Linux 3.11-rc3
[cris-mirror.git] / drivers / net / ethernet / adaptec / starfire.c
blob8b04bfc20cfba3b9c17984471dfccb6163799bdb
1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 Written 1998-2000 by Donald Becker.
5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 send all bug reports to me, and not to Donald Becker, as this code
7 has been heavily modified from Donald's original version.
9 This software may be used and distributed according to the terms of
10 the GNU General Public License (GPL), incorporated herein by reference.
11 Drivers based on or derived from this code fall under the GPL and must
12 retain the authorship, copyright and license notice. This file is not
13 a complete program and may only be used when the entire operating
14 system is licensed under the GPL.
16 The information below comes from Donald Becker's original driver:
18 The author may be reached as becker@scyld.com, or C/O
19 Scyld Computing Corporation
20 410 Severn Ave., Suite 210
21 Annapolis MD 21403
23 Support and updates available at
24 http://www.scyld.com/network/starfire.html
25 [link no longer provides useful info -jgarzik]
29 #define DRV_NAME "starfire"
30 #define DRV_VERSION "2.1"
31 #define DRV_RELDATE "July 6, 2008"
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h> /* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
52 * The current frame processor firmware fails to checksum a fragment
53 * of length 1. If and when this is fixed, the #define below can be removed.
55 #define HAS_BROKEN_FIRMWARE
58 * If using the broken firmware, data must be padded to the next 32-bit boundary.
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
65 * Define this if using the driver with the zero-copy patch
67 #define ZEROCOPY
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
73 /* The user-configurable values.
74 These may be modified when a driver module is loaded.*/
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
80 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84 The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
91 * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92 * Setting to > 1518 effectively disables this feature.
94 * NOTE:
95 * The ia64 doesn't allow for unaligned loads even of integers being
96 * misaligned on a 2 byte boundary. Thus always force copying of
97 * packets as the starfire doesn't allow for misaligned DMAs ;-(
98 * 23/10/2000 - Jes
100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101 * at least, having unaligned frames leads to a rather serious performance
102 * penalty. -Ion
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
117 /* Operational parameters that are set at compile time. */
119 /* The "native" ring sizes are either 256 or 2048.
120 However in some modes a descriptor may be marked to wrap the ring earlier.
122 #define RX_RING_SIZE 256
123 #define TX_RING_SIZE 32
124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125 #define DONE_Q_SIZE 1024
126 /* All queues must be aligned on a 256-byte boundary */
127 #define QUEUE_ALIGN 256
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
131 #else
132 #define RX_Q_ENTRIES Rx256QEntries
133 #endif
135 /* Operational parameters that usually are not changed. */
136 /* Time in jiffies before concluding the transmitter is hung. */
137 #define TX_TIMEOUT (2 * HZ)
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140 /* 64-bit dma_addr_t */
141 #define ADDR_64BITS /* This chip uses 64 bit addresses. */
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else /* 32-bit dma_addr_t */
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
159 #endif
161 #define skb_first_frag_len(skb) skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
164 /* Firmware names */
165 #define FIRMWARE_RX "adaptec/starfire_rx.bin"
166 #define FIRMWARE_TX "adaptec/starfire_tx.bin"
168 /* These identify the driver base version and may not be removed. */
169 static const char version[] =
170 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177 MODULE_FIRMWARE(FIRMWARE_RX);
178 MODULE_FIRMWARE(FIRMWARE_TX);
180 module_param(max_interrupt_work, int, 0);
181 module_param(mtu, int, 0);
182 module_param(debug, int, 0);
183 module_param(rx_copybreak, int, 0);
184 module_param(intr_latency, int, 0);
185 module_param(small_frames, int, 0);
186 module_param(enable_hw_cksum, int, 0);
187 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188 MODULE_PARM_DESC(mtu, "MTU (all boards)");
189 MODULE_PARM_DESC(debug, "Debug level (0-6)");
190 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
196 Theory of Operation
198 I. Board Compatibility
200 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
202 II. Board-specific settings
204 III. Driver operation
206 IIIa. Ring buffers
208 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The
209 ring sizes are set fixed by the hardware, but may optionally be wrapped
210 earlier by the END bit in the descriptor.
211 This driver uses that hardware queue size for the Rx ring, where a large
212 number of entries has no ill effect beyond increases the potential backlog.
213 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214 disables the queue layer priority ordering and we have no mechanism to
215 utilize the hardware two-level priority queue. When modifying the
216 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217 levels.
219 IIIb/c. Transmit/Receive Structure
221 See the Adaptec manual for the many possible structures, and options for
222 each structure. There are far too many to document all of them here.
224 For transmit this driver uses type 0/1 transmit descriptors (depending
225 on the 32/64 bitness of the architecture), and relies on automatic
226 minimum-length padding. It does not use the completion queue
227 consumer index, but instead checks for non-zero status entries.
229 For receive this driver uses type 2/3 receive descriptors. The driver
230 allocates full frame size skbuffs for the Rx ring buffers, so all frames
231 should fit in a single descriptor. The driver does not use the completion
232 queue consumer index, but instead checks for non-zero status entries.
234 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235 is allocated and the frame is copied to the new skbuff. When the incoming
236 frame is larger, the skbuff is passed directly up the protocol stack.
237 Buffers consumed this way are replaced by newly allocated skbuffs in a later
238 phase of receive.
240 A notable aspect of operation is that unaligned buffers are not permitted by
241 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame
242 isn't longword aligned, which may cause problems on some machine
243 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244 the frame into a new skbuff unconditionally. Copied frames are put into the
245 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
247 IIId. Synchronization
249 The driver runs as two independent, single-threaded flows of control. One
250 is the send-packet routine, which enforces single-threaded use by the
251 dev->tbusy flag. The other thread is the interrupt handler, which is single
252 threaded by the hardware and interrupt handling software.
254 The send packet thread has partial control over the Tx ring and the netif_queue
255 status. If the number of free Tx slots in the ring falls below a certain number
256 (currently hardcoded to 4), it signals the upper layer to stop the queue.
258 The interrupt handler has exclusive control over the Rx ring and records stats
259 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
260 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261 number of free Tx slow is above the threshold, it signals the upper layer to
262 restart the queue.
264 IV. Notes
266 IVb. References
268 The Adaptec Starfire manuals, available only from Adaptec.
269 http://www.scyld.com/expert/100mbps.html
270 http://www.scyld.com/expert/NWay.html
272 IVc. Errata
274 - StopOnPerr is broken, don't enable
275 - Hardware ethernet padding exposes random data, perform software padding
276 instead (unverified -- works correctly for all the hardware I have)
282 enum chip_capability_flags {CanHaveMII=1, };
284 enum chipset {
285 CH_6915 = 0,
288 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 { 0, }
292 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
294 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295 static const struct chip_info {
296 const char *name;
297 int drv_flags;
298 } netdrv_tbl[] = {
299 { "Adaptec Starfire 6915", CanHaveMII },
303 /* Offsets to the device registers.
304 Unlike software-only systems, device drivers interact with complex hardware.
305 It's not useful to define symbolic names for every register bit in the
306 device. The name can only partially document the semantics and make
307 the driver longer and more difficult to read.
