2 * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
4 * Author: Mike Lavender, mike@steroidmicros.com
6 * Copyright (c) 2005, Intec Automation Inc.
8 * Some parts are based on lart.c by Abraham Van Der Merwe
10 * Cleaned up and generalized based on mtd_dataflash.c
12 * This code is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
18 #include <linux/init.h>
19 #include <linux/err.h>
20 #include <linux/errno.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/interrupt.h>
24 #include <linux/mutex.h>
25 #include <linux/math64.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/mod_devicetable.h>
30 #include <linux/mtd/cfi.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/of_platform.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/flash.h>
39 #define OPCODE_WREN 0x06 /* Write enable */
40 #define OPCODE_RDSR 0x05 /* Read status register */
41 #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
42 #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
43 #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
44 #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
45 #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
46 #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
47 #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
48 #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
49 #define OPCODE_RDID 0x9f /* Read JEDEC ID */
51 /* Used for SST flashes only. */
52 #define OPCODE_BP 0x02 /* Byte program */
53 #define OPCODE_WRDI 0x04 /* Write disable */
54 #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
56 /* Used for Macronix flashes only. */
57 #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
58 #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
60 /* Used for Spansion flashes only. */
61 #define OPCODE_BRWR 0x17 /* Bank register write */
63 /* Status Register bits. */
64 #define SR_WIP 1 /* Write in progress */
65 #define SR_WEL 2 /* Write enable latch */
66 /* meaning of other SR_* bits may differ between vendors */
67 #define SR_BP0 4 /* Block protect 0 */
68 #define SR_BP1 8 /* Block protect 1 */
69 #define SR_BP2 0x10 /* Block protect 2 */
70 #define SR_SRWD 0x80 /* SR write protect */
72 /* Define max times to check status register before we give up. */
73 #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
74 #define MAX_CMD_SIZE 5
76 #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
78 /****************************************************************************/
81 struct spi_device
*spi
;
91 static inline struct m25p
*mtd_to_m25p(struct mtd_info
*mtd
)
93 return container_of(mtd
, struct m25p
, mtd
);
96 /****************************************************************************/
99 * Internal helper functions
103 * Read the status register, returning its value in the location
104 * Return the status register value.
105 * Returns negative if error occurred.
107 static int read_sr(struct m25p
*flash
)
110 u8 code
= OPCODE_RDSR
;
113 retval
= spi_write_then_read(flash
->spi
, &code
, 1, &val
, 1);
116 dev_err(&flash
->spi
->dev
, "error %d reading SR\n",
125 * Write status register 1 byte
126 * Returns negative if error occurred.
128 static int write_sr(struct m25p
*flash
, u8 val
)
130 flash
->command
[0] = OPCODE_WRSR
;
131 flash
->command
[1] = val
;
133 return spi_write(flash
->spi
, flash
->command
, 2);
137 * Set write enable latch with Write Enable command.
138 * Returns negative if error occurred.
140 static inline int write_enable(struct m25p
*flash
)
142 u8 code
= OPCODE_WREN
;
144 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
148 * Send write disble instruction to the chip.
150 static inline int write_disable(struct m25p
*flash
)
152 u8 code
= OPCODE_WRDI
;
154 return spi_write_then_read(flash
->spi
, &code
, 1, NULL
, 0);
158 * Enable/disable 4-byte addressing mode.
160 static inline int set_4byte(struct m25p
*flash
, u32 jedec_id
, int enable
)
162 switch (JEDEC_MFR(jedec_id
)) {
163 case CFI_MFR_MACRONIX
:
164 case 0xEF /* winbond */:
165 flash
->command
[0] = enable
? OPCODE_EN4B
: OPCODE_EX4B
;
166 return spi_write(flash
->spi
, flash
->command
, 1);
169 flash
->command
[0] = OPCODE_BRWR
;
170 flash
->command
[1] = enable
<< 7;
171 return spi_write(flash
->spi
, flash
->command
, 2);
176 * Service routine to read status register until ready, or timeout occurs.
177 * Returns non-zero if error.
179 static int wait_till_ready(struct m25p
*flash
)
181 unsigned long deadline
;
184 deadline
= jiffies
+ MAX_READY_WAIT_JIFFIES
;
187 if ((sr
= read_sr(flash
)) < 0)
189 else if (!(sr
& SR_WIP
))
194 } while (!time_after_eq(jiffies
, deadline
));
200 * Erase the whole flash memory
202 * Returns 0 if successful, non-zero otherwise.
