG_SMP
1513 if (sparc_cpu_model == sun4d)
1514 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1515 &viking_sun4d_smp_ops;
1516 #endif
1518 poke_srmmu = poke_viking;
1521 /* Probe for the srmmu chip version. */
1522 static void __init get_srmmu_type(void)
1524 unsigned long mreg, psr;
1525 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1527 srmmu_modtype = SRMMU_INVAL_MOD;
1528 hwbug_bitmask = 0;
1530 mreg = srmmu_get_mmureg(); psr = get_psr();
1531 mod_typ = (mreg & 0xf0000000) >> 28;
1532 mod_rev = (mreg & 0x0f000000) >> 24;
1533 psr_typ = (psr >> 28) & 0xf;
1534 psr_vers = (psr >> 24) & 0xf;
1536 /* First, check for sparc-leon. */
1537 if (sparc_cpu_model == sparc_leon) {
1538 init_leon();
1539 return;
1542 /* Second, check for HyperSparc or Cypress. */
1543 if (mod_typ == 1) {
1544 switch (mod_rev) {
1545 case 7:
1546 /* UP or MP Hypersparc */
1547 init_hypersparc();
1548 break;
1549 case 0:
1550 case 2:
1551 case 10:
1552 case 11:
1553 case 12:
1554 case 13:
1555 case 14:
1556 case 15:
1557 default:
1558 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1559 prom_halt();
1560 break;
1562 return;
1565 /* Now Fujitsu TurboSparc. It might happen that it is
1566 * in Swift emulation mode, so we will check later...
1568 if (psr_typ == 0 && psr_vers == 5) {
1569 init_turbosparc();
1570 return;
1573 /* Next check for Fujitsu Swift. */
1574 if (psr_typ == 0 && psr_vers == 4) {
1575 phandle cpunode;
1576 char node_str[128];
1578 /* Look if it is not a TurboSparc emulating Swift... */
1579 cpunode = prom_getchild(prom_root_node);
1580 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1581 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1582 if (!strcmp(node_str, "cpu")) {
1583 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1584 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1585 init_turbosparc();
1586 return;
1588 break;
1592 init_swift();
1593 return;
1596 /* Now the Viking family of srmmu. */
1597 if (psr_typ == 4 &&
1598 ((psr_vers == 0) ||
1599 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1600 init_viking();
1601 return;
1604 /* Finally the Tsunami. */
1605 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1606 init_tsunami();
1607 return;
1610 /* Oh well */
1611 srmmu_is_bad();
1614 #ifdef CONFIG_SMP
1615 /* Local cross-calls. */
1616 static void smp_flush_page_for_dma(unsigned long page)
1618 xc1((smpfunc_t) local_ops->page_for_dma, page);
1619 local_ops->page_for_dma(page);
1622 static void smp_flush_cache_all(void)
1624 xc0((smpfunc_t) local_ops->cache_all);
1625 local_ops->cache_all();
1628 static void smp_flush_tlb_all(void)
1630 xc0((smpfunc_t) local_ops->tlb_all);
1631 local_ops->tlb_all();
1634 static void smp_flush_cache_mm(struct mm_struct *mm)
1636 if (mm->context != NO_CONTEXT) {
1637 cpumask_t cpu_mask;
1638 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1639 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1640 if (!cpumask_empty(&cpu_mask))
1641 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1642 local_ops->cache_mm(mm);
1646 static void smp_flush_tlb_mm(struct mm_struct *mm)
1648 if (mm->context != NO_CONTEXT) {
1649 cpumask_t cpu_mask;
1650 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1651 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1652 if (!cpumask_empty(&cpu_mask)) {
1653 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1654 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1655 cpumask_copy(mm_cpumask(mm),
1656 cpumask_of(smp_processor_id()));
1658 local_ops->tlb_mm(mm);
1662 static void smp_flush_cache_range(struct vm_area_struct *vma,
1663 unsigned long start,
1664 unsigned long end)
1666 struct mm_struct *mm = vma->vm_mm;
1668 if (mm->context != NO_CONTEXT) {
1669 cpumask_t cpu_mask;
1670 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1671 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1672 if (!cpumask_empty(&cpu_mask))
1673 xc3((smpfunc_t) local_ops->cache_range,
1674 (unsigned long) vma, start, end);
1675 local_ops->cache_range(vma, start, end);
1679 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1680 unsigned long start,