308 In general, only the important configuration values or bits changed
309 multiple times should be defined symbolically.
311 enum register_offsets {
312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 TxRingHiAddr=0x5009C, /* 64 bit address extension. */
318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 TxThreshold=0x500B0,
320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 TxMode=0x55000, VlanType=0x55064,
326 PerfFilterTable=0x56000, HashTable=0x56100,
327 TxGfpMem=0x58000, RxGfpMem=0x5a000,
331 * Bits in the interrupt status/mask registers.
332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333 * enables all the interrupt sources that are or'ed into those status bits.
335 enum intr_status_bits {
336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 IntrTxGfp=0x02, IntrPCIPad=0x01,
350 /* not quite bits */
351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
356 /* Bits in the RxFilterMode register. */
357 enum rx_mode_bits {
358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 WakeupOnGFP=0x0800,
364 /* Bits in the TxMode register */
365 enum tx_mode_bits {
366 MiiSoftReset=0x8000, MIILoopback=0x4000,
367 TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
371 /* Bits in the TxDescCtrl register. */
372 enum tx_ctrl_bits {
373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 TxDescSpace128=0x30, TxDescSpace256=0x40,
375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 TxDescType3=0x03, TxDescType4=0x04,
377 TxNoDMACompletion=0x08,
378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 TxDMABurstSizeShift=8,
383 /* Bits in the RxDescQCtrl register. */
384 enum rx_ctrl_bits {
385 RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 Rx2048QEntries=0x4000, Rx256QEntries=0,
388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 RxDescSpace4=0x000, RxDescSpace8=0x100,
391 RxDescSpace16=0x200, RxDescSpace32=0x300,
392 RxDescSpace64=0x400, RxDescSpace128=0x500,
393 RxConsumerWrEn=0x80,
396 /* Bits in the RxDMACtrl register. */
397 enum rx_dmactrl_bits {
398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 RxChecksumRejectTCPOnly=0x01000000,
403 RxCompletionQ2Enable=0x800000,
404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 RxDMAQ2NonIP=0x400000,
407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 RxBurstSizeShift=0,
412 /* Bits in the RxCompletionAddr register */
413 enum rx_compl_bits {
414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 RxComplProducerWrEn=0x40,
416 RxComplType0=0x00, RxComplType1=0x10,
417 RxComplType2=0x20, RxComplType3=0x30,
418 RxComplThreshShift=0,
421 /* Bits in the TxCompletionAddr register */
422 enum tx_compl_bits {
423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 TxComplProducerWrEn=0x40,
425 TxComplIntrStatus=0x20,
426 CommonQueueMode=0x10,
427 TxComplThreshShift=0,
430 /* Bits in the GenCtrl register */
431 enum gen_ctrl_bits {
432 RxEnable=0x05, TxEnable=0x0a,
433 RxGFPEnable=0x10, TxGFPEnable=0x20,
436 /* Bits in the IntrTimerCtrl register */
437 enum intr_ctrl_bits {
438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 IntrLatencyMask=0x1f,
443 /* The Rx and Tx buffer descriptors. */
444 struct starfire_rx_desc {
445 netdrv_addr_t rxaddr;
447 enum rx_desc_bits {
448 RxDescValid=1, RxDescEndRing=2,
451 /* Completion queue entry. */
452 struct short_rx_done_desc {
453 __le32 status; /* Low 16 bits is length. */
455 struct basic_rx_done_desc {
456 __le32 status; /* Low 16 bits is length. */
457 __le16 vlanid;
458 __le16 status2;
460 struct csum_rx_done_desc {
461 __le32 status; /* Low 16 bits is length. */
462 __le16 csum; /* Partial checksum */
463 __le16 status2;
465 struct full_rx_done_desc {
466 __le32 status; /* Low 16 bits is length. */
467 __le16 status3;
468 __le16 status2;
469 __le16 vlanid;
470 __le16 csum; /* partial checksum */
471 __le32 timestamp;
473 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
474 #ifdef VLAN_SUPPORT
475 typedef struct full_rx_done_desc rx_done_desc;
476 #define RxComplType RxComplType3
477 #else /* not VLAN_SUPPORT */
478 typedef struct csum_rx_done_desc rx_done_desc;
479 #define RxComplType RxComplType2
480 #endif /* not VLAN_SUPPORT */
482 enum rx_done_bits {
483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
486 /* Type 1 Tx descriptor. */
487 struct starfire_tx_desc_1 {
488 __le32 status; /* Upper bits are status, lower 16 length. */
489 __le32 addr;
492 /* Type 2 Tx descriptor. */
493 struct starfire_tx_desc_2 {
494 __le32 status; /* Upper bits are status, lower 16 length. */
495 __le32 reserved;
496 __le64 addr;
499 #ifdef ADDR_64BITS
500 typedef struct starfire_tx_desc_2 starfire_tx_desc;
501 #define TX_DESC_TYPE TxDescType2
502 #else /* not ADDR_64BITS */
503 typedef struct starfire_tx_desc_1 starfire_tx_desc;
504 #define TX_DESC_TYPE TxDescType1
505 #endif /* not ADDR_64BITS */
506 #define TX_DESC_SPACING TxDescSpaceUnlim
508 enum tx_desc_bits {
509 TxDescID=0xB0000000,
510 TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 TxRingWrap=0x04000000, TxCalTCP=0x02000000,
513 struct tx_done_desc {
514 __le32 status; /* timestamp, index. */
515 #if 0
516 __le32 intrstatus; /* interrupt status */
517 #endif
520 struct rx_ring_info {
521 struct sk_buff *skb;
522 dma_addr_t mapping;
524 struct tx_ring_info {
525 struct sk_buff *skb;
526 dma_addr_t mapping;
527 unsigned int used_slots;
530 #define PHY_CNT 2
531 struct netdev_private {
532 /* Descriptor rings first for alignment. */
533 struct starfire_rx_desc *rx_ring;
534 starfire_tx_desc *tx_ring;
535 dma_addr_t rx_ring_dma;
536 dma_addr_t tx_ring_dma;
537 /* The addresses of rx/tx-in-place skbuffs. */
538 struct rx_ring_info rx_info[RX_RING_SIZE];
539 struct tx_ring_info tx_info[TX_RING_SIZE];
540 /* Pointers to completion queues (full pages). */
541 rx_done_desc *rx_done_q;
542 dma_addr_t rx_done_q_dma;
543 unsigned int rx_done;
544 struct tx_done_desc *tx_done_q;
545 dma_addr_t tx_done_q_dma;
546 unsigned int tx_done;
547 struct napi_struct napi;
548 struct net_device *dev;
549 struct pci_dev *pci_dev;
550 #ifdef VLAN_SUPPORT
551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552 #endif
553 void *queue_mem;
554 dma_addr_t queue_mem_dma;
555 size_t queue_mem_size;
557 /* Frequently used values: keep some adjacent for cache effect. */
558 spinlock_t lock;
559 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
560 unsigned int cur_tx, dirty_tx, reap_tx;
561 unsigned int rx_buf_sz; /* Based on MTU+slack. */
562 /* These values keep track of the transceiver/media in use. */
563 int speed100; /* Set if speed == 100MBit. */
564 u32 tx_mode;
565 u32 intr_timer_ctrl;
566 u8 tx_threshold;
567 /* MII transceiver section. */
568 struct mii_if_info mii_if; /* MII lib hooks/info */
569 int phy_cnt; /* MII device addresses. */
570 unsigned char phys[PHY_CNT]; /* MII device addresses. */
571 void __iomem *base;
575 static int mdio_read(struct net_device *dev, int phy_id, int location);
576 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
577 static int netdev_open(struct net_device *dev);
578 static void check_duplex(struct net_device *dev);
579 static void tx_timeout(struct net_device *dev);
580 static void init_ring(struct net_device *dev);
581 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582 static irqreturn_t intr_handler(int irq, void *dev_instance);
583 static void netdev_error(struct net_device *dev, int intr_status);
584 static int __netdev_rx(struct net_device *dev, int *quota);
585 static int netdev_poll(struct napi_struct *napi, int budget);
586 static void refill_rx_ring(struct net_device *dev);
587 static void netdev_error(struct net_device *dev, int intr_status);
588 static void set_rx_mode(struct net_device *dev);
