2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
30 MODULE_LICENSE("GPL");
32 /* We define a module parameter that allows the user to override
33 * the hardware and decide what timing mode should be used.
35 #define NAND_DEFAULT_TIMINGS -1
37 static int onfi_timing_mode
= NAND_DEFAULT_TIMINGS
;
38 module_param(onfi_timing_mode
, int, S_IRUGO
);
39 MODULE_PARM_DESC(onfi_timing_mode
, "Overrides default ONFI setting."
40 " -1 indicates use default timings");
42 #define DENALI_NAND_NAME "denali-nand"
44 /* We define a macro here that combines all interrupts this driver uses into
45 * a single constant value, for convenience. */
46 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
47 INTR_STATUS__ECC_TRANSACTION_DONE | \
48 INTR_STATUS__ECC_ERR | \
49 INTR_STATUS__PROGRAM_FAIL | \
50 INTR_STATUS__LOAD_COMP | \
51 INTR_STATUS__PROGRAM_COMP | \
52 INTR_STATUS__TIME_OUT | \
53 INTR_STATUS__ERASE_FAIL | \
54 INTR_STATUS__RST_COMP | \
55 INTR_STATUS__ERASE_COMP)
57 /* indicates whether or not the internal value for the flash bank is
59 #define CHIP_SELECT_INVALID -1
61 #define SUPPORT_8BITECC 1
63 /* This macro divides two integers and rounds fractional values up
64 * to the nearest integer value. */
65 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
67 /* this macro allows us to convert from an MTD structure to our own
68 * device context (denali) structure.
70 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
72 /* These constants are defined by the driver to enable common driver
73 * configuration options. */
74 #define SPARE_ACCESS 0x41
75 #define MAIN_ACCESS 0x42
76 #define MAIN_SPARE_ACCESS 0x43
79 #define DENALI_WRITE 0x100
81 /* types of device accesses. We can issue commands and get status */
82 #define COMMAND_CYCLE 0
84 #define STATUS_CYCLE 2
86 /* this is a helper macro that allows us to
87 * format the bank into the proper bits for the controller */
88 #define BANK(x) ((x) << 24)
90 /* forward declarations */
91 static void clear_interrupts(struct denali_nand_info
*denali
);
92 static uint32_t wait_for_irq(struct denali_nand_info
*denali
,
94 static void denali_irq_enable(struct denali_nand_info
*denali
,
96 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
);
98 /* Certain operations for the denali NAND controller use
99 * an indexed mode to read/write data. The operation is
100 * performed by writing the address value of the command
101 * to the device memory followed by the data. This function
102 * abstracts this common operation.
104 static void index_addr(struct denali_nand_info
*denali
,
105 uint32_t address
, uint32_t data
)
107 iowrite32(address
, denali
->flash_mem
);
108 iowrite32(data
, denali
->flash_mem
+ 0x10);
111 /* Perform an indexed read of the device */
112 static void index_addr_read_data(struct denali_nand_info
*denali
,
113 uint32_t address
, uint32_t *pdata
)
115 iowrite32(address
, denali
->flash_mem
);
116 *pdata
= ioread32(denali
->flash_mem
+ 0x10);
119 /* We need to buffer some data for some of the NAND core routines.
120 * The operations manage buffering that data. */
121 static void reset_buf(struct denali_nand_info
*denali
)
123 denali
->buf
.head
= denali
->buf
.tail
= 0;
126 static void write_byte_to_buf(struct denali_nand_info
*denali
, uint8_t byte
)
128 BUG_ON(denali
->buf
.tail
>= sizeof(denali
->buf
.buf
));
129 denali
->buf
.buf
[denali
->buf
.tail
++] = byte
;
132 /* reads the status of the device */
133 static void read_status(struct denali_nand_info
*denali
)
137 /* initialize the data buffer to store status */
140 cmd
= ioread32(denali
->flash_reg
+ WRITE_PROTECT
);
142 write_byte_to_buf(denali
, NAND_STATUS_WP
);
144 write_byte_to_buf(denali
, 0);
147 /* resets a specific device connected to the core */
148 static void reset_bank(struct denali_nand_info
*denali
)
150 uint32_t irq_status
= 0;
151 uint32_t irq_mask
= INTR_STATUS__RST_COMP
|
152 INTR_STATUS__TIME_OUT
;
154 clear_interrupts(denali
);
156 iowrite32(1 << denali
->flash_bank
, denali
->flash_reg
+ DEVICE_RESET
);
158 irq_status
= wait_for_irq(denali
, irq_mask
);
160 if (irq_status
& INTR_STATUS__TIME_OUT
)
161 dev_err(denali
->dev
, "reset bank failed.\n");
164 /* Reset the flash controller */
165 static uint16_t denali_nand_reset(struct denali_nand_info
*denali
)
169 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
170 __FILE__
, __LINE__
, __func__
);
172 for (i
= 0 ; i
< denali
->max_banks
; i
++)
173 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
174 denali
->flash_reg
+ INTR_STATUS(i
));
176 for (i
= 0 ; i
< denali
->max_banks
; i
++) {
177 iowrite32(1 << i
, denali
->flash_reg
+ DEVICE_RESET
);
178 while (!(ioread32(denali
->flash_reg
+
180 (INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
)))
182 if (ioread32(denali
->flash_reg
+ INTR_STATUS(i
)) &
183 INTR_STATUS__TIME_OUT
)
185 "NAND Reset operation timed out on bank %d\n", i
);
188 for (i
= 0; i
< denali
->max_banks
; i
++)
189 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
190 denali
->flash_reg
+ INTR_STATUS(i
));
195 /* this routine calculates the ONFI timing values for a given mode and
196 * programs the clocking register accordingly. The mode is determined by
197 * the get_onfi_nand_para routine.