204 static int erase_chip(struct m25p
*flash
)
206 pr_debug("%s: %s %lldKiB\n", dev_name(&flash
->spi
->dev
), __func__
,
207 (long long)(flash
->mtd
.size
>> 10));
209 /* Wait until finished previous write command. */
210 if (wait_till_ready(flash
))
213 /* Send write enable, then erase commands. */
216 /* Set up command buffer. */
217 flash
->command
[0] = OPCODE_CHIP_ERASE
;
219 spi_write(flash
->spi
, flash
->command
, 1);
224 static void m25p_addr2cmd(struct m25p
*flash
, unsigned int addr
, u8
*cmd
)
226 /* opcode is in cmd[0] */
227 cmd
[1] = addr
>> (flash
->addr_width
* 8 - 8);
228 cmd
[2] = addr
>> (flash
->addr_width
* 8 - 16);
229 cmd
[3] = addr
>> (flash
->addr_width
* 8 - 24);
230 cmd
[4] = addr
>> (flash
->addr_width
* 8 - 32);
233 static int m25p_cmdsz(struct m25p
*flash
)
235 return 1 + flash
->addr_width
;
239 * Erase one sector of flash memory at offset ``offset'' which is any
240 * address within the sector which should be erased.
242 * Returns 0 if successful, non-zero otherwise.
244 static int erase_sector(struct m25p
*flash
, u32 offset
)
246 pr_debug("%s: %s %dKiB at 0x%08x\n", dev_name(&flash
->spi
->dev
),
247 __func__
, flash
->mtd
.erasesize
/ 1024, offset
);
249 /* Wait until finished previous write command. */
250 if (wait_till_ready(flash
))
253 /* Send write enable, then erase commands. */
256 /* Set up command buffer. */
257 flash
->command
[0] = flash
->erase_opcode
;
258 m25p_addr2cmd(flash
, offset
, flash
->command
);
260 spi_write(flash
->spi
, flash
->command
, m25p_cmdsz(flash
));
265 /****************************************************************************/
272 * Erase an address range on the flash chip. The address range may extend
273 * one or more erase sectors. Return an error is there is a problem erasing.
275 static int m25p80_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
277 struct m25p
*flash
= mtd_to_m25p(mtd
);
281 pr_debug("%s: %s at 0x%llx, len %lld\n", dev_name(&flash
->spi
->dev
),
282 __func__
, (long long)instr
->addr
,
283 (long long)instr
->len
);
285 div_u64_rem(instr
->len
, mtd
->erasesize
, &rem
);
292 mutex_lock(&flash
->lock
);
294 /* whole-chip erase? */
295 if (len
== flash
->mtd
.size
) {
296 if (erase_chip(flash
)) {
297 instr
->state
= MTD_ERASE_FAILED
;
298 mutex_unlock(&flash
->lock
);
302 /* REVISIT in some cases we could speed up erasing large regions
303 * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
304 * to use "small sector erase", but that's not always optimal.
307 /* "sector"-at-a-time erase */
310 if (erase_sector(flash
, addr
)) {
311 instr
->state
= MTD_ERASE_FAILED
;
312 mutex_unlock(&flash
->lock
);
316 addr
+= mtd
->erasesize
;
317 len
-= mtd
->erasesize
;
321 mutex_unlock(&flash
->lock
);
323 instr
->state
= MTD_ERASE_DONE
;
324 mtd_erase_callback(instr
);
330 * Read an address range from the flash chip. The address range
331 * may be any size provided it is within the physical boundaries.
333 static int m25p80_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
334 size_t *retlen
, u_char
*buf
)
336 struct m25p
*flash
= mtd_to_m25p(mtd
);
337 struct spi_transfer t
[2];
338 struct spi_message m
;
341 pr_debug("%s: %s from 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
342 __func__
, (u32
)from
, len
);
344 spi_message_init(&m
);
345 memset(t
, 0, (sizeof t
));
348 * OPCODE_FAST_READ (if available) is faster.
349 * Should add 1 byte DUMMY_BYTE.
