2 * drivers/net/ethernet/micrel/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 * KS8851 16bit MLL chip from Micrel Inc.
23 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 #include <linux/interrupt.h>
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/cache.h>
32 #include <linux/crc32.h>
33 #include <linux/mii.h>
34 #include <linux/platform_device.h>
35 #include <linux/delay.h>
36 #include <linux/slab.h>
37 #include <linux/ks8851_mll.h>
39 #include <linux/of_device.h>
40 #include <linux/of_net.h>
42 #define DRV_NAME "ks8851_mll"
44 static u8 KS_DEFAULT_MAC_ADDRESS
[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
45 #define MAX_RECV_FRAMES 255
46 #define MAX_BUF_SIZE 2048
47 #define TX_BUF_SIZE 2000
48 #define RX_BUF_SIZE 2000
51 #define CCR_EEPROM (1 << 9)
52 #define CCR_SPI (1 << 8)
53 #define CCR_8BIT (1 << 7)
54 #define CCR_16BIT (1 << 6)
55 #define CCR_32BIT (1 << 5)
56 #define CCR_SHARED (1 << 4)
57 #define CCR_32PIN (1 << 0)
59 /* MAC address registers */
65 #define OBCR_ODS_16MA (1 << 6)
68 #define EEPCR_EESA (1 << 4)
69 #define EEPCR_EESB (1 << 3)
70 #define EEPCR_EEDO (1 << 2)
71 #define EEPCR_EESCK (1 << 1)
72 #define EEPCR_EECS (1 << 0)
75 #define MBIR_TXMBF (1 << 12)
76 #define MBIR_TXMBFA (1 << 11)
77 #define MBIR_RXMBF (1 << 4)
78 #define MBIR_RXMBFA (1 << 3)
81 #define GRR_QMU (1 << 1)
82 #define GRR_GSR (1 << 0)
85 #define WFCR_MPRXE (1 << 7)
86 #define WFCR_WF3E (1 << 3)
87 #define WFCR_WF2E (1 << 2)
88 #define WFCR_WF1E (1 << 1)
89 #define WFCR_WF0E (1 << 0)
91 #define KS_WF0CRC0 0x30
92 #define KS_WF0CRC1 0x32
93 #define KS_WF0BM0 0x34
94 #define KS_WF0BM1 0x36
95 #define KS_WF0BM2 0x38
96 #define KS_WF0BM3 0x3A
98 #define KS_WF1CRC0 0x40
99 #define KS_WF1CRC1 0x42
100 #define KS_WF1BM0 0x44
101 #define KS_WF1BM1 0x46
102 #define KS_WF1BM2 0x48
103 #define KS_WF1BM3 0x4A
105 #define KS_WF2CRC0 0x50
106 #define KS_WF2CRC1 0x52
107 #define KS_WF2BM0 0x54
108 #define KS_WF2BM1 0x56
109 #define KS_WF2BM2 0x58
110 #define KS_WF2BM3 0x5A
112 #define KS_WF3CRC0 0x60
113 #define KS_WF3CRC1 0x62
114 #define KS_WF3BM0 0x64
115 #define KS_WF3BM1 0x66
116 #define KS_WF3BM2 0x68
117 #define KS_WF3BM3 0x6A
120 #define TXCR_TCGICMP (1 << 8)
121 #define TXCR_TCGUDP (1 << 7)
122 #define TXCR_TCGTCP (1 << 6)
123 #define TXCR_TCGIP (1 << 5)
124 #define TXCR_FTXQ (1 << 4)
125 #define TXCR_TXFCE (1 << 3)
126 #define TXCR_TXPE (1 << 2)
127 #define TXCR_TXCRC (1 << 1)
128 #define TXCR_TXE (1 << 0)
131 #define TXSR_TXLC (1 << 13)
132 #define TXSR_TXMC (1 << 12)
133 #define TXSR_TXFID_MASK (0x3f << 0)
134 #define TXSR_TXFID_SHIFT (0)
135 #define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
138 #define KS_RXCR1 0x74
139 #define RXCR1_FRXQ (1 << 15)
140 #define RXCR1_RXUDPFCC (1 << 14)
141 #define RXCR1_RXTCPFCC (1 << 13)
142 #define RXCR1_RXIPFCC (1 << 12)
143 #define RXCR1_RXPAFMA (1 << 11)
144 #define RXCR1_RXFCE (1 << 10)
145 #define RXCR1_RXEFE (1 << 9)
146 #define RXCR1_RXMAFMA (1 << 8)
147 #define RXCR1_RXBE (1 << 7)
148 #define RXCR1_RXME (1 << 6)
149 #define RXCR1_RXUE (1 << 5)
150 #define RXCR1_RXAE (1 << 4)
151 #define RXCR1_RXINVF (1 << 1)
152 #define RXCR1_RXE (1 << 0)
153 #define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
154 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
156 #define KS_RXCR2 0x76
157 #define RXCR2_SRDBL_MASK (0x7 << 5)
158 #define RXCR2_SRDBL_SHIFT (5)
159 #define RXCR2_SRDBL_4B (0x0 << 5)
160 #define RXCR2_SRDBL_8B (0x1 << 5)
161 #define RXCR2_SRDBL_16B (0x2 << 5)
162 #define RXCR2_SRDBL_32B (0x3 << 5)
163 /* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
164 #define RXCR2_IUFFP (1 << 4)
165 #define RXCR2_RXIUFCEZ (1 << 3)
166 #define RXCR2_UDPLFE (1 << 2)
167 #define RXCR2_RXICMPFCC (1 << 1)
168 #define RXCR2_RXSAF (1 << 0)
170 #define KS_TXMIR 0x78
172 #define KS_RXFHSR 0x7C
173 #define RXFSHR_RXFV (1 << 15)
174 #define RXFSHR_RXICMPFCS (1 << 13)
175 #define RXFSHR_RXIPFCS (1 << 12)
176 #define RXFSHR_RXTCPFCS (1 << 11)
177 #define RXFSHR_RXUDPFCS (1 << 10)
178 #define RXFSHR_RXBF (1 << 7)
179 #define RXFSHR_RXMF (1 << 6)
180 #define RXFSHR_RXUF (1 << 5)
181 #define RXFSHR_RXMR (1 << 4)
182 #define RXFSHR_RXFT (1 << 3)
183 #define RXFSHR_RXFTL (1 << 2)
184 #define RXFSHR_RXRF (1 << 1)
185 #define RXFSHR_RXCE (1 << 0)
186 #define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
187 RXFSHR_RXFTL | RXFSHR_RXMR |\
188 RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
190 #define KS_RXFHBCR 0x7E
191 #define RXFHBCR_CNT_MASK 0x0FFF
193 #define KS_TXQCR 0x80
194 #define TXQCR_AETFE (1 << 2)
195 #define TXQCR_TXQMAM (1 << 1)
196 #define TXQCR_METFE (1 << 0)
198 #define KS_RXQCR 0x82
199 #define RXQCR_RXDTTS (1 << 12)
200 #define RXQCR_RXDBCTS (1 << 11)
201 #define RXQCR_RXFCTS (1 << 10)
202 #define RXQCR_RXIPHTOE (1 << 9)
203 #define RXQCR_RXDTTE (1 << 7)
204 #define RXQCR_RXDBCTE (1 << 6)
205 #define RXQCR_RXFCTE (1 << 5)
206 #define RXQCR_ADRFE (1 << 4)
207 #define RXQCR_SDA (1 << 3)