199 static void nand_onfi_timing_set(struct denali_nand_info
*denali
,
202 uint16_t Trea
[6] = {40, 30, 25, 20, 20, 16};
203 uint16_t Trp
[6] = {50, 25, 17, 15, 12, 10};
204 uint16_t Treh
[6] = {30, 15, 15, 10, 10, 7};
205 uint16_t Trc
[6] = {100, 50, 35, 30, 25, 20};
206 uint16_t Trhoh
[6] = {0, 15, 15, 15, 15, 15};
207 uint16_t Trloh
[6] = {0, 0, 0, 0, 5, 5};
208 uint16_t Tcea
[6] = {100, 45, 30, 25, 25, 25};
209 uint16_t Tadl
[6] = {200, 100, 100, 100, 70, 70};
210 uint16_t Trhw
[6] = {200, 100, 100, 100, 100, 100};
211 uint16_t Trhz
[6] = {200, 100, 100, 100, 100, 100};
212 uint16_t Twhr
[6] = {120, 80, 80, 60, 60, 60};
213 uint16_t Tcs
[6] = {70, 35, 25, 25, 20, 15};
215 uint16_t TclsRising
= 1;
216 uint16_t data_invalid_rhoh
, data_invalid_rloh
, data_invalid
;
217 uint16_t dv_window
= 0;
218 uint16_t en_lo
, en_hi
;
220 uint16_t addr_2_data
, re_2_we
, re_2_re
, we_2_re
, cs_cnt
;
222 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
223 __FILE__
, __LINE__
, __func__
);
225 en_lo
= CEIL_DIV(Trp
[mode
], CLK_X
);
226 en_hi
= CEIL_DIV(Treh
[mode
], CLK_X
);
228 if ((en_hi
* CLK_X
) < (Treh
[mode
] + 2))
232 if ((en_lo
+ en_hi
) * CLK_X
< Trc
[mode
])
233 en_lo
+= CEIL_DIV((Trc
[mode
] - (en_lo
+ en_hi
) * CLK_X
), CLK_X
);
235 if ((en_lo
+ en_hi
) < CLK_MULTI
)
236 en_lo
+= CLK_MULTI
- en_lo
- en_hi
;
238 while (dv_window
< 8) {
239 data_invalid_rhoh
= en_lo
* CLK_X
+ Trhoh
[mode
];
241 data_invalid_rloh
= (en_lo
+ en_hi
) * CLK_X
+ Trloh
[mode
];
245 data_invalid_rloh
? data_invalid_rhoh
: data_invalid_rloh
;
247 dv_window
= data_invalid
- Trea
[mode
];
253 acc_clks
= CEIL_DIV(Trea
[mode
], CLK_X
);
255 while (((acc_clks
* CLK_X
) - Trea
[mode
]) < 3)
258 if ((data_invalid
- acc_clks
* CLK_X
) < 2)
259 dev_warn(denali
->dev
, "%s, Line %d: Warning!\n",
262 addr_2_data
= CEIL_DIV(Tadl
[mode
], CLK_X
);
263 re_2_we
= CEIL_DIV(Trhw
[mode
], CLK_X
);
264 re_2_re
= CEIL_DIV(Trhz
[mode
], CLK_X
);
265 we_2_re
= CEIL_DIV(Twhr
[mode
], CLK_X
);
266 cs_cnt
= CEIL_DIV((Tcs
[mode
] - Trp
[mode
]), CLK_X
);
268 cs_cnt
= CEIL_DIV(Tcs
[mode
], CLK_X
);
273 while (((cs_cnt
* CLK_X
) + Trea
[mode
]) < Tcea
[mode
])
282 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
283 if ((ioread32(denali
->flash_reg
+ MANUFACTURER_ID
) == 0) &&
284 (ioread32(denali
->flash_reg
+ DEVICE_ID
) == 0x88))
287 iowrite32(acc_clks
, denali
->flash_reg
+ ACC_CLKS
);
288 iowrite32(re_2_we
, denali
->flash_reg
+ RE_2_WE
);
289 iowrite32(re_2_re
, denali
->flash_reg
+ RE_2_RE
);
290 iowrite32(we_2_re
, denali
->flash_reg
+ WE_2_RE
);
291 iowrite32(addr_2_data
, denali
->flash_reg
+ ADDR_2_DATA
);
292 iowrite32(en_lo
, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
293 iowrite32(en_hi
, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
294 iowrite32(cs_cnt
, denali
->flash_reg
+ CS_SETUP_CNT
);
297 /* queries the NAND device to see what ONFI modes it supports. */
298 static uint16_t get_onfi_nand_para(struct denali_nand_info
*denali
)
301 /* we needn't to do a reset here because driver has already
302 * reset all the banks before
304 if (!(ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
305 ONFI_TIMING_MODE__VALUE
))
308 for (i
= 5; i
> 0; i
--) {
309 if (ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
314 nand_onfi_timing_set(denali
, i
);
316 /* By now, all the ONFI devices we know support the page cache */
317 /* rw feature. So here we enable the pipeline_rw_ahead feature */
318 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
319 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
324 static void get_samsung_nand_para(struct denali_nand_info
*denali
,
327 if (device_id
== 0xd3) { /* Samsung K9WAG08U1A */
328 /* Set timing register values according to datasheet */
329 iowrite32(5, denali
->flash_reg
+ ACC_CLKS
);
330 iowrite32(20, denali
->flash_reg
+ RE_2_WE
);
331 iowrite32(12, denali
->flash_reg
+ WE_2_RE
);
332 iowrite32(14, denali
->flash_reg
+ ADDR_2_DATA
);
333 iowrite32(3, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
334 iowrite32(2, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
335 iowrite32(2, denali
->flash_reg
+ CS_SETUP_CNT
);
339 static void get_toshiba_nand_para(struct denali_nand_info
*denali
)
343 /* Workaround to fix a controller bug which reports a wrong */
344 /* spare area size for some kind of Toshiba NAND device */
345 if ((ioread32(denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
) == 4096) &&
346 (ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
) == 64)) {
347 iowrite32(216, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
348 tmp
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
) *
349 ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
351 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
353 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
354 #elif SUPPORT_8BITECC
355 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
360 static void get_hynix_nand_para(struct denali_nand_info
*denali
,
363 uint32_t main_size
, spare_size
;
366 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
367 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
368 iowrite32(128, denali
->flash_reg
+ PAGES_PER_BLOCK
);
369 iowrite32(4096, denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
);
370 iowrite32(224, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
372 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
374 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
376 denali
->flash_reg
+ LOGICAL_PAGE_DATA_SIZE
);
377 iowrite32(spare_size
,
378 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
379 iowrite32(0, denali
->flash_reg
+ DEVICE_WIDTH
);
381 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
382 #elif SUPPORT_8BITECC
383 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
387 dev_warn(denali
->dev
,
388 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
389 "Will use default parameter values instead.\n",
394 /* determines how many NAND chips are connected to the controller. Note for
395 * Intel CE4100 devices we don't support more than one device.