351 t
[0].tx_buf
= flash
->command
;
352 t
[0].len
= m25p_cmdsz(flash
) + (flash
->fast_read
? 1 : 0);
353 spi_message_add_tail(&t
[0], &m
);
357 spi_message_add_tail(&t
[1], &m
);
359 mutex_lock(&flash
->lock
);
361 /* Wait till previous write/erase is done. */
362 if (wait_till_ready(flash
)) {
363 /* REVISIT status return?? */
364 mutex_unlock(&flash
->lock
);
368 /* FIXME switch to OPCODE_FAST_READ. It's required for higher
369 * clocks; and at this writing, every chip this driver handles
370 * supports that opcode.
373 /* Set up the write data buffer. */
374 opcode
= flash
->fast_read
? OPCODE_FAST_READ
: OPCODE_NORM_READ
;
375 flash
->command
[0] = opcode
;
376 m25p_addr2cmd(flash
, from
, flash
->command
);
378 spi_sync(flash
->spi
, &m
);
380 *retlen
= m
.actual_length
- m25p_cmdsz(flash
) -
381 (flash
->fast_read
? 1 : 0);
383 mutex_unlock(&flash
->lock
);
389 * Write an address range to the flash chip. Data must be written in
390 * FLASH_PAGESIZE chunks. The address range may be any size provided
391 * it is within the physical boundaries.
393 static int m25p80_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
394 size_t *retlen
, const u_char
*buf
)
396 struct m25p
*flash
= mtd_to_m25p(mtd
);
397 u32 page_offset
, page_size
;
398 struct spi_transfer t
[2];
399 struct spi_message m
;
401 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
402 __func__
, (u32
)to
, len
);
404 spi_message_init(&m
);
405 memset(t
, 0, (sizeof t
));
407 t
[0].tx_buf
= flash
->command
;
408 t
[0].len
= m25p_cmdsz(flash
);
409 spi_message_add_tail(&t
[0], &m
);
412 spi_message_add_tail(&t
[1], &m
);
414 mutex_lock(&flash
->lock
);
416 /* Wait until finished previous write command. */
417 if (wait_till_ready(flash
)) {
418 mutex_unlock(&flash
->lock
);
424 /* Set up the opcode in the write buffer. */
425 flash
->command
[0] = OPCODE_PP
;
426 m25p_addr2cmd(flash
, to
, flash
->command
);
428 page_offset
= to
& (flash
->page_size
- 1);
430 /* do all the bytes fit onto one page? */
431 if (page_offset
+ len
<= flash
->page_size
) {
434 spi_sync(flash
->spi
, &m
);
436 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
440 /* the size of data remaining on the first page */
441 page_size
= flash
->page_size
- page_offset
;
443 t
[1].len
= page_size
;
444 spi_sync(flash
->spi
, &m
);
446 *retlen
= m
.actual_length
- m25p_cmdsz(flash
);
448 /* write everything in flash->page_size chunks */
449 for (i
= page_size
; i
< len
; i
+= page_size
) {
451 if (page_size
> flash
->page_size
)
452 page_size
= flash
->page_size
;
454 /* write the next page to flash */
455 m25p_addr2cmd(flash
, to
+ i
, flash
->command
);
457 t
[1].tx_buf
= buf
+ i
;
458 t
[1].len
= page_size
;
460 wait_till_ready(flash
);
464 spi_sync(flash
->spi
, &m
);
466 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
470 mutex_unlock(&flash
->lock
);
475 static int sst_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
476 size_t *retlen
, const u_char
*buf
)
478 struct m25p
*flash
= mtd_to_m25p(mtd
);
479 struct spi_transfer t
[2];
480 struct spi_message m
;
484 pr_debug("%s: %s to 0x%08x, len %zd\n", dev_name(&flash
->spi
->dev
),
485 __func__
, (u32
)to
, len
);
487 spi_message_init(&m
);
488 memset(t
, 0, (sizeof t
));
490 t
[0].tx_buf
= flash
->command
;
491 t
[0].len
= m25p_cmdsz(flash
);
492 spi_message_add_tail(&t
[0], &m
);
495 spi_message_add_tail(&t
[1], &m
);
497 mutex_lock(&flash
->lock
);
499 /* Wait until finished previous write command. */
500 ret
= wait_till_ready(flash
);
507 /* Start write from odd address. */
509 flash
->command
[0] = OPCODE_BP
;
510 m25p_addr2cmd(flash
, to
, flash
->command
);
512 /* write one byte. */
514 spi_sync(flash
->spi
, &m
);
515 ret
= wait_till_ready(flash
);
518 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
522 flash
->command
[0] = OPCODE_AAI_WP
;
523 m25p_addr2cmd(flash