589 static struct net_device_stats *get_stats(struct net_device *dev);
590 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591 static int netdev_close(struct net_device *dev);
592 static void netdev_media_change(struct net_device *dev);
593 static const struct ethtool_ops ethtool_ops;
596 #ifdef VLAN_SUPPORT
597 static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 __be16 proto, u16 vid)
600 struct netdev_private *np = netdev_priv(dev);
602 spin_lock(&np->lock);
603 if (debug > 1)
604 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
605 set_bit(vid, np->active_vlans);
606 set_rx_mode(dev);
607 spin_unlock(&np->lock);
609 return 0;
612 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 __be16 proto, u16 vid)
615 struct netdev_private *np = netdev_priv(dev);
617 spin_lock(&np->lock);
618 if (debug > 1)
619 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
620 clear_bit(vid, np->active_vlans);
621 set_rx_mode(dev);
622 spin_unlock(&np->lock);
624 return 0;
626 #endif /* VLAN_SUPPORT */
629 static const struct net_device_ops netdev_ops = {
630 .ndo_open = netdev_open,
631 .ndo_stop = netdev_close,
632 .ndo_start_xmit = start_tx,
633 .ndo_tx_timeout = tx_timeout,
634 .ndo_get_stats = get_stats,
635 .ndo_set_rx_mode = set_rx_mode,
636 .ndo_do_ioctl = netdev_ioctl,
637 .ndo_change_mtu = eth_change_mtu,
638 .ndo_set_mac_address = eth_mac_addr,
639 .ndo_validate_addr = eth_validate_addr,
640 #ifdef VLAN_SUPPORT
641 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid,
642 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid,
643 #endif
646 static int starfire_init_one(struct pci_dev *pdev,
647 const struct pci_device_id *ent)
649 struct device *d = &pdev->dev;
650 struct netdev_private *np;
651 int i, irq, chip_idx = ent->driver_data;
652 struct net_device *dev;
653 long ioaddr;
654 void __iomem *base;
655 int drv_flags, io_size;
656 int boguscnt;
658 /* when built into the kernel, we only print version if device is found */
659 #ifndef MODULE
660 static int printed_version;
661 if (!printed_version++)
662 printk(version);
663 #endif
665 if (pci_enable_device (pdev))
666 return -EIO;
668 ioaddr = pci_resource_start(pdev, 0);
669 io_size = pci_resource_len(pdev, 0);
670 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
671 dev_err(d, "no PCI MEM resources, aborting\n");
672 return -ENODEV;
675 dev = alloc_etherdev(sizeof(*np));
676 if (!dev)
677 return -ENOMEM;
679 SET_NETDEV_DEV(dev, &pdev->dev);
681 irq = pdev->irq;
683 if (pci_request_regions (pdev, DRV_NAME)) {
684 dev_err(d, "cannot reserve PCI resources, aborting\n");
685 goto err_out_free_netdev;
688 base = ioremap(ioaddr, io_size);
689 if (!base) {
690 dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
691 io_size, ioaddr);
692 goto err_out_free_res;
695 pci_set_master(pdev);
697 /* enable MWI -- it vastly improves Rx performance on sparc64 */
698 pci_try_set_mwi(pdev);
700 #ifdef ZEROCOPY
701 /* Starfire can do TCP/UDP checksumming */
702 if (enable_hw_cksum)
703 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
704 #endif /* ZEROCOPY */
706 #ifdef VLAN_SUPPORT
707 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
708 #endif /* VLAN_RX_KILL_VID */
709 #ifdef ADDR_64BITS
710 dev->features |= NETIF_F_HIGHDMA;
711 #endif /* ADDR_64BITS */
713 /* Serial EEPROM reads are hidden by the hardware. */
714 for (i = 0; i < 6; i++)
715 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
717 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
718 if (debug > 4)
719 for (i = 0; i < 0x20; i++)
720 printk("%2.2x%s",
721 (unsigned int)readb(base + EEPROMCtrl + i),
722 i % 16 != 15 ? " " : "\n");
723 #endif
725 /* Issue soft reset */
726 writel(MiiSoftReset, base + TxMode);
727 udelay(1000);
728 writel(0, base + TxMode);
730 /* Reset the chip to erase previous misconfiguration. */
731 writel(1, base + PCIDeviceConfig);
732 boguscnt = 1000;
733 while (--boguscnt > 0) {
734 udelay(10);
735 if ((readl(base + PCIDeviceConfig) & 1) == 0)
736 break;
738 if (boguscnt == 0)
739 printk("%s: chipset reset never completed!\n", dev->name);
740 /* wait a little longer */
741 udelay(1000);
743 np = netdev_priv(dev);
744 np->dev = dev;
745 np->base = base;
746 spin_lock_init(&np->lock);
747 pci_set_drvdata(pdev, dev);
749 np->pci_dev = pdev;
751 np->mii_if.dev = dev;
752 np->mii_if.mdio_read = mdio_read;
753 np->mii_if.mdio_write = mdio_write;
754 np->mii_if.phy_id_mask = 0x1f;
755 np->mii_if.reg_num_mask = 0x1f;
757 drv_flags = netdrv_tbl[chip_idx].drv_flags;
759 np->speed100 = 1;
761 /* timer resolution is 128 * 0.8us */
762 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
763 Timer10X | EnableIntrMasking;
765 if (small_frames > 0) {
766 np->intr_timer_ctrl |= SmallFrameBypass;
767 switch (small_frames) {
768 case 1 ... 64:
769 np->intr_timer_ctrl |= SmallFrame64;
770 break;
771 case 65 ... 128:
772 np->intr_timer_ctrl |= SmallFrame128;
773 break;
774 case 129 ... 256:
775 np->intr_timer_ctrl |= SmallFrame256;
776 break;
777 default:
778 np->intr_timer_ctrl |= SmallFrame512;
779 if (small_frames > 512)
780 printk("Adjusting small_frames down to 512\n");
781 break;
785 dev->netdev_ops = &netdev_ops;
786 dev->watchdog_timeo = TX_TIMEOUT;
787 SET_ETHTOOL_OPS(dev, &ethtool_ops);
789 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
791 if (mtu)
792 dev->mtu = mtu;
794 if (register_netdev(dev))
795 goto err_out_cleardev;
797 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
798 dev->name, netdrv_tbl[chip_idx].name, base,
799 dev->dev_addr, irq);
801 if (drv_flags & CanHaveMII) {
802 int phy, phy_idx = 0;
803 int mii_status;
804 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
805 mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
806 mdelay(100);
807 boguscnt = 1000;
808 while (--boguscnt > 0)
809 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
810 break;
811 if (boguscnt == 0) {
812 printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
813 continue;
815 mii_status = mdio_read(dev, phy, MII_BMSR);
816 if (mii_status != 0) {
817 np->phys[phy_idx++] = phy;
818 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
819 printk(KERN_INFO "%s: MII PHY found at address %d, status "
820 "%#4.4x advertising %#4.4x.\n",
821 dev->name, phy, mii_status, np->mii_if.advertising);
822 /* there can be only one PHY on-board */
823 break;
826 np->phy_cnt = phy_idx;
827 if (np->phy_cnt > 0)
828 np->mii_if.phy_id = np->phys[0];
829 else
830 memset(&np->mii_if, 0, sizeof(np->mii_if));
833 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
834 dev->name, enable_hw_cksum ? "enabled" : "disabled");
835 return 0;
837 err_out_cleardev:
838 pci_set_drvdata(pdev, NULL);
839 iounmap(base);
840 err_out_free_res:
841 pci_release_regions (pdev);
842 err_out_free_netdev:
843 free_netdev(dev);
844 return -ENODEV;
848 /* Read the MII Management Data I/O (MDIO) interfaces. */
849 static int mdio_read(struct net_device *dev, int phy_id, int location)
851 struct netdev_private *np = netdev_priv(dev);
852 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
853 int result, boguscnt=1000;
854 /* ??? Should we add a busy-wait here? */
855 do {
856 result = readl(mdio_addr);
857 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
858 if (boguscnt == 0)
859 return 0;
860 if ((result & 0xffff) == 0xffff)
861 return 0;
862 return result & 0xffff;
866 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
868 struct netdev_private *np = netdev_priv(dev);
869 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
870 writel(value, mdio_addr);
871 /* The busy-wait will occur before a read. */
875 static int netdev_open(struct net_device *dev)
877 const struct firmware *fw_rx, *fw_tx;
878 const __be32 *fw_rx_data, *fw_tx_data;