397 static void find_valid_banks(struct denali_nand_info
*denali
)
399 uint32_t id
[denali
->max_banks
];
402 denali
->total_used_banks
= 1;
403 for (i
= 0; i
< denali
->max_banks
; i
++) {
404 index_addr(denali
, (uint32_t)(MODE_11
| (i
<< 24) | 0), 0x90);
405 index_addr(denali
, (uint32_t)(MODE_11
| (i
<< 24) | 1), 0);
406 index_addr_read_data(denali
,
407 (uint32_t)(MODE_11
| (i
<< 24) | 2), &id
[i
]);
410 "Return 1st ID for bank[%d]: %x\n", i
, id
[i
]);
413 if (!(id
[i
] & 0x0ff))
416 if ((id
[i
] & 0x0ff) == (id
[0] & 0x0ff))
417 denali
->total_used_banks
++;
423 if (denali
->platform
== INTEL_CE4100
) {
424 /* Platform limitations of the CE4100 device limit
425 * users to a single chip solution for NAND.
426 * Multichip support is not enabled.
428 if (denali
->total_used_banks
!= 1) {
430 "Sorry, Intel CE4100 only supports "
431 "a single NAND device.\n");
436 "denali->total_used_banks: %d\n", denali
->total_used_banks
);
440 * Use the configuration feature register to determine the maximum number of
441 * banks that the hardware supports.
443 static void detect_max_banks(struct denali_nand_info
*denali
)
445 uint32_t features
= ioread32(denali
->flash_reg
+ FEATURES
);
447 denali
->max_banks
= 2 << (features
& FEATURES__N_BANKS
);
450 static void detect_partition_feature(struct denali_nand_info
*denali
)
452 /* For MRST platform, denali->fwblks represent the
453 * number of blocks firmware is taken,
454 * FW is in protect partition and MTD driver has no
455 * permission to access it. So let driver know how many
456 * blocks it can't touch.
458 if (ioread32(denali
->flash_reg
+ FEATURES
) & FEATURES__PARTITION
) {
459 if ((ioread32(denali
->flash_reg
+ PERM_SRC_ID(1)) &
460 PERM_SRC_ID__SRCID
) == SPECTRA_PARTITION_ID
) {
462 ((ioread32(denali
->flash_reg
+ MIN_MAX_BANK(1)) &
463 MIN_MAX_BANK__MIN_VALUE
) *
466 (ioread32(denali
->flash_reg
+ MIN_BLK_ADDR(1)) &
467 MIN_BLK_ADDR__VALUE
);
469 denali
->fwblks
= SPECTRA_START_BLOCK
;
471 denali
->fwblks
= SPECTRA_START_BLOCK
;
474 static uint16_t denali_nand_timing_set(struct denali_nand_info
*denali
)
476 uint16_t status
= PASS
;
477 uint32_t id_bytes
[5], addr
;
478 uint8_t i
, maf_id
, device_id
;
481 "%s, Line %d, Function: %s\n",
482 __FILE__
, __LINE__
, __func__
);
484 /* Use read id method to get device ID and other
485 * params. For some NAND chips, controller can't
486 * report the correct device ID by reading from
489 addr
= (uint32_t)MODE_11
| BANK(denali
->flash_bank
);
490 index_addr(denali
, (uint32_t)addr
| 0, 0x90);
491 index_addr(denali
, (uint32_t)addr
| 1, 0);
492 for (i
= 0; i
< 5; i
++)
493 index_addr_read_data(denali
, addr
| 2, &id_bytes
[i
]);
494 maf_id
= id_bytes
[0];
495 device_id
= id_bytes
[1];
497 if (ioread32(denali
->flash_reg
+ ONFI_DEVICE_NO_OF_LUNS
) &
498 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE
) { /* ONFI 1.0 NAND */
499 if (FAIL
== get_onfi_nand_para(denali
))
501 } else if (maf_id
== 0xEC) { /* Samsung NAND */
502 get_samsung_nand_para(denali
, device_id
);
503 } else if (maf_id
== 0x98) { /* Toshiba NAND */
504 get_toshiba_nand_para(denali
);
505 } else if (maf_id
== 0xAD) { /* Hynix NAND */
506 get_hynix_nand_para(denali
, device_id
);
509 dev_info(denali
->dev
,
510 "Dump timing register values:"
511 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
512 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
513 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
514 ioread32(denali
->flash_reg
+ ACC_CLKS
),
515 ioread32(denali
->flash_reg
+ RE_2_WE
),
516 ioread32(denali
->flash_reg
+ RE_2_RE
),
517 ioread32(denali
->flash_reg
+ WE_2_RE
),
518 ioread32(denali
->flash_reg
+ ADDR_2_DATA
),
519 ioread32(denali
->flash_reg
+ RDWR_EN_LO_CNT
),
520 ioread32(denali
->flash_reg
+ RDWR_EN_HI_CNT
),
521 ioread32(denali
->flash_reg
+ CS_SETUP_CNT
));
523 find_valid_banks(denali
);
525 detect_partition_feature(denali
);
527 /* If the user specified to override the default timings
528 * with a specific ONFI mode, we apply those changes here.