208 #define RXQCR_RRXEF (1 << 0)
209 #define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
211 #define KS_TXFDPR 0x84
212 #define TXFDPR_TXFPAI (1 << 14)
213 #define TXFDPR_TXFP_MASK (0x7ff << 0)
214 #define TXFDPR_TXFP_SHIFT (0)
216 #define KS_RXFDPR 0x86
217 #define RXFDPR_RXFPAI (1 << 14)
219 #define KS_RXDTTR 0x8C
220 #define KS_RXDBCTR 0x8E
224 #define IRQ_LCI (1 << 15)
225 #define IRQ_TXI (1 << 14)
226 #define IRQ_RXI (1 << 13)
227 #define IRQ_RXOI (1 << 11)
228 #define IRQ_TXPSI (1 << 9)
229 #define IRQ_RXPSI (1 << 8)
230 #define IRQ_TXSAI (1 << 6)
231 #define IRQ_RXWFDI (1 << 5)
232 #define IRQ_RXMPDI (1 << 4)
233 #define IRQ_LDI (1 << 3)
234 #define IRQ_EDI (1 << 2)
235 #define IRQ_SPIBEI (1 << 1)
236 #define IRQ_DEDI (1 << 0)
238 #define KS_RXFCTR 0x9C
239 #define RXFCTR_THRESHOLD_MASK 0x00FF
242 #define RXFCTR_RXFC_MASK (0xff << 8)
243 #define RXFCTR_RXFC_SHIFT (8)
244 #define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
245 #define RXFCTR_RXFCT_MASK (0xff << 0)
246 #define RXFCTR_RXFCT_SHIFT (0)
248 #define KS_TXNTFSR 0x9E
250 #define KS_MAHTR0 0xA0
251 #define KS_MAHTR1 0xA2
252 #define KS_MAHTR2 0xA4
253 #define KS_MAHTR3 0xA6
255 #define KS_FCLWR 0xB0
256 #define KS_FCHWR 0xB2
257 #define KS_FCOWR 0xB4
259 #define KS_CIDER 0xC0
260 #define CIDER_ID 0x8870
261 #define CIDER_REV_MASK (0x7 << 1)
262 #define CIDER_REV_SHIFT (1)
263 #define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
267 #define IACR_RDEN (1 << 12)
268 #define IACR_TSEL_MASK (0x3 << 10)
269 #define IACR_TSEL_SHIFT (10)
270 #define IACR_TSEL_MIB (0x3 << 10)
271 #define IACR_ADDR_MASK (0x1f << 0)
272 #define IACR_ADDR_SHIFT (0)
274 #define KS_IADLR 0xD0
275 #define KS_IAHDR 0xD2
277 #define KS_PMECR 0xD4
278 #define PMECR_PME_DELAY (1 << 14)
279 #define PMECR_PME_POL (1 << 12)
280 #define PMECR_WOL_WAKEUP (1 << 11)
281 #define PMECR_WOL_MAGICPKT (1 << 10)
282 #define PMECR_WOL_LINKUP (1 << 9)
283 #define PMECR_WOL_ENERGY (1 << 8)
284 #define PMECR_AUTO_WAKE_EN (1 << 7)
285 #define PMECR_WAKEUP_NORMAL (1 << 6)
286 #define PMECR_WKEVT_MASK (0xf << 2)
287 #define PMECR_WKEVT_SHIFT (2)
288 #define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
289 #define PMECR_WKEVT_ENERGY (0x1 << 2)
290 #define PMECR_WKEVT_LINK (0x2 << 2)
291 #define PMECR_WKEVT_MAGICPKT (0x4 << 2)
292 #define PMECR_WKEVT_FRAME (0x8 << 2)
293 #define PMECR_PM_MASK (0x3 << 0)
294 #define PMECR_PM_SHIFT (0)
295 #define PMECR_PM_NORMAL (0x0 << 0)
296 #define PMECR_PM_ENERGY (0x1 << 0)
297 #define PMECR_PM_SOFTDOWN (0x2 << 0)
298 #define PMECR_PM_POWERSAVE (0x3 << 0)
300 /* Standard MII PHY data */
301 #define KS_P1MBCR 0xE4
302 #define P1MBCR_FORCE_FDX (1 << 8)
304 #define KS_P1MBSR 0xE6
305 #define P1MBSR_AN_COMPLETE (1 << 5)
306 #define P1MBSR_AN_CAPABLE (1 << 3)
307 #define P1MBSR_LINK_UP (1 << 2)
309 #define KS_PHY1ILR 0xE8
310 #define KS_PHY1IHR 0xEA
311 #define KS_P1ANAR 0xEC
312 #define KS_P1ANLPR 0xEE
314 #define KS_P1SCLMD 0xF4
315 #define P1SCLMD_LEDOFF (1 << 15)
316 #define P1SCLMD_TXIDS (1 << 14)
317 #define P1SCLMD_RESTARTAN (1 << 13)
318 #define P1SCLMD_DISAUTOMDIX (1 << 10)
319 #define P1SCLMD_FORCEMDIX (1 << 9)
320 #define P1SCLMD_AUTONEGEN (1 << 7)
321 #define P1SCLMD_FORCE100 (1 << 6)
322 #define P1SCLMD_FORCEFDX (1 << 5)
323 #define P1SCLMD_ADV_FLOW (1 << 4)
324 #define P1SCLMD_ADV_100BT_FDX (1 << 3)
325 #define P1SCLMD_ADV_100BT_HDX (1 << 2)
326 #define P1SCLMD_ADV_10BT_FDX (1 << 1)
327 #define P1SCLMD_ADV_10BT_HDX (1 << 0)
330 #define P1CR_HP_MDIX (1 << 15)
331 #define P1CR_REV_POL (1 << 13)
332 #define P1CR_OP_100M (1 << 10)
333 #define P1CR_OP_FDX (1 << 9)
334 #define P1CR_OP_MDI (1 << 7)
335 #define P1CR_AN_DONE (1 << 6)
336 #define P1CR_LINK_GOOD (1 << 5)
337 #define P1CR_PNTR_FLOW (1 << 4)
338 #define P1CR_PNTR_100BT_FDX (1 << 3)
339 #define P1CR_PNTR_100BT_HDX (1 << 2)
340 #define P1CR_PNTR_10BT_FDX (1 << 1)
341 #define P1CR_PNTR_10BT_HDX (1 << 0)
343 /* TX Frame control */
345 #define TXFR_TXIC (1 << 15)
346 #define TXFR_TXFID_MASK (0x3f << 0)
347 #define TXFR_TXFID_SHIFT (0)
350 #define P1SR_HP_MDIX (1 << 15)
351 #define P1SR_REV_POL (1 << 13)
352 #define P1SR_OP_100M (1 << 10)
353 #define P1SR_OP_FDX (1 << 9)
354 #define P1SR_OP_MDI (1 << 7)
355 #define P1SR_AN_DONE (1 << 6)
356 #define P1SR_LINK_GOOD (1 << 5)
357 #define P1SR_PNTR_FLOW (1 << 4)
358 #define P1SR_PNTR_100BT_FDX (1 << 3)
359 #define P1SR_PNTR_100BT_HDX (1 << 2)
360 #define P1SR_PNTR_10BT_FDX (1 << 1)
361 #define P1SR_PNTR_10BT_HDX (1 << 0)
363 #define ENUM_BUS_NONE 0
364 #define ENUM_BUS_8BIT 1
365 #define ENUM_BUS_16BIT 2
366 #define ENUM_BUS_32BIT 3
368 #define MAX_MCAST_LST 32
369 #define HW_MCAST_SIZE 8
372 * union ks_tx_hdr - tx header data
373 * @txb: The header as bytes
374 * @txw: The header as 16bit, little-endian words
376 * A dual representation of the tx header data to allow
377 * access to individual bytes, and to allow 16bit accesses
378 * with 16bit alignment.