879 struct netdev_private *np = netdev_priv(dev);
880 void __iomem *ioaddr = np->base;
881 const int irq = np->pci_dev->irq;
882 int i, retval;
883 size_t tx_size, rx_size;
884 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
886 /* Do we ever need to reset the chip??? */
888 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
889 if (retval)
890 return retval;
892 /* Disable the Rx and Tx, and reset the chip. */
893 writel(0, ioaddr + GenCtrl);
894 writel(1, ioaddr + PCIDeviceConfig);
895 if (debug > 1)
896 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
897 dev->name, irq);
899 /* Allocate the various queues. */
900 if (!np->queue_mem) {
901 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
903 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
904 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
905 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
906 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
907 if (np->queue_mem == NULL) {
908 free_irq(irq, dev);
909 return -ENOMEM;
912 np->tx_done_q = np->queue_mem;
913 np->tx_done_q_dma = np->queue_mem_dma;
914 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size;
915 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
916 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size;
917 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size;
918 np->rx_ring = (void *) np->tx_ring + tx_ring_size;
919 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size;
922 /* Start with no carrier, it gets adjusted later */
923 netif_carrier_off(dev);
924 init_ring(dev);
925 /* Set the size of the Rx buffers. */
926 writel((np->rx_buf_sz << RxBufferLenShift) |
927 (0 << RxMinDescrThreshShift) |
928 RxPrefetchMode | RxVariableQ |
929 RX_Q_ENTRIES |
930 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
931 RxDescSpace4,
932 ioaddr + RxDescQCtrl);
934 /* Set up the Rx DMA controller. */
935 writel(RxChecksumIgnore |
936 (0 << RxEarlyIntThreshShift) |
937 (6 << RxHighPrioThreshShift) |
938 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
939 ioaddr + RxDMACtrl);
941 /* Set Tx descriptor */
942 writel((2 << TxHiPriFIFOThreshShift) |
943 (0 << TxPadLenShift) |
944 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
945 TX_DESC_Q_ADDR_SIZE |
946 TX_DESC_SPACING | TX_DESC_TYPE,
947 ioaddr + TxDescCtrl);
949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
950 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
951 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
952 writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
953 writel(np->tx_ring_dma, ioaddr + TxRingPtr);
955 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
956 writel(np->rx_done_q_dma |
957 RxComplType |
958 (0 << RxComplThreshShift),
959 ioaddr + RxCompletionAddr);
961 if (debug > 1)
962 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
964 /* Fill both the Tx SA register and the Rx perfect filter. */
965 for (i = 0; i < 6; i++)
966 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
967 /* The first entry is special because it bypasses the VLAN filter.
968 Don't use it. */
969 writew(0, ioaddr + PerfFilterTable);
970 writew(0, ioaddr + PerfFilterTable + 4);
971 writew(0, ioaddr + PerfFilterTable + 8);
972 for (i = 1; i < 16; i++) {
973 __be16 *eaddrs = (__be16 *)dev->dev_addr;
974 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
975 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
976 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
977 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
980 /* Initialize other registers. */
981 /* Configure the PCI bus bursts and FIFO thresholds. */
982 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */
983 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
984 udelay(1000);
985 writel(np->tx_mode, ioaddr + TxMode);
986 np->tx_threshold = 4;
987 writel(np->tx_threshold, ioaddr + TxThreshold);
989 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
991 napi_enable(&np->napi);
993 netif_start_queue(dev);
995 if (debug > 1)
996 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
997 set_rx_mode(dev);
999 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1000 check_duplex(dev);
1002 /* Enable GPIO interrupts on link change */
1003 writel(0x0f00ff00, ioaddr + GPIOCtrl);
1005 /* Set the interrupt mask */
1006 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1007 IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1008 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1009 ioaddr + IntrEnable);
1010 /* Enable PCI interrupts. */
1011 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1012 ioaddr + PCIDeviceConfig);
1014 #ifdef VLAN_SUPPORT
1015 /* Set VLAN type to 802.1q */
1016 writel(ETH_P_8021Q, ioaddr + VlanType);
1017 #endif /* VLAN_SUPPORT */
1019 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1020 if (retval) {
1021 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1022 FIRMWARE_RX);
1023 goto out_init;
1025 if (fw_rx->size % 4) {
1026 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1027 fw_rx->size, FIRMWARE_RX);
1028 retval = -EINVAL;
1029 goto out_rx;
1031 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1032 if (retval) {
1033 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1034 FIRMWARE_TX);
1035 goto out_rx;
1037 if (fw_tx->size % 4) {
1038 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1039 fw_tx->size, FIRMWARE_TX);
1040 retval = -EINVAL;
1041 goto out_tx;
1043 fw_rx_data = (const __be32 *)&fw_rx->data[0];
1044 fw_tx_data = (const __be32 *)&fw_tx->data[0];
1045 rx_size = fw_rx->size / 4;
1046 tx_size = fw_tx->size / 4;
1048 /* Load Rx/Tx firmware into the frame processors */
1049 for (i = 0; i < rx_size; i++)
1050 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1051 for (i = 0; i < tx_size; i++)
1052 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1053 if (enable_hw_cksum)
1054 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1055 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1056 else
1057 /* Enable the Rx and Tx units only. */
1058 writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1060 if (debug > 1)
1061 printk(KERN_DEBUG "%s: Done netdev_open().\n",
1062 dev->name);
1064 out_tx:
1065 release_firmware(fw_tx);
1066 out_rx:
1067 release_firmware(fw_rx);
1068 out_init:
1069 if (retval)
1070 netdev_close(dev);
1071 return retval;
1075 static void check_duplex(struct net_device *dev)
1077 struct netdev_private *np = netdev_priv(dev);
1078 u16 reg0;
1079 int silly_count = 1000;
1081 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1082 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1083 udelay(500);
1084 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1085 /* do nothing */;
1086 if (!silly_count) {
1087 printk("%s: MII reset failed!\n", dev->name);
1088 return;
1091 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1093 if (!np->mii_if.force_media) {
1094 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1095 } else {
1096 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1097 if (np->speed100)
1098 reg0 |= BMCR_SPEED100;
1099 if (np->mii_if.full_duplex)
1100 reg0 |= BMCR_FULLDPLX;
1101 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1102 dev->name,
1103 np->speed100 ? "100" : "10",
1104 np->mii_if.full_duplex ? "full" : "half");
1106 mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1110 static void tx_timeout(struct net_device *dev)
1112 struct netdev_private *np = netdev_priv(dev);
1113 void __iomem *ioaddr = np->base;
1114 int old_debug;
1116 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1117 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1119 /* Perhaps we should reinitialize the hardware here. */
1122 * Stop and restart the interface.