530 if (onfi_timing_mode
!= NAND_DEFAULT_TIMINGS
)
531 nand_onfi_timing_set(denali
, onfi_timing_mode
);
536 static void denali_set_intr_modes(struct denali_nand_info
*denali
,
539 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
540 __FILE__
, __LINE__
, __func__
);
543 iowrite32(1, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
545 iowrite32(0, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
548 /* validation function to verify that the controlling software is making
551 static inline bool is_flash_bank_valid(int flash_bank
)
553 return (flash_bank
>= 0 && flash_bank
< 4);
556 static void denali_irq_init(struct denali_nand_info
*denali
)
558 uint32_t int_mask
= 0;
561 /* Disable global interrupts */
562 denali_set_intr_modes(denali
, false);
564 int_mask
= DENALI_IRQ_ALL
;
566 /* Clear all status bits */
567 for (i
= 0; i
< denali
->max_banks
; ++i
)
568 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS(i
));
570 denali_irq_enable(denali
, int_mask
);
573 static void denali_irq_cleanup(int irqnum
, struct denali_nand_info
*denali
)
575 denali_set_intr_modes(denali
, false);
576 free_irq(irqnum
, denali
);
579 static void denali_irq_enable(struct denali_nand_info
*denali
,
584 for (i
= 0; i
< denali
->max_banks
; ++i
)
585 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN(i
));
588 /* This function only returns when an interrupt that this driver cares about
589 * occurs. This is to reduce the overhead of servicing interrupts
591 static inline uint32_t denali_irq_detected(struct denali_nand_info
*denali
)
593 return read_interrupt_status(denali
) & DENALI_IRQ_ALL
;
596 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
597 static inline void clear_interrupt(struct denali_nand_info
*denali
,
600 uint32_t intr_status_reg
= 0;
602 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
604 iowrite32(irq_mask
, denali
->flash_reg
+ intr_status_reg
);
607 static void clear_interrupts(struct denali_nand_info
*denali
)
609 uint32_t status
= 0x0;
610 spin_lock_irq(&denali
->irq_lock
);
612 status
= read_interrupt_status(denali
);
613 clear_interrupt(denali
, status
);
615 denali
->irq_status
= 0x0;
616 spin_unlock_irq(&denali
->irq_lock
);
619 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
)
621 uint32_t intr_status_reg
= 0;
623 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
625 return ioread32(denali
->flash_reg
+ intr_status_reg
);
628 /* This is the interrupt service routine. It handles all interrupts
629 * sent to this device. Note that on CE4100, this is a shared
632 static irqreturn_t
denali_isr(int irq
, void *dev_id
)
634 struct denali_nand_info
*denali
= dev_id
;
635 uint32_t irq_status
= 0x0;
636 irqreturn_t result
= IRQ_NONE
;
638 spin_lock(&denali
->irq_lock
);
640 /* check to see if a valid NAND chip has
643 if (is_flash_bank_valid(denali
->flash_bank
)) {
644 /* check to see if controller generated
645 * the interrupt, since this is a shared interrupt */
646 irq_status
= denali_irq_detected(denali
);
647 if (irq_status
!= 0) {
648 /* handle interrupt */
649 /* first acknowledge it */
650 clear_interrupt(denali
, irq_status
);
651 /* store the status in the device context for someone
653 denali
->irq_status
|= irq_status
;
654 /* notify anyone who cares that it happened */
655 complete(&denali
->complete
);
656 /* tell the OS that we've handled this */
657 result
= IRQ_HANDLED
;
660 spin_unlock(&denali
->irq_lock
);
663 #define BANK(x) ((x) << 24)
665 static uint32_t wait_for_irq(struct denali_nand_info
*denali
, uint32_t irq_mask
)
667 unsigned long comp_res
= 0;
668 uint32_t intr_status
= 0;
670 unsigned long timeout
= msecs_to_jiffies(1000);
674 wait_for_completion_timeout(&denali
->complete
, timeout
);
675 spin_lock_irq(&denali
->irq_lock
);
676 intr_status
= denali
->irq_status
;
678 if (intr_status
& irq_mask
) {
679 denali
->irq_status
&= ~irq_mask
;
680 spin_unlock_irq(&denali
->irq_lock
);
681 /* our interrupt was detected */
684 /* these are not the interrupts you are looking for -
685 * need to wait again */
686 spin_unlock_irq(&denali
->irq_lock
);
689 } while (comp_res
!= 0);
693 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
694 intr_status
, irq_mask
);
701 /* This helper function setups the registers for ECC and whether or not
702 * the spare area will be transferred. */
703 static void setup_ecc_for_xfer(struct denali_nand_info
*denali
, bool ecc_en
,
706 int ecc_en_flag
= 0, transfer_spare_flag
= 0;
708 /* set ECC, transfer spare bits if needed */
709 ecc_en_flag
= ecc_en
? ECC_ENABLE__FLAG
: 0;
710 transfer_spare_flag
= transfer_spare
? TRANSFER_SPARE_REG__FLAG
: 0;
712 /* Enable spare area/ECC per user's request. */
713 iowrite32(ecc_en_flag
, denali
->flash_reg
+ ECC_ENABLE
);
714 iowrite32(transfer_spare_flag
,
715 denali
->flash_reg
+ TRANSFER_SPARE_REG
);
718 /* sends a pipeline command operation to the controller. See the Denali NAND
719 * controller's user guide for more information (section 4.2.3.6).
721 static int denali_send_pipeline_cmd(struct denali_nand_info
*denali
,
728 uint32_t addr
= 0x0, cmd
= 0x0, page_count
= 1, irq_status
= 0,
731 if (op
== DENALI_READ
)
732 irq_mask
= INTR_STATUS__LOAD_COMP
;
733 else if (op
== DENALI_WRITE
)
738 setup_ecc_for_xfer(denali
, ecc_en
, transfer_spare
);
740 /* clear interrupts */
741 clear_interrupts(denali
);
743 addr
= BANK(denali
->flash_bank
) | denali
->page
;
745 if (op
== DENALI_WRITE
&& access_type
!= SPARE_ACCESS
) {
746 cmd
= MODE_01
| addr
;
747 iowrite32(cmd
, denali
->flash_mem
);
748 } else if (op
== DENALI_WRITE
&& access_type
== SPARE_ACCESS
) {
749 /* read spare area */
750 cmd
= MODE_10
| addr
;
751 index_addr(denali
, (uint32_t)cmd
, access_type
);
753 cmd
= MODE_01
| addr
;
754 iowrite32(cmd
, denali
->flash_mem
);
755 } else if (op
== DENALI_READ
) {
756 /* setup page read request for access type */
757 cmd
= MODE_10
| addr
;
758 index_addr(denali
, (uint32_t)cmd
, access_type
);
760 /* page 33 of the NAND controller spec indicates we should not
761 use the pipeline commands in Spare area only mode. So we
764 if (access_type
== SPARE_ACCESS
) {
765 cmd
= MODE_01
| addr
;
766 iowrite32(cmd
, denali
->flash_mem
);
768 index_addr(denali
, (uint32_t)cmd
,
769 0x2000 | op
| page_count
);
771 /* wait for command to be accepted
772 * can always use status0 bit as the
773 * mask is identical for each
775 irq_status
= wait_for_irq(denali
, irq_mask
);
777 if (irq_status
== 0) {
779 "cmd, page, addr on timeout "
780 "(0x%x, 0x%x, 0x%x)\n",
781 cmd
, denali
->page
, addr
);
784 cmd
= MODE_01
| addr
;
785 iowrite32(cmd
, denali
->flash_mem
);
792 /* helper function that simply writes a buffer to the flash */
793 static int write_data_to_flash_mem(struct denali_nand_info
*denali
,
797 uint32_t i
= 0, *buf32
;
799 /* verify that the len is a multiple of 4. see comment in
800 * read_data_from_flash_mem() */
801 BUG_ON((len
% 4) != 0);
803 /* write the data to the flash memory */
804 buf32
= (uint32_t *)buf
;
805 for (i
= 0; i
< len
/ 4; i
++)
806 iowrite32(*buf32
++, denali
->flash_mem
+ 0x10);
807 return i
*4; /* intent is to return the number of bytes read */
810 /* helper function that simply reads a buffer from the flash */
811 static int read_data_from_flash_mem(struct denali_nand_info
*denali
,
815 uint32_t i
= 0, *buf32
;
817 /* we assume that len will be a multiple of 4, if not
818 * it would be nice to know about it ASAP rather than
819 * have random failures...