386 * struct ks_net - KS8851 driver private data
387 * @net_device : The network device we're bound to
388 * @hw_addr : start address of data register.
389 * @hw_addr_cmd : start address of command register.
390 * @txh : temporaly buffer to save status/length.
391 * @lock : Lock to ensure that the device is not accessed when busy.
392 * @pdev : Pointer to platform device.
393 * @mii : The MII state information for the mii calls.
394 * @frame_head_info : frame header information for multi-pkt rx.
395 * @statelock : Lock on this structure for tx list.
396 * @msg_enable : The message flags controlling driver output (see ethtool).
397 * @frame_cnt : number of frames received.
398 * @bus_width : i/o bus width.
399 * @rc_rxqcr : Cached copy of KS_RXQCR.
400 * @rc_txcr : Cached copy of KS_TXCR.
401 * @rc_ier : Cached copy of KS_IER.
402 * @sharedbus : Multipex(addr and data bus) mode indicator.
403 * @cmd_reg_cache : command register cached.
404 * @cmd_reg_cache_int : command register cached. Used in the irq handler.
405 * @promiscuous : promiscuous mode indicator.
406 * @all_mcast : mutlicast indicator.
407 * @mcast_lst_size : size of multicast list.
408 * @mcast_lst : multicast list.
409 * @mcast_bits : multicast enabed.
410 * @mac_addr : MAC address assigned to this device.
412 * @extra_byte : number of extra byte prepended rx pkt.
413 * @enabled : indicator this device works.
415 * The @lock ensures that the chip is protected when certain operations are
416 * in progress. When the read or write packet transfer is in progress, most
417 * of the chip registers are not accessible until the transfer is finished and
418 * the DMA has been de-asserted.
420 * The @statelock is used to protect information in the structure which may
421 * need to be accessed via several sources, such as the network driver layer
422 * or one of the work queues.
426 /* Receive multiplex framer header info */
427 struct type_frame_head
{
428 u16 sts
; /* Frame status */
429 u16 len
; /* Byte count */
433 struct net_device
*netdev
;
434 void __iomem
*hw_addr
;
435 void __iomem
*hw_addr_cmd
;
436 union ks_tx_hdr txh ____cacheline_aligned
;
437 struct mutex lock
; /* spinlock to be interrupt safe */
438 struct platform_device
*pdev
;
439 struct mii_if_info mii
;
440 struct type_frame_head
*frame_head_info
;
441 spinlock_t statelock
;
451 u16 cmd_reg_cache_int
;
455 u8 mcast_lst
[MAX_MCAST_LST
][ETH_ALEN
];
456 u8 mcast_bits
[HW_MCAST_SIZE
];
463 static int msg_enable
;
465 #define BE3 0x8000 /* Byte Enable 3 */
466 #define BE2 0x4000 /* Byte Enable 2 */
467 #define BE1 0x2000 /* Byte Enable 1 */
468 #define BE0 0x1000 /* Byte Enable 0 */
470 /* register read/write calls.
472 * All these calls issue transactions to access the chip's registers. They
473 * all require that the necessary lock is held to prevent accesses when the
474 * chip is busy transferring packet data (RX/TX FIFO accesses).
478 * ks_rdreg8 - read 8 bit register from device
479 * @ks : The chip information
480 * @offset: The register address
482 * Read a 8bit register from the chip, returning the result
484 static u8
ks_rdreg8(struct ks_net
*ks
, int offset
)
487 u8 shift_bit
= offset
& 0x03;
488 u8 shift_data
= (offset
& 1) << 3;
489 ks
->cmd_reg_cache
= (u16
) offset
| (u16
)(BE0
<< shift_bit
);
490 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
491 data
= ioread16(ks
->hw_addr
);
492 return (u8
)(data
>> shift_data
);
496 * ks_rdreg16 - read 16 bit register from device
497 * @ks : The chip information
498 * @offset: The register address
500 * Read a 16bit register from the chip, returning the result
503 static u16
ks_rdreg16(struct ks_net
*ks
, int offset
)
505 ks
->cmd_reg_cache
= (u16
)offset
| ((BE1
| BE0
) << (offset
& 0x02));
506 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
507 return ioread16(ks
->hw_addr
);
511 * ks_wrreg8 - write 8bit register value to chip
512 * @ks: The chip information
513 * @offset: The register address
514 * @value: The value to write
517 static void ks_wrreg8(struct ks_net
*ks
, int offset
, u8 value
)
519 u8 shift_bit
= (offset
& 0x03);
520 u16 value_write
= (u16
)(value
<< ((offset
& 1) << 3));
521 ks
->cmd_reg_cache
= (u16
)offset
| (BE0
<< shift_bit
);
522 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
523 iowrite16(value_write
, ks
->hw_addr
);
527 * ks_wrreg16 - write 16bit register value to chip
528 * @ks: The chip information
529 * @offset: The register address
530 * @value: The value to write
534 static void ks_wrreg16(struct ks_net
*ks
, int offset
, u16 value
)
536 ks
->cmd_reg_cache
= (u16
)offset
| ((BE1
| BE0
) << (offset
& 0x02));
537 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
538 iowrite16(value
, ks
->hw_addr
);
542 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
543 * @ks: The chip state
544 * @wptr: buffer address to save data
545 * @len: length in byte to read
548 static inline void ks_inblk(struct ks_net
*ks
, u16
*wptr
, u32 len
)
552 *wptr
++ = (u16
)ioread16(ks
->hw_addr
);
556 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
557 * @ks: The chip information
558 * @wptr: buffer address
559 * @len: length in byte to write
562 static inline void ks_outblk(struct ks_net
*ks
, u16
*wptr
, u32 len
)
566 iowrite16(*wptr
++, ks
->hw_addr
);
569 static void ks_disable_int(struct ks_net
*ks
)
571 ks_wrreg16(ks
, KS_IER
, 0x0000);
572 } /* ks_disable_int */
574 static void ks_enable_int(struct ks_net
*ks
)
576 ks_wrreg16(ks
, KS_IER
, ks
->rc_ier
);
577 } /* ks_enable_int */
580 * ks_tx_fifo_space - return the available hardware buffer size.
581 * @ks: The chip information
584 static inline u16
ks_tx_fifo_space(struct ks_net
*ks
)
586 return ks_rdreg16(ks
, KS_TXMIR
) & 0x1fff;
590 * ks_save_cmd_reg - save the command register from the cache.