1123 * Cheat and increase the debug level temporarily.
1125 old_debug = debug;
1126 debug = 2;
1127 netdev_close(dev);
1128 netdev_open(dev);
1129 debug = old_debug;
1131 /* Trigger an immediate transmit demand. */
1133 dev->trans_start = jiffies; /* prevent tx timeout */
1134 dev->stats.tx_errors++;
1135 netif_wake_queue(dev);
1139 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1140 static void init_ring(struct net_device *dev)
1142 struct netdev_private *np = netdev_priv(dev);
1143 int i;
1145 np->cur_rx = np->cur_tx = np->reap_tx = 0;
1146 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1148 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1150 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
1151 for (i = 0; i < RX_RING_SIZE; i++) {
1152 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1153 np->rx_info[i].skb = skb;
1154 if (skb == NULL)
1155 break;
1156 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1157 /* Grrr, we cannot offset to correctly align the IP header. */
1158 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1160 writew(i - 1, np->base + RxDescQIdx);
1161 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1163 /* Clear the remainder of the Rx buffer ring. */
1164 for ( ; i < RX_RING_SIZE; i++) {
1165 np->rx_ring[i].rxaddr = 0;
1166 np->rx_info[i].skb = NULL;
1167 np->rx_info[i].mapping = 0;
1169 /* Mark the last entry as wrapping the ring. */
1170 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1172 /* Clear the completion rings. */
1173 for (i = 0; i < DONE_Q_SIZE; i++) {
1174 np->rx_done_q[i].status = 0;
1175 np->tx_done_q[i].status = 0;
1178 for (i = 0; i < TX_RING_SIZE; i++)
1179 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1183 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1185 struct netdev_private *np = netdev_priv(dev);
1186 unsigned int entry;
1187 u32 status;
1188 int i;
1191 * be cautious here, wrapping the queue has weird semantics
1192 * and we may not have enough slots even when it seems we do.
1194 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1195 netif_stop_queue(dev);
1196 return NETDEV_TX_BUSY;
1199 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1200 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1201 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1202 return NETDEV_TX_OK;
1204 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1206 entry = np->cur_tx % TX_RING_SIZE;
1207 for (i = 0; i < skb_num_frags(skb); i++) {
1208 int wrap_ring = 0;
1209 status = TxDescID;
1211 if (i == 0) {
1212 np->tx_info[entry].skb = skb;
1213 status |= TxCRCEn;
1214 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1215 status |= TxRingWrap;
1216 wrap_ring = 1;
1218 if (np->reap_tx) {
1219 status |= TxDescIntr;
1220 np->reap_tx = 0;
1222 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1223 status |= TxCalTCP;
1224 dev->stats.tx_compressed++;
1226 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1228 np->tx_info[entry].mapping =
1229 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1230 } else {
1231 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1232 status |= skb_frag_size(this_frag);
1233 np->tx_info[entry].mapping =
1234 pci_map_single(np->pci_dev,
1235 skb_frag_address(this_frag),
1236 skb_frag_size(this_frag),
1237 PCI_DMA_TODEVICE);
1240 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1241 np->tx_ring[entry].status = cpu_to_le32(status);
1242 if (debug > 3)
1243 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1244 dev->name, np->cur_tx, np->dirty_tx,
1245 entry, status);
1246 if (wrap_ring) {
1247 np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1248 np->cur_tx += np->tx_info[entry].used_slots;
1249 entry = 0;
1250 } else {
1251 np->tx_info[entry].used_slots = 1;
1252 np->cur_tx += np->tx_info[entry].used_slots;
1253 entry++;
1255 /* scavenge the tx descriptors twice per TX_RING_SIZE */
1256 if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1257 np->reap_tx = 1;
1260 /* Non-x86: explicitly flush descriptor cache lines here. */
1261 /* Ensure all descriptors are written back before the transmit is
1262 initiated. - Jes */
1263 wmb();
1265 /* Update the producer index. */
1266 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1268 /* 4 is arbitrary, but should be ok */
1269 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1270 netif_stop_queue(dev);
1272 return NETDEV_TX_OK;
1276 /* The interrupt handler does all of the Rx thread work and cleans up
1277 after the Tx thread. */
1278 static irqreturn_t intr_handler(int irq, void *dev_instance)
1280 struct net_device *dev = dev_instance;
1281 struct netdev_private *np = netdev_priv(dev);
1282 void __iomem *ioaddr = np->base;
1283 int boguscnt = max_interrupt_work;
1284 int consumer;
1285 int tx_status;
1286 int handled = 0;
1288 do {
1289 u32 intr_status = readl(ioaddr + IntrClear);
1291 if (debug > 4)
1292 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1293 dev->name, intr_status);
1295 if (intr_status == 0 || intr_status == (u32) -1)
1296 break;
1298 handled = 1;
1300 if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1301 u32 enable;
1303 if (likely(napi_schedule_prep(&np->napi))) {
1304 __napi_schedule(&np->napi);
1305 enable = readl(ioaddr + IntrEnable);
1306 enable &= ~(IntrRxDone | IntrRxEmpty);
1307 writel(enable, ioaddr + IntrEnable);
1308 /* flush PCI posting buffers */
1309 readl(ioaddr + IntrEnable);
1310 } else {
1311 /* Paranoia check */
1312 enable = readl(ioaddr + IntrEnable);
1313 if (enable & (IntrRxDone | IntrRxEmpty)) {
1314 printk(KERN_INFO
1315 "%s: interrupt while in poll!\n",
1316 dev->name);
1317 enable &= ~(IntrRxDone | IntrRxEmpty);
1318 writel(enable, ioaddr + IntrEnable);
1323 /* Scavenge the skbuff list based on the Tx-done queue.