1681 unsigned long end)
1683 struct mm_struct *mm = vma->vm_mm;
1685 if (mm->context != NO_CONTEXT) {
1686 cpumask_t cpu_mask;
1687 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1688 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1689 if (!cpumask_empty(&cpu_mask))
1690 xc3((smpfunc_t) local_ops->tlb_range,
1691 (unsigned long) vma, start, end);
1692 local_ops->tlb_range(vma, start, end);
1696 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1698 struct mm_struct *mm = vma->vm_mm;
1700 if (mm->context != NO_CONTEXT) {
1701 cpumask_t cpu_mask;
1702 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1703 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1704 if (!cpumask_empty(&cpu_mask))
1705 xc2((smpfunc_t) local_ops->cache_page,
1706 (unsigned long) vma, page);
1707 local_ops->cache_page(vma, page);
1711 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1713 struct mm_struct *mm = vma->vm_mm;
1715 if (mm->context != NO_CONTEXT) {
1716 cpumask_t cpu_mask;
1717 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1718 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1719 if (!cpumask_empty(&cpu_mask))
1720 xc2((smpfunc_t) local_ops->tlb_page,
1721 (unsigned long) vma, page);
1722 local_ops->tlb_page(vma, page);
1726 static void smp_flush_page_to_ram(unsigned long page)
1728 /* Current theory is that those who call this are the one's
1729 * who have just dirtied their cache with the pages contents
1730 * in kernel space, therefore we only run this on local cpu.
1732 * XXX This experiment failed, research further... -DaveM
1734 #if 1
1735 xc1((smpfunc_t) local_ops->page_to_ram, page);
1736 #endif
1737 local_ops->page_to_ram(page);
1740 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1742 cpumask_t cpu_mask;
1743 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1744 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1745 if (!cpumask_empty(&cpu_mask))
1746 xc2((smpfunc_t) local_ops->sig_insns,
1747 (unsigned long) mm, insn_addr);
1748 local_ops->sig_insns(mm, insn_addr);
1751 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1752 .cache_all = smp_flush_cache_all,
1753 .cache_mm = smp_flush_cache_mm,
1754 .cache_page = smp_flush_cache_page,
1755 .cache_range = smp_flush_cache_range,
1756 .tlb_all = smp_flush_tlb_all,
1757 .tlb_mm = smp_flush_tlb_mm,
1758 .tlb_page = smp_flush_tlb_page,
1759 .tlb_range = smp_flush_tlb_range,
1760 .page_to_ram = smp_flush_page_to_ram,
1761 .sig_insns = smp_flush_sig_insns,
1762 .page_for_dma = smp_flush_page_for_dma,
1764 #endif
1766 /* Load up routines and constants for sun4m and sun4d mmu */
1767 void __init load_mmu(void)
1769 extern void ld_mmu_iommu(void);
1770 extern void ld_mmu_iounit(void);
1772 /* Functions */
1773 get_srmmu_type();
1775 #ifdef CONFIG_SMP
1776 /* El switcheroo... */
1777 local_ops = sparc32_cachetlb_ops;
1779 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1780 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1781 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1782 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1783 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1786 if (poke_srmmu == poke_viking) {
1787 /* Avoid unnecessary cross calls. */
1788 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1789 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1790 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1791 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1793 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1794 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1795 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1798 /* It really is const after this point. */
1799 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1800 &smp_cachetlb_ops;
1801 #endif
1803 if (sparc_cpu_model == sun4d)
1804 ld_mmu_iounit();
1805 else
1806 ld_mmu_iommu();
1807 #ifdef CONFIG_SMP
1808 if (sparc_cpu_model == sun4d)
1809 sun4d_init_smp();
1810 else if (sparc_cpu_model == sparc_leon)
1811 leon_init_smp();
1812 else
1813 sun4m_init_smp();
1814 #endif