820 * This assumption is based on the fact that this
821 * function is designed to be used to read flash pages,
822 * which are typically multiples of 4...
825 BUG_ON((len
% 4) != 0);
827 /* transfer the data from the flash */
828 buf32
= (uint32_t *)buf
;
829 for (i
= 0; i
< len
/ 4; i
++)
830 *buf32
++ = ioread32(denali
->flash_mem
+ 0x10);
831 return i
*4; /* intent is to return the number of bytes read */
834 /* writes OOB data to the device */
835 static int write_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
837 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
838 uint32_t irq_status
= 0;
839 uint32_t irq_mask
= INTR_STATUS__PROGRAM_COMP
|
840 INTR_STATUS__PROGRAM_FAIL
;
845 if (denali_send_pipeline_cmd(denali
, false, false, SPARE_ACCESS
,
846 DENALI_WRITE
) == PASS
) {
847 write_data_to_flash_mem(denali
, buf
, mtd
->oobsize
);
849 /* wait for operation to complete */
850 irq_status
= wait_for_irq(denali
, irq_mask
);
852 if (irq_status
== 0) {
853 dev_err(denali
->dev
, "OOB write failed\n");
857 dev_err(denali
->dev
, "unable to send pipeline command\n");
863 /* reads OOB data from the device */
864 static void read_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
866 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
867 uint32_t irq_mask
= INTR_STATUS__LOAD_COMP
,
868 irq_status
= 0, addr
= 0x0, cmd
= 0x0;
872 if (denali_send_pipeline_cmd(denali
, false, true, SPARE_ACCESS
,
873 DENALI_READ
) == PASS
) {
874 read_data_from_flash_mem(denali
, buf
, mtd
->oobsize
);
876 /* wait for command to be accepted
877 * can always use status0 bit as the mask is identical for each
879 irq_status
= wait_for_irq(denali
, irq_mask
);
882 dev_err(denali
->dev
, "page on OOB timeout %d\n",
885 /* We set the device back to MAIN_ACCESS here as I observed
886 * instability with the controller if you do a block erase
887 * and the last transaction was a SPARE_ACCESS. Block erase
888 * is reliable (according to the MTD test infrastructure)
889 * if you are in MAIN_ACCESS.
891 addr
= BANK(denali
->flash_bank
) | denali
->page
;
892 cmd
= MODE_10
| addr
;
893 index_addr(denali
, (uint32_t)cmd
, MAIN_ACCESS
);
897 /* this function examines buffers to see if they contain data that
898 * indicate that the buffer is part of an erased region of flash.
900 bool is_erased(uint8_t *buf
, int len
)
903 for (i
= 0; i
< len
; i
++)
908 #define ECC_SECTOR_SIZE 512
910 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
911 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
912 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
913 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
914 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
915 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
917 static bool handle_ecc(struct denali_nand_info
*denali
, uint8_t *buf
,
918 uint32_t irq_status
, unsigned int *max_bitflips
)
920 bool check_erased_page
= false;
921 unsigned int bitflips
= 0;
923 if (irq_status
& INTR_STATUS__ECC_ERR
) {
924 /* read the ECC errors. we'll ignore them for now */
925 uint32_t err_address
= 0, err_correction_info
= 0;
926 uint32_t err_byte
= 0, err_sector
= 0, err_device
= 0;
927 uint32_t err_correction_value
= 0;
928 denali_set_intr_modes(denali
, false);
931 err_address
= ioread32(denali
->flash_reg
+
933 err_sector
= ECC_SECTOR(err_address
);
934 err_byte
= ECC_BYTE(err_address
);
936 err_correction_info
= ioread32(denali
->flash_reg
+
937 ERR_CORRECTION_INFO
);
938 err_correction_value
=
939 ECC_CORRECTION_VALUE(err_correction_info
);
940 err_device
= ECC_ERR_DEVICE(err_correction_info
);
942 if (ECC_ERROR_CORRECTABLE(err_correction_info
)) {
943 /* If err_byte is larger than ECC_SECTOR_SIZE,
944 * means error happened in OOB, so we ignore
945 * it. It's no need for us to correct it
946 * err_device is represented the NAND error
947 * bits are happened in if there are more
948 * than one NAND connected.
950 if (err_byte
< ECC_SECTOR_SIZE
) {
952 offset
= (err_sector
*
957 /* correct the ECC error */
958 buf
[offset
] ^= err_correction_value
;
959 denali
->mtd
.ecc_stats
.corrected
++;
963 /* if the error is not correctable, need to
964 * look at the page to see if it is an erased
965 * page. if so, then it's not a real ECC error
967 check_erased_page
= true;
969 } while (!ECC_LAST_ERR(err_correction_info
));
970 /* Once handle all ecc errors, controller will triger
971 * a ECC_TRANSACTION_DONE interrupt, so here just wait
972 * for a while for this interrupt
974 while (!(read_interrupt_status(denali
) &
975 INTR_STATUS__ECC_TRANSACTION_DONE
))
977 clear_interrupts(denali
);
978 denali_set_intr_modes(denali
, true);
980 *max_bitflips
= bitflips
;
981 return check_erased_page
;
984 /* programs the controller to either enable/disable DMA transfers */
985 static void denali_enable_dma(struct denali_nand_info
*denali
, bool en
)
987 uint32_t reg_val
= 0x0;
990 reg_val
= DMA_ENABLE__FLAG
;
992 iowrite32(reg_val
, denali
->flash_reg
+ DMA_ENABLE
);
993 ioread32(denali
->flash_reg
+ DMA_ENABLE
);
996 /* setups the HW to perform the data DMA */
997 static void denali_setup_dma(struct denali_nand_info
*denali
, int op
)
1000 const int page_count
= 1;
1001 dma_addr_t addr
= denali
->buf
.dma_buf
;
1003 mode
= MODE_10
| BANK(denali
->flash_bank
);
1005 /* DMA is a four step process */
1007 /* 1. setup transfer type and # of pages */
1008 index_addr(denali
, mode
| denali
->page
, 0x2000 | op
| page_count
);
1010 /* 2. set memory high address bits 23:8 */
1011 index_addr(denali
, mode
| ((uint16_t)(addr
>> 16) << 8), 0x2200);
1013 /* 3. set memory low address bits 23:8 */
1014 index_addr(denali
, mode
| ((uint16_t)addr
<< 8), 0x2300);
1016 /* 4. interrupt when complete, burst len = 64 bytes*/
1017 index_addr(denali
, mode
| 0x14000, 0x2400);
1020 /* writes a page. user specifies type, and this function handles the
1021 * configuration details. */
1022 static int write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1023 const uint8_t *buf
, bool raw_xfer
)
1025 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1027 dma_addr_t addr
= denali
->buf
.dma_buf
;
1028 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1030 uint32_t irq_status
= 0;
1031 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
|
1032 INTR_STATUS__PROGRAM_FAIL
;
1034 /* if it is a raw xfer, we want to disable ecc, and send
1036 * !raw_xfer - enable ecc
1037 * raw_xfer - transfer spare
1039 setup_ecc_for_xfer(denali
, !raw_xfer
, raw_xfer
);
1041 /* copy buffer into DMA buffer */
1042 memcpy(denali
->buf
.buf
, buf
, mtd
->writesize
);
1045 /* transfer the data to the spare area */
1046 memcpy(denali
->buf
.buf
+ mtd
->writesize
,
1051 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1053 clear_interrupts(denali
);
1054 denali_enable_dma(denali
, true);
1056 denali_setup_dma(denali
, DENALI_WRITE
);
1058 /* wait for operation to complete */
1059 irq_status
= wait_for_irq(denali
, irq_mask
);
1061 if (irq_status
== 0) {
1062 dev_err(denali
->dev
,
1063 "timeout on write_page (type = %d)\n",
1066 (irq_status
& INTR_STATUS__PROGRAM_FAIL
) ?
1067 NAND_STATUS_FAIL
: PASS
;
1070 denali_enable_dma(denali
, false);
1071 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1076 /* NAND core entry points */
1078 /* this is the callback that the NAND core calls to write a page. Since
1079 * writing a page with ECC or without is similar, all the work is done
1080 * by write_page above.
1082 static int denali_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1083 const uint8_t *buf
, int oob_required
)
1085 /* for regular page writes, we let HW handle all the ECC
1086 * data written to the device. */
1087 return write_page(mtd
, chip
, buf
, false);
1090 /* This is the callback that the NAND core calls to write a page without ECC.
1091 * raw access is similar to ECC page writes, so all the work is done in the
1092 * write_page() function above.
1094 static int denali_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1095 const uint8_t *buf
, int oob_required
)
1097 /* for raw page writes, we want to disable ECC and simply write
1098 whatever data is in the buffer. */
1099 return write_page(mtd
, chip
, buf
, true);
1102 static int denali_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1105 return write_oob_data(mtd
, chip
->oob_poi
, page
);
1108 static int denali_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1111 read_oob_data(mtd
, chip
->oob_poi
, page
);
1116 static int denali_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1117 uint8_t *buf
, int oob_required
, int page
)
1119 unsigned int max_bitflips
;
1120 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1122 dma_addr_t addr
= denali
->buf
.dma_buf
;
1123 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1125 uint32_t irq_status
= 0;
1126 uint32_t irq_mask
= INTR_STATUS__ECC_TRANSACTION_DONE
|
1127 INTR_STATUS__ECC_ERR
;
1128 bool check_erased_page
= false;
1130 if (page
!= denali
->page
) {
1131 dev_err(denali
->dev
, "IN %s: page %d is not"
1132 " equal to denali->page %d, investigate!!",
1133 __func__
, page
, denali
->page
);
1137 setup_ecc_for_xfer(denali
, true, false);
1139 denali_enable_dma(denali
, true);
1140 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1142 clear_interrupts(denali
);
1143 denali_setup_dma(denali
, DENALI_READ
);
1145 /* wait for operation to complete */
1146 irq_status
= wait_for_irq(denali
, irq_mask
);
1148 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1150 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1152 check_erased_page
= handle_ecc(denali
, buf
, irq_status
, &max_bitflips
);
1153 denali_enable_dma(denali
, false);
1155 if (check_erased_page
) {
1156 read_oob_data(&denali
->mtd
, chip
->oob_poi
, denali
->page
);
1158 /* check ECC failures that may have occurred on erased pages */
1159 if (check_erased_page
) {
1160 if (!is_erased(buf
, denali
->mtd
.writesize
))
1161 denali
->mtd
.ecc_stats
.failed
++;
1162 if (!is_erased(buf
, denali
->mtd
.oobsize
))
1163 denali
->mtd
.ecc_stats
.failed
++;
1166 return max_bitflips
;
1169 static int denali_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1170 uint8_t *buf
, int oob_required
, int page
)
1172 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1174 dma_addr_t addr
= denali
->buf
.dma_buf
;
1175 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1177 uint32_t irq_status
= 0;
1178 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
;
1180 if (page
!= denali
->page
) {
1181 dev_err(denali
->dev
, "IN %s: page %d is not"
1182 " equal to denali->page %d, investigate!!",
1183 __func__
, page
, denali
->page
);
1187 setup_ecc_for_xfer(denali
, false, true);
1188 denali_enable_dma(denali
, true);
1190 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1192 clear_interrupts(denali
);
1193 denali_setup_dma(denali
, DENALI_READ
);
1195 /* wait for operation to complete */
1196 irq_status
= wait_for_irq(denali
, irq_mask
);
1198 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1200 denali_enable_dma(denali
, false);
1202 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1203 memcpy(chip
->oob_poi
, denali
->buf
.buf
+ mtd
->writesize
, mtd
->oobsize
);
1208 static uint8_t denali_read_byte(struct mtd_info
*mtd
)
1210 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1211 uint8_t result
= 0xff;
1213 if (denali
->buf
.head
< denali
->buf
.tail
)
1214 result
= denali
->buf
.buf
[denali
->buf
.head
++];
1219 static void denali_select_chip(struct mtd_info
*mtd
, int chip
)
1221 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1223 spin_lock_irq(&denali
->irq_lock
);
1224 denali
->flash_bank
= chip
;
1225 spin_unlock_irq(&denali
->irq_lock
);
1228 static int denali_waitfunc(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1230 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1231 int status
= denali
->status
;
1237 static void denali_erase(struct mtd_info
*mtd
, int page
)
1239 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1241 uint32_t cmd
= 0x0, irq_status
= 0;
1243 /* clear interrupts */
1244 clear_interrupts(denali
);
1246 /* setup page read request for access type */
1247 cmd
= MODE_10
| BANK(denali
->flash_bank
) | page
;
1248 index_addr(denali
, (uint32_t)cmd
, 0x1);
1250 /* wait for erase to complete or failure to occur */
1251 irq_status
= wait_for_irq(denali
, INTR_STATUS__ERASE_COMP
|
1252 INTR_STATUS__ERASE_FAIL
);
1254 denali
->status
= (irq_status
& INTR_STATUS__ERASE_FAIL
) ?
1255 NAND_STATUS_FAIL
: PASS
;
1258 static void denali_cmdfunc(struct mtd_info
*mtd
, unsigned int cmd
, int col
,
1261 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1266 case NAND_CMD_PAGEPROG
:
1268 case NAND_CMD_STATUS
:
1269 read_status(denali
);
1271 case NAND_CMD_READID
:
1272 case NAND_CMD_PARAM
:
1274 /*sometimes ManufactureId read from register is not right
1275 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1276 * So here we send READID cmd to NAND insteand
1278 addr
= (uint32_t)MODE_11
| BANK(denali
->flash_bank
);
1279 index_addr(denali
, (uint32_t)addr
| 0, 0x90);
1280 index_addr(denali
, (uint32_t)addr
| 1, 0);
1281 for (i
= 0; i
< 5; i
++) {
1282 index_addr_read_data(denali
,
1285 write_byte_to_buf(denali
, id
);
1288 case NAND_CMD_READ0
:
1289 case NAND_CMD_SEQIN
:
1290 denali
->page
= page
;
1292 case NAND_CMD_RESET
:
1295 case NAND_CMD_READOOB
:
1296 /* TODO: Read OOB data */
1299 pr_err(": unsupported command received 0x%x\n", cmd
);
1304 /* stubs for ECC functions not used by the NAND core */
1305 static int denali_ecc_calculate(struct mtd_info
*mtd
, const uint8_t *data
,
1308 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1309 dev_err(denali
->dev
,
1310 "denali_ecc_calculate called unexpectedly\n");
1315 static int denali_ecc_correct(struct mtd_info
*mtd
, uint8_t *data
,
1316 uint8_t *read_ecc
, uint8_t *calc_ecc
)
1318 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1319 dev_err(denali
->dev
,
1320 "denali_ecc_correct called unexpectedly\n");
1325 static void denali_ecc_hwctl(struct mtd_info
*mtd
, int mode
)
1327 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1328 dev_err(denali
->dev
,
1329 "denali_ecc_hwctl called unexpectedly\n");
1332 /* end NAND core entry points */
1334 /* Initialization code to bring the device up to a known good state */
1335 static void denali_hw_init(struct denali_nand_info
*denali
)
1337 /* tell driver how many bit controller will skip before
1338 * writing ECC code in OOB, this register may be already
1339 * set by firmware. So we read this value out.
1340 * if this value is 0, just let it be.
1342 denali
->bbtskipbytes
= ioread32(denali
->flash_reg
+
1343 SPARE_AREA_SKIP_BYTES
);
1344 detect_max_banks(denali
);
1345 denali_nand_reset(denali
);
1346 iowrite32(0x0F, denali
->flash_reg
+ RB_PIN_ENABLED
);
1347 iowrite32(CHIP_EN_DONT_CARE__FLAG
,
1348 denali
->flash_reg
+ CHIP_ENABLE_DONT_CARE
);
1350 iowrite32(0xffff, denali
->flash_reg
+ SPARE_AREA_MARKER
);
1352 /* Should set value for these registers when init */
1353 iowrite32(0, denali
->flash_reg
+ TWO_ROW_ADDR_CYCLES
);
1354 iowrite32(1, denali
->flash_reg
+ ECC_ENABLE
);
1355 denali_nand_timing_set(denali
);
1356 denali_irq_init(denali
);
1359 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1360 * but denali controller in MRST only support 15bit and 8bit ECC
1363 #define ECC_8BITS 14
1364 static struct nand_ecclayout nand_8bit_oob
= {
1368 #define ECC_15BITS 26
1369 static struct nand_ecclayout nand_15bit_oob
= {
1373 static uint8_t bbt_pattern
[] = {'B', 'b', 't', '0' };
1374 static uint8_t mirror_pattern
[] = {'1', 't', 'b', 'B' };
1376 static struct nand_bbt_descr bbt_main_descr
= {
1377 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1378 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1383 .pattern
= bbt_pattern
,
1386 static struct nand_bbt_descr bbt_mirror_descr
= {
1387 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1388 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1393 .pattern
= mirror_pattern
,
1396 /* initialize driver data structures */
1397 void denali_drv_init(struct denali_nand_info
*denali
)
1401 /* setup interrupt handler */
1402 /* the completion object will be used to notify
1403 * the callee that the interrupt is done */
1404 init_completion(&denali
->complete
);
1406 /* the spinlock will be used to synchronize the ISR
1407 * with any element that might be access shared
1408 * data (interrupt status) */
1409 spin_lock_init(&denali
->irq_lock
);
1411 /* indicate that MTD has not selected a valid bank yet */
1412 denali
->flash_bank
= CHIP_SELECT_INVALID
;
1414 /* initialize our irq_status variable to indicate no interrupts */
1415 denali
->irq_status
= 0;
1418 int denali_init(struct denali_nand_info
*denali
)
1422 if (denali
->platform
== INTEL_CE4100
) {
1423 /* Due to a silicon limitation, we can only support
1424 * ONFI timing mode 1 and below.
1426 if (onfi_timing_mode
< -1 || onfi_timing_mode
> 1) {
1427 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1432 /* Is 32-bit DMA supported? */
1433 ret
= dma_set_mask(denali
->dev
, DMA_BIT_MASK(32));
1435 pr_err("Spectra: no usable DMA configuration\n");
1438 denali
->buf
.dma_buf
= dma_map_single(denali
->dev
, denali
->buf
.buf
,
1442 if (dma_mapping_error(denali
->dev
, denali
->buf
.dma_buf
)) {
1443 dev_err(denali
->dev
, "Spectra: failed to map DMA buffer\n");
1446 denali
->mtd
.dev
.parent
= denali
->dev
;
1447 denali_hw_init(denali
);
1448 denali_drv_init(denali
);
1450 /* denali_isr register is done after all the hardware
1451 * initilization is finished*/
1452 if (request_irq(denali
->irq
, denali_isr
, IRQF_SHARED
,
1453 DENALI_NAND_NAME
, denali
)) {
1454 pr_err("Spectra: Unable to allocate IRQ\n");
1458 /* now that our ISR is registered, we can enable interrupts */
1459 denali_set_intr_modes(denali
, true);
1460 denali
->mtd
.name
= "denali-nand";
1461 denali
->mtd
.owner
= THIS_MODULE
;
1462 denali
->mtd
.priv
= &denali
->nand
;
1464 /* register the driver with the NAND core subsystem */
1465 denali
->nand
.select_chip
= denali_select_chip
;
1466 denali
->nand
.cmdfunc
= denali_cmdfunc
;
1467 denali
->nand
.read_byte
= denali_read_byte
;
1468 denali
->nand
.waitfunc
= denali_waitfunc
;
1470 /* scan for NAND devices attached to the controller
1471 * this is the first stage in a two step process to register
1472 * with the nand subsystem */
1473 if (nand_scan_ident(&denali
->mtd
, denali
->max_banks
, NULL
)) {
1475 goto failed_req_irq
;
1478 /* MTD supported page sizes vary by kernel. We validate our
1479 * kernel supports the device here.
1481 if (denali
->mtd
.writesize
> NAND_MAX_PAGESIZE
+ NAND_MAX_OOBSIZE
) {
1483 pr_err("Spectra: device size not supported by this version of MTD.");
1484 goto failed_req_irq
;
1487 /* support for multi nand
1488 * MTD known nothing about multi nand,
1489 * so we should tell it the real pagesize
1490 * and anything necessery
1492 denali
->devnum
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
1493 denali
->nand
.chipsize
<<= (denali
->devnum
- 1);
1494 denali
->nand
.page_shift
+= (denali
->devnum
- 1);
1495 denali
->nand
.pagemask
= (denali
->nand
.chipsize
>>
1496 denali
->nand
.page_shift
) - 1;
1497 denali
->nand
.bbt_erase_shift
+= (denali
->devnum
- 1);
1498 denali
->nand
.phys_erase_shift
= denali
->nand
.bbt_erase_shift
;
1499 denali
->nand
.chip_shift
+= (denali
->devnum
- 1);
1500 denali
->mtd
.writesize
<<= (denali
->devnum
- 1);
1501 denali
->mtd
.oobsize
<<= (denali
->devnum
- 1);
1502 denali
->mtd
.erasesize
<<= (denali
->devnum
- 1);
1503 denali
->mtd
.size
= denali
->nand
.numchips
* denali
->nand
.chipsize
;
1504 denali
->bbtskipbytes
*= denali
->devnum
;
1506 /* second stage of the NAND scan
1507 * this stage requires information regarding ECC and
1508 * bad block management. */
1510 /* Bad block management */
1511 denali
->nand
.bbt_td
= &bbt_main_descr
;
1512 denali
->nand
.bbt_md
= &bbt_mirror_descr
;
1514 /* skip the scan for now until we have OOB read and write support */
1515 denali
->nand
.bbt_options
|= NAND_BBT_USE_FLASH
;
1516 denali
->nand
.options
|= NAND_SKIP_BBTSCAN
;
1517 denali
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1519 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1520 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1523 if (denali
->nand
.cellinfo
& 0xc &&
1524 (denali
->mtd
.oobsize
> (denali
->bbtskipbytes
+
1525 ECC_15BITS
* (denali
->mtd
.writesize
/
1526 ECC_SECTOR_SIZE
)))) {
1527 /* if MLC OOB size is large enough, use 15bit ECC*/
1528 denali
->nand
.ecc
.strength
= 15;
1529 denali
->nand
.ecc
.layout
= &nand_15bit_oob
;
1530 denali
->nand
.ecc
.bytes
= ECC_15BITS
;
1531 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
1532 } else if (denali
->mtd
.oobsize
< (denali
->bbtskipbytes
+
1533 ECC_8BITS
* (denali
->mtd
.writesize
/
1534 ECC_SECTOR_SIZE
))) {
1535 pr_err("Your NAND chip OOB is not large enough to \
1536 contain 8bit ECC correction codes");
1537 goto failed_req_irq
;
1539 denali
->nand
.ecc
.strength
= 8;
1540 denali
->nand
.ecc
.layout
= &nand_8bit_oob
;
1541 denali
->nand
.ecc
.bytes
= ECC_8BITS
;
1542 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
1545 denali
->nand
.ecc
.bytes
*= denali
->devnum
;
1546 denali
->nand
.ecc
.strength
*= denali
->devnum
;
1547 denali
->nand
.ecc
.layout
->eccbytes
*=
1548 denali
->mtd
.writesize
/ ECC_SECTOR_SIZE
;
1549 denali
->nand
.ecc
.layout
->oobfree
[0].offset
=
1550 denali
->bbtskipbytes
+ denali
->nand
.ecc
.layout
->eccbytes
;
1551 denali
->nand
.ecc
.layout
->oobfree
[0].length
=
1552 denali
->mtd
.oobsize
- denali
->nand
.ecc
.layout
->eccbytes
-
1553 denali
->bbtskipbytes
;
1555 /* Let driver know the total blocks number and
1556 * how many blocks contained by each nand chip.
1557 * blksperchip will help driver to know how many
1558 * blocks is taken by FW.
1560 denali
->totalblks
= denali
->mtd
.size
>>
1561 denali
->nand
.phys_erase_shift
;
1562 denali
->blksperchip
= denali
->totalblks
/ denali
->nand
.numchips
;
1564 /* These functions are required by the NAND core framework, otherwise,
1565 * the NAND core will assert. However, we don't need them, so we'll stub
1567 denali
->nand
.ecc
.calculate
= denali_ecc_calculate
;
1568 denali
->nand
.ecc
.correct
= denali_ecc_correct
;
1569 denali
->nand
.ecc
.hwctl
= denali_ecc_hwctl
;
1571 /* override the default read operations */
1572 denali
->nand
.ecc
.size
= ECC_SECTOR_SIZE
* denali
->devnum
;
1573 denali
->nand
.ecc
.read_page
= denali_read_page
;
1574 denali
->nand
.ecc
.read_page_raw
= denali_read_page_raw
;
1575 denali
->nand
.ecc
.write_page
= denali_write_page
;
1576 denali
->nand
.ecc
.write_page_raw
= denali_write_page_raw
;
1577 denali
->nand
.ecc
.read_oob
= denali_read_oob
;
1578 denali
->nand
.ecc
.write_oob
= denali_write_oob
;
1579 denali
->nand
.erase_cmd
= denali_erase
;
1581 if (nand_scan_tail(&denali
->mtd
)) {
1583 goto failed_req_irq
;
1586 ret
= mtd_device_register(&denali
->mtd
, NULL
, 0);
1588 dev_err(denali
->dev
, "Spectra: Failed to register MTD: %d\n",
1590 goto failed_req_irq
;
1595 denali_irq_cleanup(denali
->irq
, denali
);
1599 EXPORT_SYMBOL(denali_init
);
1601 /* driver exit point */
1602 void denali_remove(struct denali_nand_info
*denali
)
1604 denali_irq_cleanup(denali
->irq
, denali
);
1605 dma_unmap_single(denali
->dev
, denali
->buf
.dma_buf
, DENALI_BUF_SIZE
,
1608 EXPORT_SYMBOL(denali_remove
);