1324 There are redundant checks here that may be cleaned up
1325 after the driver has proven to be reliable. */
1326 consumer = readl(ioaddr + TxConsumerIdx);
1327 if (debug > 3)
1328 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1329 dev->name, consumer);
1331 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1332 if (debug > 3)
1333 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1334 dev->name, np->dirty_tx, np->tx_done, tx_status);
1335 if ((tx_status & 0xe0000000) == 0xa0000000) {
1336 dev->stats.tx_packets++;
1337 } else if ((tx_status & 0xe0000000) == 0x80000000) {
1338 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1339 struct sk_buff *skb = np->tx_info[entry].skb;
1340 np->tx_info[entry].skb = NULL;
1341 pci_unmap_single(np->pci_dev,
1342 np->tx_info[entry].mapping,
1343 skb_first_frag_len(skb),
1344 PCI_DMA_TODEVICE);
1345 np->tx_info[entry].mapping = 0;
1346 np->dirty_tx += np->tx_info[entry].used_slots;
1347 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1349 int i;
1350 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1351 pci_unmap_single(np->pci_dev,
1352 np->tx_info[entry].mapping,
1353 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1354 PCI_DMA_TODEVICE);
1355 np->dirty_tx++;
1356 entry++;
1360 dev_kfree_skb_irq(skb);
1362 np->tx_done_q[np->tx_done].status = 0;
1363 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1365 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1367 if (netif_queue_stopped(dev) &&
1368 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1369 /* The ring is no longer full, wake the queue. */
1370 netif_wake_queue(dev);
1373 /* Stats overflow */
1374 if (intr_status & IntrStatsMax)
1375 get_stats(dev);
1377 /* Media change interrupt. */
1378 if (intr_status & IntrLinkChange)
1379 netdev_media_change(dev);
1381 /* Abnormal error summary/uncommon events handlers. */
1382 if (intr_status & IntrAbnormalSummary)
1383 netdev_error(dev, intr_status);
1385 if (--boguscnt < 0) {
1386 if (debug > 1)
1387 printk(KERN_WARNING "%s: Too much work at interrupt, "
1388 "status=%#8.8x.\n",
1389 dev->name, intr_status);
1390 break;
1392 } while (1);
1394 if (debug > 4)
1395 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1396 dev->name, (int) readl(ioaddr + IntrStatus));
1397 return IRQ_RETVAL(handled);
1402 * This routine is logically part of the interrupt/poll handler, but separated
1403 * for clarity and better register allocation.
1405 static int __netdev_rx(struct net_device *dev, int *quota)
1407 struct netdev_private *np = netdev_priv(dev);
1408 u32 desc_status;
1409 int retcode = 0;
1411 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1412 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1413 struct sk_buff *skb;
1414 u16 pkt_len;
1415 int entry;
1416 rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1418 if (debug > 4)
1419 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1420 if (!(desc_status & RxOK)) {
1421 /* There was an error. */
1422 if (debug > 2)
1423 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status);
1424 dev->stats.rx_errors++;
1425 if (desc_status & RxFIFOErr)
1426 dev->stats.rx_fifo_errors++;
1427 goto next_rx;
1430 if (*quota <= 0) { /* out of rx quota */
1431 retcode = 1;
1432 goto out;
1434 (*quota)--;
1436 pkt_len = desc_status; /* Implicitly Truncate */
1437 entry = (desc_status >> 16) & 0x7ff;
1439 if (debug > 4)
1440 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1441 /* Check if the packet is long enough to accept without copying
1442 to a minimally-sized skbuff. */
1443 if (pkt_len < rx_copybreak &&
1444 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1445 skb_reserve(skb, 2); /* 16 byte align the IP header */
1446 pci_dma_sync_single_for_cpu(np->pci_dev,
1447 np->rx_info[entry].mapping,
1448 pkt_len, PCI_DMA_FROMDEVICE);
1449 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1450 pci_dma_sync_single_for_device(np->pci_dev,
1451 np->rx_info[entry].mapping,
1452 pkt_len, PCI_DMA_FROMDEVICE);
1453 skb_put(skb, pkt_len);
1454 } else {
1455 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1456 skb = np->rx_info[entry].skb;
1457 skb_put(skb, pkt_len);
1458 np->rx_info[entry].skb = NULL;
1459 np->rx_info[entry].mapping = 0;
1461 #ifndef final_version /* Remove after testing. */
1462 /* You will want this info for the initial debug. */
1463 if (debug > 5) {
1464 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n",
1465 skb->data, skb->data + 6,
1466 skb->data[12], skb->data[13]);
1468 #endif
1470 skb->protocol = eth_type_trans(skb, dev);
1471 #ifdef VLAN_SUPPORT
1472 if (debug > 4)
1473 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1474 #endif
1475 if (le16_to_cpu(desc->status2) & 0x0100) {
1476 skb->ip_summed = CHECKSUM_UNNECESSARY;
1477 dev->stats.rx_compressed++;
1480 * This feature doesn't seem to be working, at least
1481 * with the two firmware versions I have. If the GFP sees
1482 * an IP fragment, it either ignores it completely, or reports
1483 * "bad checksum" on it.
1485 * Maybe I missed something -- corrections are welcome.