, to
, flash
->command
);
525 /* Write out most of the data here. */
526 cmd_sz
= m25p_cmdsz(flash
);
527 for (; actual
< len
- 1; actual
+= 2) {
529 /* write two bytes. */
531 t
[1].tx_buf
= buf
+ actual
;
533 spi_sync(flash
->spi
, &m
);
534 ret
= wait_till_ready(flash
);
537 *retlen
+= m
.actual_length
- cmd_sz
;
541 write_disable(flash
);
542 ret
= wait_till_ready(flash
);
546 /* Write out trailing byte if it exists. */
549 flash
->command
[0] = OPCODE_BP
;
550 m25p_addr2cmd(flash
, to
, flash
->command
);
551 t
[0].len
= m25p_cmdsz(flash
);
553 t
[1].tx_buf
= buf
+ actual
;
555 spi_sync(flash
->spi
, &m
);
556 ret
= wait_till_ready(flash
);
559 *retlen
+= m
.actual_length
- m25p_cmdsz(flash
);
560 write_disable(flash
);
564 mutex_unlock(&flash
->lock
);
568 static int m25p80_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
570 struct m25p
*flash
= mtd_to_m25p(mtd
);
571 uint32_t offset
= ofs
;
572 uint8_t status_old
, status_new
;
575 mutex_lock(&flash
->lock
);
576 /* Wait until finished previous command */
577 if (wait_till_ready(flash
)) {
582 status_old
= read_sr(flash
);
584 if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/2))
585 status_new
= status_old
| SR_BP2
| SR_BP1
| SR_BP0
;
586 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/4))
587 status_new
= (status_old
& ~SR_BP0
) | SR_BP2
| SR_BP1
;
588 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/8))
589 status_new
= (status_old
& ~SR_BP1
) | SR_BP2
| SR_BP0
;
590 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/16))
591 status_new
= (status_old
& ~(SR_BP0
|SR_BP1
)) | SR_BP2
;
592 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/32))
593 status_new
= (status_old
& ~SR_BP2
) | SR_BP1
| SR_BP0
;
594 else if (offset
< flash
->mtd
.size
-(flash
->mtd
.size
/64))
595 status_new
= (status_old
& ~(SR_BP2
|SR_BP0
)) | SR_BP1
;
597 status_new
= (status_old
& ~(SR_BP2
|SR_BP1
)) | SR_BP0
;
599 /* Only modify protection if it will not unlock other areas */
600 if ((status_new
&(SR_BP2
|SR_BP1
|SR_BP0
)) >
601 (status_old
&(SR_BP2
|SR_BP1
|SR_BP0
))) {
603 if (write_sr(flash
, status_new
) < 0) {
609 err
: mutex_unlock(&flash
->lock
);
613 static int m25p80_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
615 struct m25p
*flash
= mtd_to_m25p(mtd
);
616 uint32_t offset
= ofs
;
617 uint8_t status_old
, status_new
;
620 mutex_lock(&flash
->lock
);
621 /* Wait until finished previous command */
622 if (wait_till_ready(flash
)) {
627 status_old
= read_sr(flash
);
629 if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/64))
630 status_new
= status_old
& ~(SR_BP2
|SR_BP1
|SR_BP0
);
631 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/32))
632 status_new
= (status_old
& ~(SR_BP2
|SR_BP1
)) | SR_BP0
;
633 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/16))
634 status_new
= (status_old
& ~(SR_BP2
|SR_BP0
)) | SR_BP1
;
635 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/8))
636 status_new
= (status_old
& ~SR_BP2
) | SR_BP1
| SR_BP0
;
637 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/4))
638 status_new
= (status_old
& ~(SR_BP0
|SR_BP1
)) | SR_BP2
;
639 else if (offset
+len
> flash
->mtd
.size
-(flash
->mtd
.size
/2))
640 status_new
= (status_old
& ~SR_BP1
) | SR_BP2
| SR_BP0
;
642 status_new
= (status_old
& ~SR_BP0
) | SR_BP2
| SR_BP1
;
644 /* Only modify protection if it will not lock other areas */
645 if ((status_new
&(SR_BP2
|SR_BP1
|SR_BP0
)) <
646 (status_old
&(SR_BP2
|SR_BP1
|SR_BP0
))) {
648 if (write_sr(flash
, status_new
) < 0) {
654 err
: mutex_unlock(&flash
->lock
);
658 /****************************************************************************/
661 * SPI device driver setup and teardown
665 /* JEDEC id zero means "no ID" (most older chips); otherwise it has
666 * a high byte of zero plus three data bytes: the manufacturer id,
667 * then a two byte device id.