591 * @ks: The chip information
594 static inline void ks_save_cmd_reg(struct ks_net
*ks
)
596 /*ks8851 MLL has a bug to read back the command register.
597 * So rely on software to save the content of command register.
599 ks
->cmd_reg_cache_int
= ks
->cmd_reg_cache
;
603 * ks_restore_cmd_reg - restore the command register from the cache and
604 * write to hardware register.
605 * @ks: The chip information
608 static inline void ks_restore_cmd_reg(struct ks_net
*ks
)
610 ks
->cmd_reg_cache
= ks
->cmd_reg_cache_int
;
611 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
615 * ks_set_powermode - set power mode of the device
616 * @ks: The chip information
617 * @pwrmode: The power mode value to write to KS_PMECR.
619 * Change the power mode of the chip.
621 static void ks_set_powermode(struct ks_net
*ks
, unsigned pwrmode
)
625 netif_dbg(ks
, hw
, ks
->netdev
, "setting power mode %d\n", pwrmode
);
627 ks_rdreg16(ks
, KS_GRR
);
628 pmecr
= ks_rdreg16(ks
, KS_PMECR
);
629 pmecr
&= ~PMECR_PM_MASK
;
632 ks_wrreg16(ks
, KS_PMECR
, pmecr
);
636 * ks_read_config - read chip configuration of bus width.
637 * @ks: The chip information
640 static void ks_read_config(struct ks_net
*ks
)
644 /* Regardless of bus width, 8 bit read should always work.*/
645 reg_data
= ks_rdreg8(ks
, KS_CCR
) & 0x00FF;
646 reg_data
|= ks_rdreg8(ks
, KS_CCR
+1) << 8;
648 /* addr/data bus are multiplexed */
649 ks
->sharedbus
= (reg_data
& CCR_SHARED
) == CCR_SHARED
;
651 /* There are garbage data when reading data from QMU,
652 depending on bus-width.
655 if (reg_data
& CCR_8BIT
) {
656 ks
->bus_width
= ENUM_BUS_8BIT
;
658 } else if (reg_data
& CCR_16BIT
) {
659 ks
->bus_width
= ENUM_BUS_16BIT
;
662 ks
->bus_width
= ENUM_BUS_32BIT
;
668 * ks_soft_reset - issue one of the soft reset to the device
669 * @ks: The device state.
670 * @op: The bit(s) to set in the GRR
672 * Issue the relevant soft-reset command to the device's GRR register
675 * Note, the delays are in there as a caution to ensure that the reset
676 * has time to take effect and then complete. Since the datasheet does
677 * not currently specify the exact sequence, we have chosen something
678 * that seems to work with our device.
680 static void ks_soft_reset(struct ks_net
*ks
, unsigned op
)
682 /* Disable interrupt first */
683 ks_wrreg16(ks
, KS_IER
, 0x0000);
684 ks_wrreg16(ks
, KS_GRR
, op
);
685 mdelay(10); /* wait a short time to effect reset */
686 ks_wrreg16(ks
, KS_GRR
, 0);
687 mdelay(1); /* wait for condition to clear */
691 void ks_enable_qmu(struct ks_net
*ks
)
695 w
= ks_rdreg16(ks
, KS_TXCR
);
696 /* Enables QMU Transmit (TXCR). */
697 ks_wrreg16(ks
, KS_TXCR
, w
| TXCR_TXE
);
700 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
704 w
= ks_rdreg16(ks
, KS_RXQCR
);
705 ks_wrreg16(ks
, KS_RXQCR
, w
| RXQCR_RXFCTE
);
707 /* Enables QMU Receive (RXCR1). */
708 w
= ks_rdreg16(ks
, KS_RXCR1
);
709 ks_wrreg16(ks
, KS_RXCR1
, w
| RXCR1_RXE
);
711 } /* ks_enable_qmu */
713 static void ks_disable_qmu(struct ks_net
*ks
)
717 w
= ks_rdreg16(ks
, KS_TXCR
);
719 /* Disables QMU Transmit (TXCR). */
721 ks_wrreg16(ks
, KS_TXCR
, w
);
723 /* Disables QMU Receive (RXCR1). */
724 w
= ks_rdreg16(ks
, KS_RXCR1
);
726 ks_wrreg16(ks
, KS_RXCR1
, w
);
730 } /* ks_disable_qmu */
733 * ks_read_qmu - read 1 pkt data from the QMU.
734 * @ks: The chip information
735 * @buf: buffer address to save 1 pkt
737 * Here is the sequence to read 1 pkt:
738 * 1. set sudo DMA mode
739 * 2. read prepend data
741 * 4. reset sudo DMA Mode
743 static inline void ks_read_qmu(struct ks_net
*ks
, u16
*buf
, u32 len
)
745 u32 r
= ks
->extra_byte
& 0x1 ;
746 u32 w
= ks
->extra_byte
- r
;
748 /* 1. set sudo DMA mode */
749 ks_wrreg16(ks
, KS_RXFDPR
, RXFDPR_RXFPAI
);
750 ks_wrreg8(ks
, KS_RXQCR
, (ks
->rc_rxqcr
| RXQCR_SDA
) & 0xff);
752 /* 2. read prepend data */
754 * read 4 + extra bytes and discard them.
755 * extra bytes for dummy, 2 for status, 2 for len
758 /* use likely(r) for 8 bit access for performance */
760 ioread8(ks
->hw_addr
);
761 ks_inblk(ks
, buf
, w
+ 2 + 2);
763 /* 3. read pkt data */
764 ks_inblk(ks
, buf
, ALIGN(len
, 4));
766 /* 4. reset sudo DMA Mode */
767 ks_wrreg8(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
771 * ks_rcv - read multiple pkts data from the QMU.
772 * @ks: The chip information
773 * @netdev: The network device being opened.
775 * Read all of header information before reading pkt content.
776 * It is not allowed only port of pkts in QMU after issuing
779 static void ks_rcv(struct ks_net
*ks
, struct net_device
*netdev
)
782 struct type_frame_head
*frame_hdr
= ks
->frame_head_info
;
785 ks
->frame_cnt
= ks_rdreg16(ks
, KS_RXFCTR
) >> 8;
787 /* read all header information */
788 for (i
= 0; i
< ks
->frame_cnt
; i
++) {
789 /* Checking Received packet status */
790 frame_hdr
->sts
= ks_rdreg16(ks
, KS_RXFHSR
);
791 /* Get packet len from hardware */
792 frame_hdr
->len
= ks_rdreg16(ks
, KS_RXFHBCR
);
796 frame_hdr
= ks
->frame_head_info
;
797 while (ks
->frame_cnt
--) {
798 if (unlikely(!(frame_hdr
->sts
& RXFSHR_RXFV
) ||
799 frame_hdr
->len
>= RX_BUF_SIZE
||
800 frame_hdr
->len
<= 0)) {
802 /* discard an invalid packet */
803 ks_wrreg16(ks
, KS_RXQCR
, (ks
->rc_rxqcr
| RXQCR_RRXEF
));
804 netdev
->stats
.rx_dropped
++;
805 if (!(frame_hdr
->sts
& RXFSHR_RXFV
))
806 netdev
->stats
.rx_frame_errors
++;
808 netdev
->stats
.rx_length_errors
++;
813 skb
= netdev_alloc_skb(netdev
, frame_hdr
->len
+ 16);
816 /* read data block including CRC 4 bytes */
817 ks_read_qmu(ks
, (u16
*)skb
->data
, frame_hdr
->len
);
818 skb_put(skb
, frame_hdr
->len
- 4);
819 skb
->protocol
= eth_type_trans(skb
, netdev
);
821 /* exclude CRC size */
822 netdev
->stats
.rx_bytes
+= frame_hdr
->len
- 4;
823 netdev
->stats
.rx_packets
++;
825 ks_wrreg16(ks
, KS_RXQCR
, (ks
->rc_rxqcr
| RXQCR_RRXEF
));
826 netdev
->stats
.rx_dropped
++;
833 * ks_update_link_status - link status update.
834 * @netdev: The network device being opened.
835 * @ks: The chip information
839 static void ks_update_link_status(struct net_device
*netdev
, struct ks_net
*ks
)
841 /* check the status of the link */
843 if (ks_rdreg16(ks
, KS_P1SR
) & P1SR_LINK_GOOD
) {
844 netif_carrier_on(netdev
);
845 link_up_status
= true;
847 netif_carrier_off(netdev
);
848 link_up_status
= false;
850 netif_dbg(ks
, link
, ks
->netdev
,
851 "%s: %s\n", __func__
, link_up_status
? "UP" : "DOWN");
855 * ks_irq - device interrupt handler
856 * @irq: Interrupt number passed from the IRQ handler.
857 * @pw: The private word passed to register_irq(), our struct ks_net.
859 * This is the handler invoked to find out what happened
861 * Read the interrupt status, work out what needs to be done and then clear
862 * any of the interrupts that are not needed.
865 static irqreturn_t
ks_irq(int irq
, void *pw
)
867 struct net_device
*netdev
= pw
;
868 struct ks_net
*ks
= netdev_priv(netdev
);
871 /*this should be the first in IRQ handler */
874 status
= ks_rdreg16(ks
, KS_ISR
);
875 if (unlikely(!status
)) {
876 ks_restore_cmd_reg(ks
);
880 ks_wrreg16(ks
, KS_ISR
, status
);
882 if (likely(status
& IRQ_RXI
))
885 if (unlikely(status
& IRQ_LCI
))
886 ks_update_link_status(netdev
, ks
);
888 if (unlikely(status
& IRQ_TXI
))
889 netif_wake_queue(netdev
);
891 if (unlikely(status
& IRQ_LDI
)) {
893 u16 pmecr
= ks_rdreg16(ks
, KS_PMECR
);
894 pmecr
&= ~PMECR_WKEVT_MASK
;
895 ks_wrreg16(ks
, KS_PMECR
, pmecr
| PMECR_WKEVT_LINK
);
898 if (unlikely(status
& IRQ_RXOI
))
899 ks
->netdev
->stats
.rx_over_errors
++;
900 /* this should be the last in IRQ handler*/
901 ks_restore_cmd_reg(ks
);
907 * ks_net_open - open network device
908 * @netdev: The network device being opened.
910 * Called when the network device is marked active, such as a user executing
911 * 'ifconfig up' on the device.
913 static int ks_net_open(struct net_device
*netdev
)
915 struct ks_net
*ks
= netdev_priv(netdev
);
918 #define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW)
919 /* lock the card, even if we may not actually do anything
920 * else at the moment.
923 netif_dbg(ks
, ifup
, ks
->netdev
, "%s - entry\n", __func__
);
926 err
= request_irq(netdev
->irq
, ks_irq
, KS_INT_FLAGS
, DRV_NAME
, netdev
);
929 pr_err("Failed to request IRQ: %d: %d\n", netdev
->irq
, err
);
933 /* wake up powermode to normal mode */
934 ks_set_powermode(ks
, PMECR_PM_NORMAL
);
935 mdelay(1); /* wait for normal mode to take effect */
937 ks_wrreg16(ks
, KS_ISR
, 0xffff);
940 netif_start_queue(ks
->netdev
);
942 netif_dbg(ks
, ifup
, ks
->netdev
, "network device up\n");
948 * ks_net_stop - close network device
949 * @netdev: The device being closed.
951 * Called to close down a network device which has been active. Cancell any
952 * work, shutdown the RX and TX process and then place the chip into a low
953 * power state whilst it is not being used.
955 static int ks_net_stop(struct net_device
*netdev
)
957 struct ks_net
*ks
= netdev_priv(netdev
);
959 netif_info(ks
, ifdown
, netdev
, "shutting down\n");
961 netif_stop_queue(netdev
);
963 mutex_lock(&ks
->lock
);
965 /* turn off the IRQs and ack any outstanding */
966 ks_wrreg16(ks
, KS_IER
, 0x0000);
967 ks_wrreg16(ks
, KS_ISR
, 0xffff);
969 /* shutdown RX/TX QMU */
972 /* set powermode to soft power down to save power */
973 ks_set_powermode(ks
, PMECR_PM_SOFTDOWN
);
974 free_irq(netdev
->irq
, netdev
);
975 mutex_unlock(&ks
->lock
);
981 * ks_write_qmu - write 1 pkt data to the QMU.
982 * @ks: The chip information
983 * @pdata: buffer address to save 1 pkt
984 * @len: Pkt length in byte
985 * Here is the sequence to write 1 pkt:
986 * 1. set sudo DMA mode
987 * 2. write status/length
989 * 4. reset sudo DMA Mode
990 * 5. reset sudo DMA mode
991 * 6. Wait until pkt is out
993 static void ks_write_qmu(struct ks_net
*ks
, u8
*pdata
, u16 len
)
995 /* start header at txb[0] to align txw entries */
997 ks
->txh
.txw
[1] = cpu_to_le16(len
);
999 /* 1. set sudo-DMA mode */
1000 ks_wrreg8(ks
, KS_RXQCR
, (ks
->rc_rxqcr
| RXQCR_SDA
) & 0xff);
1001 /* 2. write status/lenth info */
1002 ks_outblk(ks
, ks
->txh
.txw
, 4);
1003 /* 3. write pkt data */
1004 ks_outblk(ks
, (u16
*)pdata
, ALIGN(len
, 4));
1005 /* 4. reset sudo-DMA mode */
1006 ks_wrreg8(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
1007 /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
1008 ks_wrreg16(ks
, KS_TXQCR
, TXQCR_METFE
);
1009 /* 6. wait until TXQCR_METFE is auto-cleared */
1010 while (ks_rdreg16(ks
, KS_TXQCR
) & TXQCR_METFE
)
1015 * ks_start_xmit - transmit packet
1016 * @skb : The buffer to transmit
1017 * @netdev : The device used to transmit the packet.
1019 * Called by the network layer to transmit the @skb.
1020 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1021 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1023 static int ks_start_xmit(struct sk_buff
*skb
, struct net_device
*netdev
)
1025 int retv
= NETDEV_TX_OK
;
1026 struct ks_net
*ks
= netdev_priv(netdev
);
1028 disable_irq(netdev
->irq
);
1030 spin_lock(&ks
->statelock
);
1032 /* Extra space are required:
1033 * 4 byte for alignment, 4 for status/length, 4 for CRC
1036 if (likely(ks_tx_fifo_space(ks
) >= skb
->len
+ 12)) {
1037 ks_write_qmu(ks
, skb
->data
, skb
->len
);
1038 /* add tx statistics */
1039 netdev
->stats
.tx_bytes
+= skb
->len
;
1040 netdev
->stats
.tx_packets
++;
1043 retv
= NETDEV_TX_BUSY
;
1044 spin_unlock(&ks
->statelock
);
1046 enable_irq(netdev
->irq
);
1051 * ks_start_rx - ready to serve pkts
1052 * @ks : The chip information
1055 static void ks_start_rx(struct ks_net
*ks
)
1059 /* Enables QMU Receive (RXCR1). */
1060 cntl
= ks_rdreg16(ks
, KS_RXCR1
);
1062 ks_wrreg16(ks
, KS_RXCR1
, cntl
);
1066 * ks_stop_rx - stop to serve pkts
1067 * @ks : The chip information
1070 static void ks_stop_rx(struct ks_net
*ks
)
1074 /* Disables QMU Receive (RXCR1). */
1075 cntl
= ks_rdreg16(ks
, KS_RXCR1
);
1076 cntl
&= ~RXCR1_RXE
;
1077 ks_wrreg16(ks
, KS_RXCR1
, cntl
);
1081 static unsigned long const ethernet_polynomial
= 0x04c11db7U
;
1083 static unsigned long ether_gen_crc(int length
, u8
*data
)
1086 while (--length
>= 0) {
1087 u8 current_octet
= *data
++;
1090 for (bit
= 0; bit
< 8; bit
++, current_octet
>>= 1) {
1092 ((crc
< 0) ^ (current_octet
& 1) ?
1093 ethernet_polynomial
: 0);
1096 return (unsigned long)crc
;
1097 } /* ether_gen_crc */
1100 * ks_set_grpaddr - set multicast information
1101 * @ks : The chip information
1104 static void ks_set_grpaddr(struct ks_net
*ks
)
1107 u32 index
, position
, value
;
1109 memset(ks
->mcast_bits
, 0, sizeof(u8
) * HW_MCAST_SIZE
);
1111 for (i
= 0; i
< ks
->mcast_lst_size
; i
++) {
1112 position
= (ether_gen_crc(6, ks
->mcast_lst
[i
]) >> 26) & 0x3f;
1113 index
= position
>> 3;
1114 value
= 1 << (position
& 7);
1115 ks
->mcast_bits
[index
] |= (u8
)value
;
1118 for (i
= 0; i
< HW_MCAST_SIZE
; i
++) {
1120 ks_wrreg16(ks
, (u16
)((KS_MAHTR0
+ i
) & ~1),
1121 (ks
->mcast_bits
[i
] << 8) |
1122 ks
->mcast_bits
[i
- 1]);
1125 } /* ks_set_grpaddr */
1128 * ks_clear_mcast - clear multicast information
1130 * @ks : The chip information
1131 * This routine removes all mcast addresses set in the hardware.
1134 static void ks_clear_mcast(struct ks_net
*ks
)
1137 for (i
= 0; i
< HW_MCAST_SIZE
; i
++)
1138 ks
->mcast_bits
[i
] = 0;
1140 mcast_size
= HW_MCAST_SIZE
>> 2;
1141 for (i
= 0; i
< mcast_size
; i
++)
1142 ks_wrreg16(ks
, KS_MAHTR0
+ (2*i
), 0);
1145 static void ks_set_promis(struct ks_net
*ks
, u16 promiscuous_mode
)
1148 ks
->promiscuous
= promiscuous_mode
;
1149 ks_stop_rx(ks
); /* Stop receiving for reconfiguration */
1150 cntl
= ks_rdreg16(ks
, KS_RXCR1
);
1152 cntl
&= ~RXCR1_FILTER_MASK
;
1153 if (promiscuous_mode
)
1154 /* Enable Promiscuous mode */
1155 cntl
|= RXCR1_RXAE
| RXCR1_RXINVF
;
1157 /* Disable Promiscuous mode (default normal mode) */
1158 cntl
|= RXCR1_RXPAFMA
;
1160 ks_wrreg16(ks
, KS_RXCR1
, cntl
);
1165 } /* ks_set_promis */
1167 static void ks_set_mcast(struct ks_net
*ks
, u16 mcast
)
1171 ks
->all_mcast
= mcast
;
1172 ks_stop_rx(ks
); /* Stop receiving for reconfiguration */
1173 cntl
= ks_rdreg16(ks
, KS_RXCR1
);
1174 cntl
&= ~RXCR1_FILTER_MASK
;
1176 /* Enable "Perfect with Multicast address passed mode" */
1177 cntl
|= (RXCR1_RXAE
| RXCR1_RXMAFMA
| RXCR1_RXPAFMA
);
1180 * Disable "Perfect with Multicast address passed
1181 * mode" (normal mode).
1183 cntl
|= RXCR1_RXPAFMA
;
1185 ks_wrreg16(ks
, KS_RXCR1
, cntl
);
1189 } /* ks_set_mcast */
1191 static void ks_set_rx_mode(struct net_device
*netdev
)
1193 struct ks_net
*ks
= netdev_priv(netdev
);
1194 struct netdev_hw_addr
*ha
;
1196 /* Turn on/off promiscuous mode. */
1197 if ((netdev
->flags
& IFF_PROMISC
) == IFF_PROMISC
)
1199 (u16
)((netdev
->flags
& IFF_PROMISC
) == IFF_PROMISC
));
1200 /* Turn on/off all mcast mode. */
1201 else if ((netdev
->flags
& IFF_ALLMULTI
) == IFF_ALLMULTI
)
1203 (u16
)((netdev
->flags
& IFF_ALLMULTI
) == IFF_ALLMULTI
));
1205 ks_set_promis(ks
, false);
1207 if ((netdev
->flags
& IFF_MULTICAST
) && netdev_mc_count(netdev
)) {
1208 if (netdev_mc_count(netdev
) <= MAX_MCAST_LST
) {
1211 netdev_for_each_mc_addr(ha
, netdev
) {
1212 if (i
>= MAX_MCAST_LST
)
1214 memcpy(ks
->mcast_lst
[i
++], ha
->addr
, ETH_ALEN
);
1216 ks
->mcast_lst_size
= (u8
)i
;
1220 * List too big to support so
1221 * turn on all mcast mode.
1223 ks
->mcast_lst_size
= MAX_MCAST_LST
;
1224 ks_set_mcast(ks
, true);
1227 ks
->mcast_lst_size
= 0;
1230 } /* ks_set_rx_mode */
1232 static void ks_set_mac(struct ks_net
*ks
, u8
*data
)
1234 u16
*pw
= (u16
*)data
;
1237 ks_stop_rx(ks
); /* Stop receiving for reconfiguration */
1240 w
= ((u
& 0xFF) << 8) | ((u
>> 8) & 0xFF);
1241 ks_wrreg16(ks
, KS_MARH
, w
);
1244 w
= ((u
& 0xFF) << 8) | ((u
>> 8) & 0xFF);
1245 ks_wrreg16(ks
, KS_MARM
, w
);
1248 w
= ((u
& 0xFF) << 8) | ((u
>> 8) & 0xFF);
1249 ks_wrreg16(ks
, KS_MARL
, w
);
1251 memcpy(ks
->mac_addr
, data
, 6);
1257 static int ks_set_mac_address(struct net_device
*netdev
, void *paddr
)
1259 struct ks_net
*ks
= netdev_priv(netdev
);
1260 struct sockaddr
*addr
= paddr
;
1263 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1265 da
= (u8
*)netdev
->dev_addr
;
1271 static int ks_net_ioctl(struct net_device
*netdev
, struct ifreq
*req
, int cmd
)
1273 struct ks_net
*ks
= netdev_priv(netdev
);
1275 if (!netif_running(netdev
))
1278 return generic_mii_ioctl(&ks
->mii
, if_mii(req
), cmd
, NULL
);
1281 static const struct net_device_ops ks_netdev_ops
= {
1282 .ndo_open
= ks_net_open
,
1283 .ndo_stop
= ks_net_stop
,
1284 .ndo_do_ioctl
= ks_net_ioctl
,
1285 .ndo_start_xmit
= ks_start_xmit
,
1286 .ndo_set_mac_address
= ks_set_mac_address
,
1287 .ndo_set_rx_mode
= ks_set_rx_mode
,
1288 .ndo_change_mtu
= eth_change_mtu
,
1289 .ndo_validate_addr
= eth_validate_addr
,
1292 /* ethtool support */
1294 static void ks_get_drvinfo(struct net_device
*netdev
,
1295 struct ethtool_drvinfo
*di
)
1297 strlcpy(di
->driver
, DRV_NAME
, sizeof(di
->driver
));
1298 strlcpy(di
->version
, "1.00", sizeof(di
->version
));
1299 strlcpy(di
->bus_info
, dev_name(netdev
->dev
.parent
),
1300 sizeof(di
->bus_info
));
1303 static u32
ks_get_msglevel(struct net_device
*netdev
)
1305 struct ks_net
*ks
= netdev_priv(netdev
);
1306 return ks
->msg_enable
;
1309 static void ks_set_msglevel(struct net_device
*netdev
, u32 to
)
1311 struct ks_net
*ks
= netdev_priv(netdev
);
1312 ks
->msg_enable
= to
;
1315 static int ks_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
1317 struct ks_net
*ks
= netdev_priv(netdev
);
1318 return mii_ethtool_gset(&ks
->mii
, cmd
);
1321 static int ks_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
1323 struct ks_net
*ks
= netdev_priv(netdev
);
1324 return mii_ethtool_sset(&ks
->mii
, cmd
);
1327 static u32
ks_get_link(struct net_device
*netdev
)
1329 struct ks_net
*ks
= netdev_priv(netdev
);
1330 return mii_link_ok(&ks
->mii
);
1333 static int ks_nway_reset(struct net_device
*netdev
)
1335 struct ks_net
*ks
= netdev_priv(netdev
);
1336 return mii_nway_restart(&ks
->mii
);
1339 static const struct ethtool_ops ks_ethtool_ops
= {
1340 .get_drvinfo
= ks_get_drvinfo
,
1341 .get_msglevel
= ks_get_msglevel
,
1342 .set_msglevel
= ks_set_msglevel
,
1343 .get_settings
= ks_get_settings
,
1344 .set_settings
= ks_set_settings
,
1345 .get_link
= ks_get_link
,
1346 .nway_reset
= ks_nway_reset
,
1349 /* MII interface controls */
1352 * ks_phy_reg - convert MII register into a KS8851 register
1353 * @reg: MII register number.
1355 * Return the KS8851 register number for the corresponding MII PHY register
1356 * if possible. Return zero if the MII register has no direct mapping to the
1357 * KS8851 register set.
1359 static int ks_phy_reg(int reg
)
1380 * ks_phy_read - MII interface PHY register read.
1381 * @netdev: The network device the PHY is on.
1382 * @phy_addr: Address of PHY (ignored as we only have one)
1383 * @reg: The register to read.
1385 * This call reads data from the PHY register specified in @reg. Since the
1386 * device does not support all the MII registers, the non-existent values
1387 * are always returned as zero.
1389 * We return zero for unsupported registers as the MII code does not check
1390 * the value returned for any error status, and simply returns it to the
1391 * caller. The mii-tool that the driver was tested with takes any -ve error
1392 * as real PHY capabilities, thus displaying incorrect data to the user.
1394 static int ks_phy_read(struct net_device
*netdev
, int phy_addr
, int reg
)
1396 struct ks_net
*ks
= netdev_priv(netdev
);
1400 ksreg
= ks_phy_reg(reg
);
1402 return 0x0; /* no error return allowed, so use zero */
1404 mutex_lock(&ks
->lock
);
1405 result
= ks_rdreg16(ks
, ksreg
);
1406 mutex_unlock(&ks
->lock
);
1411 static void ks_phy_write(struct net_device
*netdev
,
1412 int phy
, int reg
, int value
)
1414 struct ks_net
*ks
= netdev_priv(netdev
);
1417 ksreg
= ks_phy_reg(reg
);
1419 mutex_lock(&ks
->lock
);
1420 ks_wrreg16(ks
, ksreg
, value
);
1421 mutex_unlock(&ks
->lock
);
1426 * ks_read_selftest - read the selftest memory info.
1427 * @ks: The device state
1429 * Read and check the TX/RX memory selftest information.
1431 static int ks_read_selftest(struct ks_net
*ks
)
1433 unsigned both_done
= MBIR_TXMBF
| MBIR_RXMBF
;
1437 rd
= ks_rdreg16(ks
, KS_MBIR
);
1439 if ((rd
& both_done
) != both_done
) {
1440 netdev_warn(ks
->netdev
, "Memory selftest not finished\n");
1444 if (rd
& MBIR_TXMBFA
) {
1445 netdev_err(ks
->netdev
, "TX memory selftest fails\n");
1449 if (rd
& MBIR_RXMBFA
) {
1450 netdev_err(ks
->netdev
, "RX memory selftest fails\n");
1454 netdev_info(ks
->netdev
, "the selftest passes\n");
1458 static void ks_setup(struct ks_net
*ks
)
1463 * Configure QMU Transmit
1466 /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1467 ks_wrreg16(ks
, KS_TXFDPR
, TXFDPR_TXFPAI
);
1469 /* Setup Receive Frame Data Pointer Auto-Increment */
1470 ks_wrreg16(ks
, KS_RXFDPR
, RXFDPR_RXFPAI
);
1472 /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1473 ks_wrreg16(ks
, KS_RXFCTR
, 1 & RXFCTR_THRESHOLD_MASK
);
1475 /* Setup RxQ Command Control (RXQCR) */
1476 ks
->rc_rxqcr
= RXQCR_CMD_CNTL
;
1477 ks_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
1480 * set the force mode to half duplex, default is full duplex
1481 * because if the auto-negotiation fails, most switch uses
1485 w
= ks_rdreg16(ks
, KS_P1MBCR
);
1486 w
&= ~P1MBCR_FORCE_FDX
;
1487 ks_wrreg16(ks
, KS_P1MBCR
, w
);
1489 w
= TXCR_TXFCE
| TXCR_TXPE
| TXCR_TXCRC
| TXCR_TCGIP
;
1490 ks_wrreg16(ks
, KS_TXCR
, w
);
1492 w
= RXCR1_RXFCE
| RXCR1_RXBE
| RXCR1_RXUE
| RXCR1_RXME
| RXCR1_RXIPFCC
;
1494 if (ks
->promiscuous
) /* bPromiscuous */
1495 w
|= (RXCR1_RXAE
| RXCR1_RXINVF
);
1496 else if (ks
->all_mcast
) /* Multicast address passed mode */
1497 w
|= (RXCR1_RXAE
| RXCR1_RXMAFMA
| RXCR1_RXPAFMA
);
1498 else /* Normal mode */
1501 ks_wrreg16(ks
, KS_RXCR1
, w
);
1505 static void ks_setup_int(struct ks_net
*ks
)
1508 /* Clear the interrupts status of the hardware. */
1509 ks_wrreg16(ks
, KS_ISR
, 0xffff);
1511 /* Enables the interrupts of the hardware. */
1512 ks
->rc_ier
= (IRQ_LCI
| IRQ_TXI
| IRQ_RXI
);
1513 } /* ks_setup_int */
1515 static int ks_hw_init(struct ks_net
*ks
)
1517 #define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1518 ks
->promiscuous
= 0;
1520 ks
->mcast_lst_size
= 0;
1522 ks
->frame_head_info
= kmalloc(MHEADER_SIZE
, GFP_KERNEL
);
1523 if (!ks
->frame_head_info
)
1526 ks_set_mac(ks
, KS_DEFAULT_MAC_ADDRESS
);
1530 #if defined(CONFIG_OF)
1531 static const struct of_device_id ks8851_ml_dt_ids
[] = {
1532 { .compatible
= "micrel,ks8851-mll" },
1535 MODULE_DEVICE_TABLE(of
, ks8851_ml_dt_ids
);
1538 static int ks8851_probe(struct platform_device
*pdev
)
1541 struct resource
*io_d
, *io_c
;
1542 struct net_device
*netdev
;
1547 io_d
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1548 io_c
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1550 if (!request_mem_region(io_d
->start
, resource_size(io_d
), DRV_NAME
))
1551 goto err_mem_region
;
1553 if (!request_mem_region(io_c
->start
, resource_size(io_c
), DRV_NAME
))
1554 goto err_mem_region1
;
1556 netdev
= alloc_etherdev(sizeof(struct ks_net
));
1558 goto err_alloc_etherdev
;
1560 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1562 ks
= netdev_priv(netdev
);
1563 ks
->netdev
= netdev
;
1564 ks
->hw_addr
= ioremap(io_d
->start
, resource_size(io_d
));
1569 ks
->hw_addr_cmd
= ioremap(io_c
->start
, resource_size(io_c
));
1570 if (!ks
->hw_addr_cmd
)
1573 netdev
->irq
= platform_get_irq(pdev
, 0);
1575 if ((int)netdev
->irq
< 0) {
1582 mutex_init(&ks
->lock
);
1583 spin_lock_init(&ks
->statelock
);
1585 netdev
->netdev_ops
= &ks_netdev_ops
;
1586 netdev
->ethtool_ops
= &ks_ethtool_ops
;
1588 /* setup mii state */
1589 ks
->mii
.dev
= netdev
;
1591 ks
->mii
.phy_id_mask
= 1;
1592 ks
->mii
.reg_num_mask
= 0xf;
1593 ks
->mii
.mdio_read
= ks_phy_read
;
1594 ks
->mii
.mdio_write
= ks_phy_write
;
1596 netdev_info(netdev
, "message enable is %d\n", msg_enable
);
1597 /* set the default message enable */
1598 ks
->msg_enable
= netif_msg_init(msg_enable
, (NETIF_MSG_DRV
|
1603 /* simple check for a valid chip being connected to the bus */
1604 if ((ks_rdreg16(ks
, KS_CIDER
) & ~CIDER_REV_MASK
) != CIDER_ID
) {
1605 netdev_err(netdev
, "failed to read device ID\n");
1610 if (ks_read_selftest(ks
)) {
1611 netdev_err(netdev
, "failed to read device ID\n");
1616 err
= register_netdev(netdev
);
1620 platform_set_drvdata(pdev
, netdev
);
1622 ks_soft_reset(ks
, GRR_GSR
);
1628 data
= ks_rdreg16(ks
, KS_OBCR
);
1629 ks_wrreg16(ks
, KS_OBCR
, data
| OBCR_ODS_16MA
);
1631 /* overwriting the default MAC address */
1632 if (pdev
->dev
.of_node
) {
1633 mac
= of_get_mac_address(pdev
->dev
.of_node
);
1635 memcpy(ks
->mac_addr
, mac
, ETH_ALEN
);
1637 struct ks8851_mll_platform_data
*pdata
;
1639 pdata
= pdev
->dev
.platform_data
;
1641 netdev_err(netdev
, "No platform data\n");
1645 memcpy(ks
->mac_addr
, pdata
->mac_addr
, ETH_ALEN
);
1647 if (!is_valid_ether_addr(ks
->mac_addr
)) {
1648 /* Use random MAC address if none passed */
1649 eth_random_addr(ks
->mac_addr
);
1650 netdev_info(netdev
, "Using random mac address\n");
1652 netdev_info(netdev
, "Mac address is: %pM\n", ks
->mac_addr
);
1654 memcpy(netdev
->dev_addr
, ks
->mac_addr
, 6);
1656 ks_set_mac(ks
, netdev
->dev_addr
);
1658 id
= ks_rdreg16(ks
, KS_CIDER
);
1660 netdev_info(netdev
, "Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1661 (id
>> 8) & 0xff, (id
>> 4) & 0xf, (id
>> 1) & 0x7);
1665 unregister_netdev(netdev
);
1668 iounmap(ks
->hw_addr_cmd
);
1670 iounmap(ks
->hw_addr
);
1672 free_netdev(netdev
);
1674 release_mem_region(io_c
->start
, resource_size(io_c
));
1676 release_mem_region(io_d
->start
, resource_size(io_d
));
1681 static int ks8851_remove(struct platform_device
*pdev
)
1683 struct net_device
*netdev
= platform_get_drvdata(pdev
);
1684 struct ks_net
*ks
= netdev_priv(netdev
);
1685 struct resource
*iomem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1687 kfree(ks
->frame_head_info
);
1688 unregister_netdev(netdev
);
1689 iounmap(ks
->hw_addr
);
1690 free_netdev(netdev
);
1691 release_mem_region(iomem
->start
, resource_size(iomem
));
1696 static struct platform_driver ks8851_platform_driver
= {
1699 .owner
= THIS_MODULE
,
1700 .of_match_table
= of_match_ptr(ks8851_ml_dt_ids
),
1702 .probe
= ks8851_probe
,
1703 .remove
= ks8851_remove
,
1706 module_platform_driver(ks8851_platform_driver
);
1708 MODULE_DESCRIPTION("KS8851 MLL Network driver");
1709 MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1710 MODULE_LICENSE("GPL");
1711 module_param_named(message
, msg_enable
, int, 0);
1712 MODULE_PARM_DESC(message
, "Message verbosity level (0=none, 31=all)");