1486 * Until then, the printk stays. :-) -Ion
1488 else if (le16_to_cpu(desc->status2) & 0x0040) {
1489 skb->ip_summed = CHECKSUM_COMPLETE;
1490 skb->csum = le16_to_cpu(desc->csum);
1491 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1493 #ifdef VLAN_SUPPORT
1494 if (le16_to_cpu(desc->status2) & 0x0200) {
1495 u16 vlid = le16_to_cpu(desc->vlanid);
1497 if (debug > 4) {
1498 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n",
1499 vlid);
1501 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1503 #endif /* VLAN_SUPPORT */
1504 netif_receive_skb(skb);
1505 dev->stats.rx_packets++;
1507 next_rx:
1508 np->cur_rx++;
1509 desc->status = 0;
1510 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1513 if (*quota == 0) { /* out of rx quota */
1514 retcode = 1;
1515 goto out;
1517 writew(np->rx_done, np->base + CompletionQConsumerIdx);
1519 out:
1520 refill_rx_ring(dev);
1521 if (debug > 5)
1522 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1523 retcode, np->rx_done, desc_status);
1524 return retcode;
1527 static int netdev_poll(struct napi_struct *napi, int budget)
1529 struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1530 struct net_device *dev = np->dev;
1531 u32 intr_status;
1532 void __iomem *ioaddr = np->base;
1533 int quota = budget;
1535 do {
1536 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1538 if (__netdev_rx(dev, &quota))
1539 goto out;
1541 intr_status = readl(ioaddr + IntrStatus);
1542 } while (intr_status & (IntrRxDone | IntrRxEmpty));
1544 napi_complete(napi);
1545 intr_status = readl(ioaddr + IntrEnable);
1546 intr_status |= IntrRxDone | IntrRxEmpty;
1547 writel(intr_status, ioaddr + IntrEnable);
1549 out:
1550 if (debug > 5)
1551 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n",
1552 budget - quota);
1554 /* Restart Rx engine if stopped. */
1555 return budget - quota;
1558 static void refill_rx_ring(struct net_device *dev)
1560 struct netdev_private *np = netdev_priv(dev);
1561 struct sk_buff *skb;
1562 int entry = -1;
1564 /* Refill the Rx ring buffers. */
1565 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1566 entry = np->dirty_rx % RX_RING_SIZE;
1567 if (np->rx_info[entry].skb == NULL) {
1568 skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1569 np->rx_info[entry].skb = skb;
1570 if (skb == NULL)
1571 break; /* Better luck next round. */
1572 np->rx_info[entry].mapping =
1573 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1574 np->rx_ring[entry].rxaddr =
1575 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1577 if (entry == RX_RING_SIZE - 1)
1578 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1580 if (entry >= 0)
1581 writew(entry, np->base + RxDescQIdx);
1585 static void netdev_media_change(struct net_device *dev)
1587 struct netdev_private *np = netdev_priv(dev);
1588 void __iomem *ioaddr = np->base;
1589 u16 reg0, reg1, reg4, reg5;
1590 u32 new_tx_mode;
1591 u32 new_intr_timer_ctrl;
1593 /* reset status first */
1594 mdio_read(dev, np->phys[0], MII_BMCR);
1595 mdio_read(dev, np->phys[0], MII_BMSR);
1597 reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1598 reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1600 if (reg1 & BMSR_LSTATUS) {
1601 /* link is up */
1602 if (reg0 & BMCR_ANENABLE) {
1603 /* autonegotiation is enabled */
1604 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1605 reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1606 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1607 np->speed100 = 1;
1608 np->mii_if.full_duplex = 1;
1609 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1610 np->speed100 = 1;
1611 np->mii_if.full_duplex = 0;
1612 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1613 np->speed100 = 0;
1614 np->mii_if.full_duplex = 1;
1615 } else {
1616 np->speed100 = 0;
1617 np->mii_if.full_duplex = 0;
1619 } else {
1620 /* autonegotiation is disabled */
1621 if (reg0 & BMCR_SPEED100)
1622 np->speed100 = 1;
1623 else
1624 np->speed100 = 0;
1625 if (reg0 & BMCR_FULLDPLX)
1626 np->mii_if.full_duplex = 1;
1627 else
1628 np->mii_if.full_duplex = 0;
1630 netif_carrier_on(dev);
1631 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1632 dev->name,
1633 np->speed100 ? "100" : "10",
1634 np->mii_if.full_duplex ? "full" : "half");
1636 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */
1637 if (np->mii_if.full_duplex)
1638 new_tx_mode |= FullDuplex;
1639 if (np->tx_mode != new_tx_mode) {
1640 np->tx_mode = new_tx_mode;
1641 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1642 udelay(1000);
1643 writel(np->tx_mode, ioaddr + TxMode);
1646 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1647 if (np->speed100)
1648 new_intr_timer_ctrl |= Timer10X;
1649 if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1650 np->intr_timer_ctrl = new_intr_timer_ctrl;
1651 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1653 } else {
1654 netif_carrier_off(dev);
1655 printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1660 static void netdev_error(struct net_device *dev, int intr_status)
1662 struct netdev_private *np = netdev_priv(dev);
1664 /* Came close to underrunning the Tx FIFO, increase threshold. */
1665 if (intr_status & IntrTxDataLow) {
1666 if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1667 writel(++np->tx_threshold, np->base + TxThreshold);
1668 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1669 dev->name, np->tx_threshold * 16);
1670 } else
1671 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1673 if (intr_status & IntrRxGFPDead) {
1674 dev->stats.rx_fifo_errors++;
1675 dev->stats.rx_errors++;
1677 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1678 dev->stats.tx_fifo_errors++;
1679 dev->stats.tx_errors++;
1681 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1682 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1683 dev->name, intr_status);
1687 static struct net_device_stats *get_stats(struct net_device *dev)
1689 struct netdev_private *np = netdev_priv(dev);
1690 void __iomem *ioaddr = np->base;
1692 /* This adapter architecture needs no SMP locks. */
1693 dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1694 dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1695 dev->stats.tx_packets = readl(ioaddr + 0x57000);
1696 dev->stats.tx_aborted_errors =
1697 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1698 dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1699 dev->stats.collisions =
1700 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1702 /* The chip only need report frame silently dropped. */
1703 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1704 writew(0, ioaddr + RxDMAStatus);
1705 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1706 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1707 dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1708 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1710 return &dev->stats;
1713 #ifdef VLAN_SUPPORT
1714 static u32 set_vlan_mode(struct netdev_private *np)
1716 u32 ret = VlanMode;
1717 u16 vid;
1718 void __iomem *filter_addr = np->base + HashTable + 8;
1719 int vlan_count = 0;
1721 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1722 if (vlan_count == 32)
1723 break;
1724 writew(vid, filter_addr);
1725 filter_addr += 16;
1726 vlan_count++;
1728 if (vlan_count == 32) {
1729 ret |= PerfectFilterVlan;
1730 while (vlan_count < 32) {
1731 writew(0, filter_addr);
1732 filter_addr += 16;
1733 vlan_count++;
1736 return ret;
1738 #endif /* VLAN_SUPPORT */
1740 static void set_rx_mode(struct net_device *dev)
1742 struct netdev_private *np = netdev_priv(dev);
1743 void __iomem *ioaddr = np->base;
1744 u32 rx_mode = MinVLANPrio;
1745 struct netdev_hw_addr *ha;
1746 int i;
1748 #ifdef VLAN_SUPPORT
1749 rx_mode |= set_vlan_mode(np);
1750 #endif /* VLAN_SUPPORT */
1752 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1753 rx_mode |= AcceptAll;
1754 } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1755 (dev->flags & IFF_ALLMULTI)) {
1756 /* Too many to match, or accept all multicasts. */
1757 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1758 } else if (netdev_mc_count(dev) <= 14) {