672 /* The size listed here is what works with OPCODE_SE, which isn't
673 * necessarily called a "sector" by the vendor.
675 unsigned sector_size
;
682 #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
683 #define M25P_NO_ERASE 0x02 /* No erase command needed */
684 #define SST_WRITE 0x04 /* use SST byte programming */
687 #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
688 ((kernel_ulong_t)&(struct flash_info) { \
689 .jedec_id = (_jedec_id), \
690 .ext_id = (_ext_id), \
691 .sector_size = (_sector_size), \
692 .n_sectors = (_n_sectors), \
697 #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
698 ((kernel_ulong_t)&(struct flash_info) { \
699 .sector_size = (_sector_size), \
700 .n_sectors = (_n_sectors), \
701 .page_size = (_page_size), \
702 .addr_width = (_addr_width), \
703 .flags = M25P_NO_ERASE, \
706 /* NOTE: double check command sets and memory organization when you add
707 * more flash chips. This current list focusses on newer chips, which
708 * have been converging on command sets which including JEDEC ID.
710 static const struct spi_device_id m25p_ids
[] = {
711 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
712 { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K
) },
713 { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K
) },
715 { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K
) },
716 { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K
) },
717 { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K
) },
719 { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K
) },
720 { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K
) },
721 { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K
) },
722 { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K
) },
724 { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K
) },
727 { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K
) },
728 { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
729 { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
730 { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
731 { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K
) },
732 { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
735 { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2) },
738 { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K
) },
739 { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K
) },
741 /* Intel/Numonyx -- xxxs33b */
742 { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
743 { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
744 { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
747 { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K
) },
748 { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K
) },
749 { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
750 { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K
) },
751 { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
752 { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
753 { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
754 { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
755 { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
756 { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
757 { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, 0) },
760 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
761 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
762 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
763 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K
) },
765 /* Spansion -- single (large) sector size only, at least
766 * for the chips listed here (without boot sectors).
768 { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, 0) },
769 { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
770 { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
771 { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
772 { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
773 { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
774 { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
775 { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
776 { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
777 { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
778 { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
779 { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
780 { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
781 { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
782 { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
783 { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K
) },
784 { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
786 /* SST -- large erase sizes are "overlays", "sectors" are 4K */
787 { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
788 { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K
| SST_WRITE
) },
789 { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K
| SST_WRITE
) },
790 { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K
| SST_WRITE
) },
791 { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K
) },
792 { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K
| SST_WRITE
) },
793 { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K
| SST_WRITE
) },
794 { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K
| SST_WRITE
) },
795 { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K
| SST_WRITE
) },
797 /* ST Microelectronics -- newer production may have feature updates */
798 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
799 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
800 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
801 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
802 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
803 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
804 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
805 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
806 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
807 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
809 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
810 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
811 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
812 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
813 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
814 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
815 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
816 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
817 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
819 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
820 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
821 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
823 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
824 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
825 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K
) },
827 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K
) },
828 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K
) },
829 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K
) },
830 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
832 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
833 { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K
) },
834 { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K
) },
835 { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K
) },
836 { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K
) },
837 { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K
) },
838 { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K
) },
839 { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K
) },
840 { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K
) },
841 { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K
) },
842 { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K
) },
843 { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K
) },
844 { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K
) },
845 { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K
) },
846 { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K
) },
848 /* Catalyst / On Semiconductor -- non-JEDEC */
849 { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
850 { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
851 { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
852 { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
853 { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
856 MODULE_DEVICE_TABLE(spi
, m25p_ids
);
858 static const struct spi_device_id
*jedec_probe(struct spi_device
*spi
)
861 u8 code
= OPCODE_RDID
;
865 struct flash_info
*info
;
867 /* JEDEC also defines an optional "extended device information"
868 * string for after vendor-specific data, after the three bytes
869 * we use here. Supporting some chips might require using it.
871 tmp
= spi_write_then_read(spi
, &code
, 1, id
, 5);
873 pr_debug("%s: error %d reading JEDEC ID\n",
874 dev_name(&spi
->dev
), tmp
);
883 ext_jedec
= id
[3] << 8 | id
[4];
885 for (tmp
= 0; tmp
< ARRAY_SIZE(m25p_ids
) - 1; tmp
++) {
886 info
= (void *)m25p_ids
[tmp
].driver_data
;
887 if (info
->jedec_id
== jedec
) {
888 if (info
->ext_id
!= 0 && info
->ext_id
!= ext_jedec
)
890 return &m25p_ids
[tmp
];
893 dev_err(&spi
->dev
, "unrecognized JEDEC id %06x\n", jedec
);
894 return ERR_PTR(-ENODEV
);
899 * board specific setup should have ensured the SPI clock used here
900 * matches what the READ command supports, at least until this driver
901 * understands FAST_READ (for clocks over 25 MHz).
903 static int m25p_probe(struct spi_device
*spi
)
905 const struct spi_device_id
*id
= spi_get_device_id(spi
);
906 struct flash_platform_data
*data
;
908 struct flash_info
*info
;
910 struct mtd_part_parser_data ppdata
;
911 struct device_node __maybe_unused
*np
= spi
->dev
.of_node
;
913 #ifdef CONFIG_MTD_OF_PARTS
914 if (!of_device_is_available(np
))
918 /* Platform data helps sort out which chip type we have, as
919 * well as how this board partitions it. If we don't have
920 * a chip ID, try the JEDEC id commands; they'll work for most
921 * newer chips, even if we don't recognize the particular chip.
923 data
= spi
->dev
.platform_data
;
924 if (data
&& data
->type
) {
925 const struct spi_device_id
*plat_id
;
927 for (i
= 0; i
< ARRAY_SIZE(m25p_ids
) - 1; i
++) {
928 plat_id
= &m25p_ids
[i
];
929 if (strcmp(data
->type
, plat_id
->name
))
934 if (i
< ARRAY_SIZE(m25p_ids
) - 1)
937 dev_warn(&spi
->dev
, "unrecognized id %s\n", data
->type
);
940 info
= (void *)id
->driver_data
;
942 if (info
->jedec_id
) {
943 const struct spi_device_id
*jid
;
945 jid
= jedec_probe(spi
);
948 } else if (jid
!= id
) {
950 * JEDEC knows better, so overwrite platform ID. We
951 * can't trust partitions any longer, but we'll let
952 * mtd apply them anyway, since some partitions may be
953 * marked read-only, and we don't want to lose that
954 * information, even if it's not 100% accurate.
956 dev_warn(&spi
->dev
, "found %s, expected %s\n",
957 jid
->name
, id
->name
);
959 info
= (void *)jid
->driver_data
;
963 flash
= kzalloc(sizeof *flash
, GFP_KERNEL
);
966 flash
->command
= kmalloc(MAX_CMD_SIZE
+ (flash
->fast_read
? 1 : 0),
968 if (!flash
->command
) {
974 mutex_init(&flash
->lock
);
975 dev_set_drvdata(&spi
->dev
, flash
);
978 * Atmel, SST and Intel/Numonyx serial flash tend to power
979 * up with the software protection bits set
982 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ATMEL
||
983 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_INTEL
||
984 JEDEC_MFR(info
->jedec_id
) == CFI_MFR_SST
) {
989 if (data
&& data
->name
)
990 flash
->mtd
.name
= data
->name
;
992 flash
->mtd
.name
= dev_name(&spi
->dev
);
994 flash
->mtd
.type
= MTD_NORFLASH
;
995 flash
->mtd
.writesize
= 1;
996 flash
->mtd
.flags
= MTD_CAP_NORFLASH
;
997 flash
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
998 flash
->mtd
._erase
= m25p80_erase
;
999 flash
->mtd
._read
= m25p80_read
;
1001 /* flash protection support for STmicro chips */
1002 if (JEDEC_MFR(info
->jedec_id
) == CFI_MFR_ST
) {
1003 flash
->mtd
._lock
= m25p80_lock
;
1004 flash
->mtd
._unlock
= m25p80_unlock
;
1007 /* sst flash chips use AAI word program */
1008 if (info
->flags
& SST_WRITE
)
1009 flash
->mtd
._write
= sst_write
;
1011 flash
->mtd
._write
= m25p80_write
;
1013 /* prefer "small sector" erase if possible */
1014 if (info
->flags
& SECT_4K
) {
1015 flash
->erase_opcode
= OPCODE_BE_4K
;
1016 flash
->mtd
.erasesize
= 4096;
1018 flash
->erase_opcode
= OPCODE_SE
;
1019 flash
->mtd
.erasesize
= info
->sector_size
;
1022 if (info
->flags
& M25P_NO_ERASE
)
1023 flash
->mtd
.flags
|= MTD_NO_ERASE
;
1025 ppdata
.of_node
= spi
->dev
.of_node
;
1026 flash
->mtd
.dev
.parent
= &spi
->dev
;
1027 flash
->page_size
= info
->page_size
;
1028 flash
->mtd
.writebufsize
= flash
->page_size
;
1030 flash
->fast_read
= false;
1032 if (np
&& of_property_read_bool(np
, "m25p,fast-read"))
1033 flash
->fast_read
= true;
1036 #ifdef CONFIG_M25PXX_USE_FAST_READ
1037 flash
->fast_read
= true;
1040 if (info
->addr_width
)
1041 flash
->addr_width
= info
->addr_width
;
1043 /* enable 4-byte addressing if the device exceeds 16MiB */
1044 if (flash
->mtd
.size
> 0x1000000) {
1045 flash
->addr_width
= 4;
1046 set_4byte(flash
, info
->jedec_id
, 1);
1048 flash
->addr_width
= 3;
1051 dev_info(&spi
->dev
, "%s (%lld Kbytes)\n", id
->name
,
1052 (long long)flash
->mtd
.size
>> 10);
1054 pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
1055 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
1057 (long long)flash
->mtd
.size
, (long long)(flash
->mtd
.size
>> 20),
1058 flash
->mtd
.erasesize
, flash
->mtd
.erasesize
/ 1024,
1059 flash
->mtd
.numeraseregions
);
1061 if (flash
->mtd
.numeraseregions
)
1062 for (i
= 0; i
< flash
->mtd
.numeraseregions
; i
++)
1063 pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
1064 ".erasesize = 0x%.8x (%uKiB), "
1065 ".numblocks = %d }\n",
1066 i
, (long long)flash
->mtd
.eraseregions
[i
].offset
,
1067 flash
->mtd
.eraseregions
[i
].erasesize
,
1068 flash
->mtd
.eraseregions
[i
].erasesize
/ 1024,
1069 flash
->mtd
.eraseregions
[i
].numblocks
);
1072 /* partitions should match sector boundaries; and it may be good to
1073 * use readonly partitions for writeprotected sectors (BP2..BP0).
1075 return mtd_device_parse_register(&flash
->mtd
, NULL
, &ppdata
,
1076 data
? data
->parts
: NULL
,
1077 data
? data
->nr_parts
: 0);
1081 static int m25p_remove(struct spi_device
*spi
)
1083 struct m25p
*flash
= dev_get_drvdata(&spi
->dev
);
1086 /* Clean up MTD stuff. */
1087 status
= mtd_device_unregister(&flash
->mtd
);
1089 kfree(flash
->command
);
1096 static struct spi_driver m25p80_driver
= {
1099 .owner
= THIS_MODULE
,
1101 .id_table
= m25p_ids
,
1102 .probe
= m25p_probe
,
1103 .remove
= m25p_remove
,
1105 /* REVISIT: many of these chips have deep power-down modes, which
1106 * should clearly be entered on suspend() to minimize power use.
1107 * And also when they're otherwise idle...
1111 module_spi_driver(m25p80_driver
);
1113 MODULE_LICENSE("GPL");
1114 MODULE_AUTHOR("Mike Lavender");
1115 MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");