1759 /* Use the 16 element perfect filter, skip first two entries. */
1760 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1761 __be16 *eaddrs;
1762 netdev_for_each_mc_addr(ha, dev) {
1763 eaddrs = (__be16 *) ha->addr;
1764 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1765 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1766 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1768 eaddrs = (__be16 *)dev->dev_addr;
1769 i = netdev_mc_count(dev) + 2;
1770 while (i++ < 16) {
1771 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1772 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1773 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1775 rx_mode |= AcceptBroadcast|PerfectFilter;
1776 } else {
1777 /* Must use a multicast hash table. */
1778 void __iomem *filter_addr;
1779 __be16 *eaddrs;
1780 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */
1782 memset(mc_filter, 0, sizeof(mc_filter));
1783 netdev_for_each_mc_addr(ha, dev) {
1784 /* The chip uses the upper 9 CRC bits
1785 as index into the hash table */
1786 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1787 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1789 *fptr |= cpu_to_le32(1 << (bit_nr & 31));
1791 /* Clear the perfect filter list, skip first two entries. */
1792 filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1793 eaddrs = (__be16 *)dev->dev_addr;
1794 for (i = 2; i < 16; i++) {
1795 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1796 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1797 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1799 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1800 writew(mc_filter[i], filter_addr);
1801 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1803 writel(rx_mode, ioaddr + RxFilterMode);
1806 static int check_if_running(struct net_device *dev)
1808 if (!netif_running(dev))
1809 return -EINVAL;
1810 return 0;
1813 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1815 struct netdev_private *np = netdev_priv(dev);
1816 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1817 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1818 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1821 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1823 struct netdev_private *np = netdev_priv(dev);
1824 spin_lock_irq(&np->lock);
1825 mii_ethtool_gset(&np->mii_if, ecmd);
1826 spin_unlock_irq(&np->lock);
1827 return 0;
1830 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1832 struct netdev_private *np = netdev_priv(dev);
1833 int res;
1834 spin_lock_irq(&np->lock);
1835 res = mii_ethtool_sset(&np->mii_if, ecmd);
1836 spin_unlock_irq(&np->lock);
1837 check_duplex(dev);
1838 return res;
1841 static int nway_reset(struct net_device *dev)
1843 struct netdev_private *np = netdev_priv(dev);
1844 return mii_nway_restart(&np->mii_if);
1847 static u32 get_link(struct net_device *dev)
1849 struct netdev_private *np = netdev_priv(dev);
1850 return mii_link_ok(&np->mii_if);
1853 static u32 get_msglevel(struct net_device *dev)
1855 return debug;
1858 static void set_msglevel(struct net_device *dev, u32 val)
1860 debug = val;
1863 static const struct ethtool_ops ethtool_ops = {
1864 .begin = check_if_running,
1865 .get_drvinfo = get_drvinfo,
1866 .get_settings = get_settings,
1867 .set_settings = set_settings,
1868 .nway_reset = nway_reset,
1869 .get_link = get_link,
1870 .get_msglevel = get_msglevel,
1871 .set_msglevel = set_msglevel,
1874 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1876 struct netdev_private *np = netdev_priv(dev);
1877 struct mii_ioctl_data *data = if_mii(rq);
1878 int rc;
1880 if (!netif_running(dev))
1881 return -EINVAL;
1883 spin_lock_irq(&np->lock);
1884 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1885 spin_unlock_irq(&np->lock);
1887 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1888 check_duplex(dev);
1890 return rc;
1893 static int netdev_close(struct net_device *dev)
1895 struct netdev_private *np = netdev_priv(dev);
1896 void __iomem *ioaddr = np->base;
1897 int i;
1899 netif_stop_queue(dev);
1901 napi_disable(&np->napi);
1903 if (debug > 1) {
1904 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1905 dev->name, (int) readl(ioaddr + IntrStatus));
1906 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1907 dev->name, np->cur_tx, np->dirty_tx,
1908 np->cur_rx, np->dirty_rx);
1911 /* Disable interrupts by clearing the interrupt mask. */
1912 writel(0, ioaddr + IntrEnable);
1914 /* Stop the chip's Tx and Rx processes. */
1915 writel(0, ioaddr + GenCtrl);
1916 readl(ioaddr + GenCtrl);
1918 if (debug > 5) {
1919 printk(KERN_DEBUG" Tx ring at %#llx:\n",
1920 (long long) np->tx_ring_dma);
1921 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1922 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1923 i, le32_to_cpu(np->tx_ring[i].status),
1924 (long long) dma_to_cpu(np->tx_ring[i].addr),
1925 le32_to_cpu(np->tx_done_q[i].status));
1926 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n",
1927 (long long) np->rx_ring_dma, np->rx_done_q);
1928 if (np->rx_done_q)
1929 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1930 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1931 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1935 free_irq(np->pci_dev->irq, dev);
1937 /* Free all the skbuffs in the Rx queue. */
1938 for (i = 0; i < RX_RING_SIZE; i++) {
1939 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1940 if (np->rx_info[i].skb != NULL) {
1941 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1942 dev_kfree_skb(np->rx_info[i].skb);
1944 np->rx_info[i].skb = NULL;
1945 np->rx_info[i].mapping = 0;
1947 for (i = 0; i < TX_RING_SIZE; i++) {
1948 struct sk_buff *skb = np->tx_info[i].skb;
1949 if (skb == NULL)
1950 continue;
1951 pci_unmap_single(np->pci_dev,
1952 np->tx_info[i].mapping,
1953 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1954 np->tx_info[i].mapping = 0;
1955 dev_kfree_skb(skb);
1956 np->tx_info[i].skb = NULL;
1959 return 0;
1962 #ifdef CONFIG_PM
1963 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1965 struct net_device *dev = pci_get_drvdata(pdev);
1967 if (netif_running(dev)) {
1968 netif_device_detach(dev);
1969 netdev_close(dev);
1972 pci_save_state(pdev);
1973 pci_set_power_state(pdev, pci_choose_state(pdev,state));
1975 return 0;
1978 static int starfire_resume(struct pci_dev *pdev)
1980 struct net_device *dev = pci_get_drvdata(pdev);
1982 pci_set_power_state(pdev, PCI_D0);
1983 pci_restore_state(pdev);
1985 if (netif_running(dev)) {
1986 netdev_open(dev);
1987 netif_device_attach(dev);
1990 return 0;
1992 #endif /* CONFIG_PM */
1995 static void starfire_remove_one(struct pci_dev *pdev)
1997 struct net_device *dev = pci_get_drvdata(pdev);
1998 struct netdev_private *np = netdev_priv(dev);
2000 BUG_ON(!dev);
2002 unregister_netdev(dev);
2004 if (np->queue_mem)
2005 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2008 /* XXX: add wakeup code -- requires firmware for MagicPacket */
2009 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */
2010 pci_disable_device(pdev);
2012 iounmap(np->base);
2013 pci_release_regions(pdev);
2015 pci_set_drvdata(pdev, NULL);
2016 free_netdev(dev); /* Will also free np!! */
2020 static struct pci_driver starfire_driver = {
2021 .name = DRV_NAME,
2022 .probe = starfire_init_one,
2023 .remove = starfire_remove_one,
2024 #ifdef CONFIG_PM
2025 .suspend = starfire_suspend,
2026 .resume = starfire_resume,
2027 #endif /* CONFIG_PM */
2028 .id_table = starfire_pci_tbl,
2032 static int __init starfire_init (void)
2034 /* when a module, this is printed whether or not devices are found in probe */
2035 #ifdef MODULE
2036 printk(version);
2038 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2039 #endif
2041 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2043 return pci_register_driver(&starfire_driver);
2047 static void __exit starfire_cleanup (void)
2049 pci_unregister_driver (&starfire_driver);
2053 module_init(starfire_init);
2054 module_exit(starfire_cleanup);
2058 * Local variables:
2059 * c-basic-offset: 8
2060 * tab-width: 8
2061 * End: