2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h> /* printk() */
20 #include <linux/slab.h> /* kmalloc() */
21 #include <linux/errno.h> /* error codes */
22 #include <linux/types.h> /* size_t */
23 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/netdevice.h> /* struct device, and other headers */
27 #include <linux/etherdevice.h> /* eth_type_trans */
28 #include <linux/skbuff.h>
29 #include <linux/ioctl.h>
30 #include <linux/cdev.h>
31 #include <linux/hugetlb.h>
32 #include <linux/in6.h>
33 #include <linux/timer.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
37 #include <linux/ctype.h>
39 #include <linux/tcp.h>
41 #include <asm/checksum.h>
42 #include <asm/homecache.h>
43 #include <gxio/mpipe.h>
46 /* Default transmit lockup timeout period, in jiffies. */
47 #define TILE_NET_TIMEOUT (5 * HZ)
49 /* The maximum number of distinct channels (idesc.channel is 5 bits). */
50 #define TILE_NET_CHANNELS 32
52 /* Maximum number of idescs to handle per "poll". */
53 #define TILE_NET_BATCH 128
55 /* Maximum number of packets to handle per "poll". */
56 #define TILE_NET_WEIGHT 64
58 /* Number of entries in each iqueue. */
59 #define IQUEUE_ENTRIES 512
61 /* Number of entries in each equeue. */
62 #define EQUEUE_ENTRIES 2048
64 /* Total header bytes per equeue slot. Must be big enough for 2 bytes
65 * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
66 * 60 bytes of actual TCP header. We round up to align to cache lines.
68 #define HEADER_BYTES 128
70 /* Maximum completions per cpu per device (must be a power of two).
71 * ISSUE: What is the right number here? If this is too small, then
72 * egress might block waiting for free space in a completions array.
73 * ISSUE: At the least, allocate these only for initialized echannels.
75 #define TILE_NET_MAX_COMPS 64
77 #define MAX_FRAGS (MAX_SKB_FRAGS + 1)
79 /* Size of completions data to allocate.
80 * ISSUE: Probably more than needed since we don't use all the channels.
82 #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
84 /* Size of NotifRing data to allocate. */
85 #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
87 /* Timeout to wake the per-device TX timer after we stop the queue.
88 * We don't want the timeout too short (adds overhead, and might end
89 * up causing stop/wake/stop/wake cycles) or too long (affects performance).
90 * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
92 #define TX_TIMER_DELAY_USEC 30
94 /* Timeout to wake the per-cpu egress timer to free completions. */
95 #define EGRESS_TIMER_DELAY_USEC 1000
97 MODULE_AUTHOR("Tilera Corporation");
98 MODULE_LICENSE("GPL");
100 /* A "packet fragment" (a chunk of memory). */
106 /* A single completion. */
107 struct tile_net_comp
{
108 /* The "complete_count" when the completion will be complete. */
110 /* The buffer to be freed when the completion is complete. */
114 /* The completions for a given cpu and echannel. */
115 struct tile_net_comps
{
116 /* The completions. */
117 struct tile_net_comp comp_queue
[TILE_NET_MAX_COMPS
];
118 /* The number of completions used. */
119 unsigned long comp_next
;
120 /* The number of completions freed. */
121 unsigned long comp_last
;
124 /* The transmit wake timer for a given cpu and echannel. */
125 struct tile_net_tx_wake
{
127 struct hrtimer timer
;
128 struct net_device
*dev
;
131 /* Info for a specific cpu. */
132 struct tile_net_info
{
133 /* The NAPI struct. */
134 struct napi_struct napi
;
136 gxio_mpipe_iqueue_t iqueue
;
139 /* True if iqueue is valid. */
144 /* Number of small sk_buffs which must still be provided. */
145 unsigned int num_needed_small_buffers
;
146 /* Number of large sk_buffs which must still be provided. */
147 unsigned int num_needed_large_buffers
;
148 /* A timer for handling egress completions. */
149 struct hrtimer egress_timer
;
150 /* True if "egress_timer" is scheduled. */
151 bool egress_timer_scheduled
;
152 /* Comps for each egress channel. */
153 struct tile_net_comps
*comps_for_echannel
[TILE_NET_CHANNELS
];
154 /* Transmit wake timer for each egress channel. */
155 struct tile_net_tx_wake tx_wake
[TILE_NET_CHANNELS
];
158 /* Info for egress on a particular egress channel. */
159 struct tile_net_egress
{
161 gxio_mpipe_equeue_t
*equeue
;
162 /* The headers for TSO. */
163 unsigned char *headers
;
166 /* Info for a specific device. */
167 struct tile_net_priv
{
168 /* Our network device. */
169 struct net_device
*dev
;
170 /* The primary link. */
171 gxio_mpipe_link_t link
;
172 /* The primary channel, if open, else -1. */
174 /* The "loopify" egress link, if needed. */
175 gxio_mpipe_link_t loopify_link
;
176 /* The "loopify" egress channel, if open, else -1. */
178 /* The egress channel (channel or loopify_channel). */
181 struct net_device_stats stats
;
184 /* Egress info, indexed by "priv->echannel" (lazily created as needed). */
185 static struct tile_net_egress egress_for_echannel
[TILE_NET_CHANNELS
];
187 /* Devices currently associated with each channel.
188 * NOTE: The array entry can become NULL after ifconfig down, but
189 * we do not free the underlying net_device structures, so it is
190 * safe to use a pointer after reading it from this array.
192 static struct net_device
*tile_net_devs_for_channel
[TILE_NET_CHANNELS
];
194 /* A mutex for "tile_net_devs_for_channel". */
195 static DEFINE_MUTEX(tile_net_devs_for_channel_mutex
);
197 /* The per-cpu info. */
198 static DEFINE_PER_CPU(struct tile_net_info
, per_cpu_info
);
200 /* The "context" for all devices. */
201 static gxio_mpipe_context_t context
;
203 /* Buffer sizes and mpipe enum codes for buffer stacks.
204 * See arch/tile/include/gxio/mpipe.h for the set of possible values.
206 #define BUFFER_SIZE_SMALL_ENUM GXIO_MPIPE_BUFFER_SIZE_128
207 #define BUFFER_SIZE_SMALL 128
208 #define BUFFER_SIZE_LARGE_ENUM GXIO_MPIPE_BUFFER_SIZE_1664
209 #define BUFFER_SIZE_LARGE 1664
211 /* The small/large "buffer stacks". */
212 static int small_buffer_stack
= -1;
213 static int large_buffer_stack
= -1;
215 /* Amount of memory allocated for each buffer stack. */
216 static size_t buffer_stack_size
;
218 /* The actual memory allocated for the buffer stacks. */
219 static void *small_buffer_stack_va
;
220 static void *large_buffer_stack_va
;
223 static int first_bucket
= -1;
224 static int num_buckets
= 1;
226 /* The ingress irq. */
227 static int ingress_irq
= -1;
229 /* Text value of tile_net.cpus if passed as a module parameter. */
230 static char *network_cpus_string
;
232 /* The actual cpus in "network_cpus". */
233 static struct cpumask network_cpus_map
;
235 /* If "loopify=LINK" was specified, this is "LINK". */
236 static char *loopify_link_name
;
238 /* If "tile_net.custom" was specified, this is non-NULL. */
239 static char *custom_str
;
241 /* The "tile_net.cpus" argument specifies the cpus that are dedicated
242 * to handle ingress packets.
244 * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
245 * m, n, x, y are integer numbers that represent the cpus that can be
246 * neither a dedicated cpu nor a dataplane cpu.
248 static bool network_cpus_init(void)
253 if (network_cpus_string
== NULL
)
256 rc
= cpulist_parse_crop(network_cpus_string
, &network_cpus_map
);
258 pr_warn("tile_net.cpus=%s: malformed cpu list\n",
259 network_cpus_string
);
263 /* Remove dedicated cpus. */
264 cpumask_and(&network_cpus_map
, &network_cpus_map
, cpu_possible_mask
);
266 if (cpumask_empty(&network_cpus_map
)) {
267 pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
268 network_cpus_string
);
272 cpulist_scnprintf(buf
, sizeof(buf
), &network_cpus_map
);
273 pr_info("Linux network CPUs: %s\n", buf
);
277 module_param_named(cpus
, network_cpus_string
, charp
, 0444);
278 MODULE_PARM_DESC(cpus
, "cpulist of cores that handle network interrupts");
280 /* The "tile_net.loopify=LINK" argument causes the named device to
281 * actually use "loop0" for ingress, and "loop1" for egress. This
282 * allows an app to sit between the actual link and linux, passing
283 * (some) packets along to linux, and forwarding (some) packets sent
286 module_param_named(loopify
, loopify_link_name
, charp
, 0444);
287 MODULE_PARM_DESC(loopify
, "name the device to use loop0/1 for ingress/egress");
289 /* The "tile_net.custom" argument causes us to ignore the "conventional"
290 * classifier metadata, in particular, the "l2_offset".
292 module_param_named(custom
, custom_str
, charp
, 0444);
293 MODULE_PARM_DESC(custom
, "indicates a (heavily) customized classifier");
295 /* Atomically update a statistics field.
296 * Note that on TILE-Gx, this operation is fire-and-forget on the
297 * issuing core (single-cycle dispatch) and takes only a few cycles
298 * longer than a regular store when the request reaches the home cache.
299 * No expensive bus management overhead is required.
301 static void tile_net_stats_add(unsigned long value
, unsigned long *field
)
303 BUILD_BUG_ON(sizeof(atomic_long_t
) != sizeof(unsigned long));
304 atomic_long_add(value
, (atomic_long_t
*)field
);
307 /* Allocate and push a buffer. */
308 static bool tile_net_provide_buffer(bool small
)
310 int stack
= small
? small_buffer_stack
: large_buffer_stack
;
311 const unsigned long buffer_alignment
= 128;
315 len
= sizeof(struct sk_buff
**) + buffer_alignment
;
316 len
+= (small
? BUFFER_SIZE_SMALL
: BUFFER_SIZE_LARGE
);
317 skb
= dev_alloc_skb(len
);
321 /* Make room for a back-pointer to 'skb' and guarantee alignment. */
322 skb_reserve(skb
, sizeof(struct sk_buff
**));
323 skb_reserve(skb
, -(long)skb
->data
& (buffer_alignment
- 1));
325 /* Save a back-pointer to 'skb'. */
326 *(struct sk_buff
**)(skb
->data
- sizeof(struct sk_buff
**)) = skb
;
328 /* Make sure "skb" and the back-pointer have been flushed. */
331 gxio_mpipe_push_buffer(&context
, stack
,
332 (void *)va_to_tile_io_addr(skb
->data
));
337 /* Convert a raw mpipe buffer to its matching skb pointer. */
338 static struct sk_buff
*mpipe_buf_to_skb(void *va
)
340 /* Acquire the associated "skb". */
341 struct sk_buff
**skb_ptr
= va
- sizeof(*skb_ptr
);
342 struct sk_buff
*skb
= *skb_ptr
;
345 if (skb
->data
!= va
) {
346 /* Panic here since there's a reasonable chance
347 * that corrupt buffers means generic memory
348 * corruption, with unpredictable system effects.
350 panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
357 static void tile_net_pop_all_buffers(int stack
)
360 tile_io_addr_t addr
=
361 (tile_io_addr_t
)gxio_mpipe_pop_buffer(&context
, stack
);
364 dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr
)));
368 /* Provide linux buffers to mPIPE. */
369 static void tile_net_provide_needed_buffers(void)
371 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
373 while (info
->num_needed_small_buffers
!= 0) {
374 if (!tile_net_provide_buffer(true))
376 info
->num_needed_small_buffers
--;
379 while (info
->num_needed_large_buffers
!= 0) {
380 if (!tile_net_provide_buffer(false))
382 info
->num_needed_large_buffers
--;
388 /* Add a description to the page allocation failure dump. */
389 pr_notice("Tile %d still needs some buffers\n", info
->my_cpu
);
392 static inline bool filter_packet(struct net_device
*dev
, void *buf
)
394 /* Filter packets received before we're up. */
395 if (dev
== NULL
|| !(dev
->flags
& IFF_UP
))
398 /* Filter out packets that aren't for us. */
399 if (!(dev
->flags
& IFF_PROMISC
) &&
400 !is_multicast_ether_addr(buf
) &&
401 compare_ether_addr(dev
->dev_addr
, buf
) != 0)
407 static void tile_net_receive_skb(struct net_device
*dev
, struct sk_buff
*skb
,
408 gxio_mpipe_idesc_t
*idesc
, unsigned long len
)
410 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
411 struct tile_net_priv
*priv
= netdev_priv(dev
);
413 /* Encode the actual packet length. */
416 skb
->protocol
= eth_type_trans(skb
, dev
);
418 /* Acknowledge "good" hardware checksums. */
419 if (idesc
->cs
&& idesc
->csum_seed_val
== 0xFFFF)
420 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
422 netif_receive_skb(skb
);
425 tile_net_stats_add(1, &priv
->stats
.rx_packets
);
426 tile_net_stats_add(len
, &priv
->stats
.rx_bytes
);
428 /* Need a new buffer. */
429 if (idesc
->size
== BUFFER_SIZE_SMALL_ENUM
)
430 info
->num_needed_small_buffers
++;
432 info
->num_needed_large_buffers
++;
435 /* Handle a packet. Return true if "processed", false if "filtered". */
436 static bool tile_net_handle_packet(gxio_mpipe_idesc_t
*idesc
)
438 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
439 struct net_device
*dev
= tile_net_devs_for_channel
[idesc
->channel
];
446 /* Drop packets for which no buffer was available.
447 * NOTE: This happens under heavy load.
450 struct tile_net_priv
*priv
= netdev_priv(dev
);
451 tile_net_stats_add(1, &priv
->stats
.rx_dropped
);
452 gxio_mpipe_iqueue_consume(&info
->iqueue
, idesc
);
454 pr_info("Dropping packet (insufficient buffers).\n");
458 /* Get the "l2_offset", if allowed. */
459 l2_offset
= custom_str
? 0 : gxio_mpipe_idesc_get_l2_offset(idesc
);
461 /* Get the raw buffer VA (includes "headroom"). */
462 va
= tile_io_addr_to_va((unsigned long)(long)idesc
->va
);
464 /* Get the actual packet start/length. */
465 buf
= va
+ l2_offset
;
466 len
= idesc
->l2_size
- l2_offset
;
468 /* Point "va" at the raw buffer. */
471 filter
= filter_packet(dev
, buf
);
473 gxio_mpipe_iqueue_drop(&info
->iqueue
, idesc
);
475 struct sk_buff
*skb
= mpipe_buf_to_skb(va
);
477 /* Skip headroom, and any custom header. */
478 skb_reserve(skb
, NET_IP_ALIGN
+ l2_offset
);
480 tile_net_receive_skb(dev
, skb
, idesc
, len
);
483 gxio_mpipe_iqueue_consume(&info
->iqueue
, idesc
);
487 /* Handle some packets for the current CPU.
489 * This function handles up to TILE_NET_BATCH idescs per call.
491 * ISSUE: Since we do not provide new buffers until this function is
492 * complete, we must initially provide enough buffers for each network
493 * cpu to fill its iqueue and also its batched idescs.
495 * ISSUE: The "rotting packet" race condition occurs if a packet
496 * arrives after the queue appears to be empty, and before the
497 * hypervisor interrupt is re-enabled.
499 static int tile_net_poll(struct napi_struct
*napi
, int budget
)
501 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
502 unsigned int work
= 0;
503 gxio_mpipe_idesc_t
*idesc
;
506 /* Process packets. */
507 while ((n
= gxio_mpipe_iqueue_try_peek(&info
->iqueue
, &idesc
)) > 0) {
508 for (i
= 0; i
< n
; i
++) {
509 if (i
== TILE_NET_BATCH
)
511 if (tile_net_handle_packet(idesc
+ i
)) {
512 if (++work
>= budget
)
518 /* There are no packets left. */
519 napi_complete(&info
->napi
);
521 /* Re-enable hypervisor interrupts. */
522 gxio_mpipe_enable_notif_ring_interrupt(&context
, info
->iqueue
.ring
);
524 /* HACK: Avoid the "rotting packet" problem. */
525 if (gxio_mpipe_iqueue_try_peek(&info
->iqueue
, &idesc
) > 0)
526 napi_schedule(&info
->napi
);
528 /* ISSUE: Handle completions? */
531 tile_net_provide_needed_buffers();
536 /* Handle an ingress interrupt on the current cpu. */
537 static irqreturn_t
tile_net_handle_ingress_irq(int irq
, void *unused
)
539 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
540 napi_schedule(&info
->napi
);
544 /* Free some completions. This must be called with interrupts blocked. */
545 static int tile_net_free_comps(gxio_mpipe_equeue_t
*equeue
,
546 struct tile_net_comps
*comps
,
547 int limit
, bool force_update
)
550 while (comps
->comp_last
< comps
->comp_next
) {
551 unsigned int cid
= comps
->comp_last
% TILE_NET_MAX_COMPS
;
552 struct tile_net_comp
*comp
= &comps
->comp_queue
[cid
];
553 if (!gxio_mpipe_equeue_is_complete(equeue
, comp
->when
,
554 force_update
|| n
== 0))
556 dev_kfree_skb_irq(comp
->skb
);
564 /* Add a completion. This must be called with interrupts blocked.
565 * tile_net_equeue_try_reserve() will have ensured a free completion entry.
567 static void add_comp(gxio_mpipe_equeue_t
*equeue
,
568 struct tile_net_comps
*comps
,
569 uint64_t when
, struct sk_buff
*skb
)
571 int cid
= comps
->comp_next
% TILE_NET_MAX_COMPS
;
572 comps
->comp_queue
[cid
].when
= when
;
573 comps
->comp_queue
[cid
].skb
= skb
;
577 static void tile_net_schedule_tx_wake_timer(struct net_device
*dev
,
580 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, tx_queue_idx
);
581 struct tile_net_priv
*priv
= netdev_priv(dev
);
582 struct tile_net_tx_wake
*tx_wake
= &info
->tx_wake
[priv
->echannel
];
584 hrtimer_start(&tx_wake
->timer
,
585 ktime_set(0, TX_TIMER_DELAY_USEC
* 1000UL),
586 HRTIMER_MODE_REL_PINNED
);
589 static enum hrtimer_restart
tile_net_handle_tx_wake_timer(struct hrtimer
*t
)
591 struct tile_net_tx_wake
*tx_wake
=
592 container_of(t
, struct tile_net_tx_wake
, timer
);
593 netif_wake_subqueue(tx_wake
->dev
, tx_wake
->tx_queue_idx
);
594 return HRTIMER_NORESTART
;
597 /* Make sure the egress timer is scheduled. */
598 static void tile_net_schedule_egress_timer(void)
600 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
602 if (!info
->egress_timer_scheduled
) {
603 hrtimer_start(&info
->egress_timer
,
604 ktime_set(0, EGRESS_TIMER_DELAY_USEC
* 1000UL),
605 HRTIMER_MODE_REL_PINNED
);
606 info
->egress_timer_scheduled
= true;
610 /* The "function" for "info->egress_timer".
612 * This timer will reschedule itself as long as there are any pending
613 * completions expected for this tile.
615 static enum hrtimer_restart
tile_net_handle_egress_timer(struct hrtimer
*t
)
617 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
618 unsigned long irqflags
;
619 bool pending
= false;
622 local_irq_save(irqflags
);
624 /* The timer is no longer scheduled. */
625 info
->egress_timer_scheduled
= false;
627 /* Free all possible comps for this tile. */
628 for (i
= 0; i
< TILE_NET_CHANNELS
; i
++) {
629 struct tile_net_egress
*egress
= &egress_for_echannel
[i
];
630 struct tile_net_comps
*comps
= info
->comps_for_echannel
[i
];
631 if (comps
->comp_last
>= comps
->comp_next
)
633 tile_net_free_comps(egress
->equeue
, comps
, -1, true);
634 pending
= pending
|| (comps
->comp_last
< comps
->comp_next
);
637 /* Reschedule timer if needed. */
639 tile_net_schedule_egress_timer();
641 local_irq_restore(irqflags
);
643 return HRTIMER_NORESTART
;
646 /* Helper function for "tile_net_update()".
647 * "dev" (i.e. arg) is the device being brought up or down,
648 * or NULL if all devices are now down.
650 static void tile_net_update_cpu(void *arg
)
652 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
653 struct net_device
*dev
= arg
;
655 if (!info
->has_iqueue
)
659 if (!info
->napi_added
) {
660 netif_napi_add(dev
, &info
->napi
,
661 tile_net_poll
, TILE_NET_WEIGHT
);
662 info
->napi_added
= true;
664 if (!info
->napi_enabled
) {
665 napi_enable(&info
->napi
);
666 info
->napi_enabled
= true;
668 enable_percpu_irq(ingress_irq
, 0);
670 disable_percpu_irq(ingress_irq
);
671 if (info
->napi_enabled
) {
672 napi_disable(&info
->napi
);
673 info
->napi_enabled
= false;
675 /* FIXME: Drain the iqueue. */
679 /* Helper function for tile_net_open() and tile_net_stop().
680 * Always called under tile_net_devs_for_channel_mutex.
682 static int tile_net_update(struct net_device
*dev
)
684 static gxio_mpipe_rules_t rules
; /* too big to fit on the stack */
685 bool saw_channel
= false;
690 gxio_mpipe_rules_init(&rules
, &context
);
692 for (channel
= 0; channel
< TILE_NET_CHANNELS
; channel
++) {
693 if (tile_net_devs_for_channel
[channel
] == NULL
)
697 gxio_mpipe_rules_begin(&rules
, first_bucket
,
699 gxio_mpipe_rules_set_headroom(&rules
, NET_IP_ALIGN
);
701 gxio_mpipe_rules_add_channel(&rules
, channel
);
704 /* NOTE: This can fail if there is no classifier.
705 * ISSUE: Can anything else cause it to fail?
707 rc
= gxio_mpipe_rules_commit(&rules
);
709 netdev_warn(dev
, "gxio_mpipe_rules_commit failed: %d\n", rc
);
713 /* Update all cpus, sequentially (to protect "netif_napi_add()"). */
714 for_each_online_cpu(cpu
)
715 smp_call_function_single(cpu
, tile_net_update_cpu
,
716 (saw_channel
? dev
: NULL
), 1);
718 /* HACK: Allow packets to flow in the simulator. */
720 sim_enable_mpipe_links(0, -1);
725 /* Allocate and initialize mpipe buffer stacks, and register them in
726 * the mPIPE TLBs, for both small and large packet sizes.
727 * This routine supports tile_net_init_mpipe(), below.
729 static int init_buffer_stacks(struct net_device
*dev
, int num_buffers
)
731 pte_t hash_pte
= pte_set_home((pte_t
) { 0 }, PAGE_HOME_HASH
);
734 /* Compute stack bytes; we round up to 64KB and then use
735 * alloc_pages() so we get the required 64KB alignment as well.
738 ALIGN(gxio_mpipe_calc_buffer_stack_bytes(num_buffers
),
741 /* Allocate two buffer stack indices. */
742 rc
= gxio_mpipe_alloc_buffer_stacks(&context
, 2, 0, 0);
744 netdev_err(dev
, "gxio_mpipe_alloc_buffer_stacks failed: %d\n",
748 small_buffer_stack
= rc
;
749 large_buffer_stack
= rc
+ 1;
751 /* Allocate the small memory stack. */
752 small_buffer_stack_va
=
753 alloc_pages_exact(buffer_stack_size
, GFP_KERNEL
);
754 if (small_buffer_stack_va
== NULL
) {
756 "Could not alloc %zd bytes for buffer stacks\n",
760 rc
= gxio_mpipe_init_buffer_stack(&context
, small_buffer_stack
,
761 BUFFER_SIZE_SMALL_ENUM
,
762 small_buffer_stack_va
,
763 buffer_stack_size
, 0);
765 netdev_err(dev
, "gxio_mpipe_init_buffer_stack: %d\n", rc
);
768 rc
= gxio_mpipe_register_client_memory(&context
, small_buffer_stack
,
772 "gxio_mpipe_register_buffer_memory failed: %d\n",
777 /* Allocate the large buffer stack. */
778 large_buffer_stack_va
=
779 alloc_pages_exact(buffer_stack_size
, GFP_KERNEL
);
780 if (large_buffer_stack_va
== NULL
) {
782 "Could not alloc %zd bytes for buffer stacks\n",
786 rc
= gxio_mpipe_init_buffer_stack(&context
, large_buffer_stack
,
787 BUFFER_SIZE_LARGE_ENUM
,
788 large_buffer_stack_va
,
789 buffer_stack_size
, 0);
791 netdev_err(dev
, "gxio_mpipe_init_buffer_stack failed: %d\n",
795 rc
= gxio_mpipe_register_client_memory(&context
, large_buffer_stack
,
799 "gxio_mpipe_register_buffer_memory failed: %d\n",
807 /* Allocate per-cpu resources (memory for completions and idescs).
808 * This routine supports tile_net_init_mpipe(), below.
810 static int alloc_percpu_mpipe_resources(struct net_device
*dev
,
813 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
818 /* Allocate the "comps". */
819 order
= get_order(COMPS_SIZE
);
820 page
= homecache_alloc_pages(GFP_KERNEL
, order
, cpu
);
822 netdev_err(dev
, "Failed to alloc %zd bytes comps memory\n",
826 addr
= pfn_to_kaddr(page_to_pfn(page
));
827 memset(addr
, 0, COMPS_SIZE
);
828 for (i
= 0; i
< TILE_NET_CHANNELS
; i
++)
829 info
->comps_for_echannel
[i
] =
830 addr
+ i
* sizeof(struct tile_net_comps
);
832 /* If this is a network cpu, create an iqueue. */
833 if (cpu_isset(cpu
, network_cpus_map
)) {
834 order
= get_order(NOTIF_RING_SIZE
);
835 page
= homecache_alloc_pages(GFP_KERNEL
, order
, cpu
);
838 "Failed to alloc %zd bytes iqueue memory\n",
842 addr
= pfn_to_kaddr(page_to_pfn(page
));
843 rc
= gxio_mpipe_iqueue_init(&info
->iqueue
, &context
, ring
++,
844 addr
, NOTIF_RING_SIZE
, 0);
847 "gxio_mpipe_iqueue_init failed: %d\n", rc
);
850 info
->has_iqueue
= true;
856 /* Initialize NotifGroup and buckets.
857 * This routine supports tile_net_init_mpipe(), below.
859 static int init_notif_group_and_buckets(struct net_device
*dev
,
860 int ring
, int network_cpus_count
)
864 /* Allocate one NotifGroup. */
865 rc
= gxio_mpipe_alloc_notif_groups(&context
, 1, 0, 0);
867 netdev_err(dev
, "gxio_mpipe_alloc_notif_groups failed: %d\n",
873 /* Initialize global num_buckets value. */
874 if (network_cpus_count
> 4)
876 else if (network_cpus_count
> 1)
879 /* Allocate some buckets, and set global first_bucket value. */
880 rc
= gxio_mpipe_alloc_buckets(&context
, num_buckets
, 0, 0);
882 netdev_err(dev
, "gxio_mpipe_alloc_buckets failed: %d\n", rc
);
887 /* Init group and buckets. */
888 rc
= gxio_mpipe_init_notif_group_and_buckets(
889 &context
, group
, ring
, network_cpus_count
,
890 first_bucket
, num_buckets
,
891 GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY
);
895 "gxio_mpipe_init_notif_group_and_buckets failed: %d\n",
903 /* Create an irq and register it, then activate the irq and request
904 * interrupts on all cores. Note that "ingress_irq" being initialized
905 * is how we know not to call tile_net_init_mpipe() again.
906 * This routine supports tile_net_init_mpipe(), below.
908 static int tile_net_setup_interrupts(struct net_device
*dev
)
914 netdev_err(dev
, "create_irq failed: %d\n", rc
);
918 tile_irq_activate(ingress_irq
, TILE_IRQ_PERCPU
);
919 rc
= request_irq(ingress_irq
, tile_net_handle_ingress_irq
,
920 0, "tile_net", NULL
);
922 netdev_err(dev
, "request_irq failed: %d\n", rc
);
923 destroy_irq(ingress_irq
);
928 for_each_online_cpu(cpu
) {
929 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
930 if (info
->has_iqueue
) {
931 gxio_mpipe_request_notif_ring_interrupt(
932 &context
, cpu_x(cpu
), cpu_y(cpu
),
933 KERNEL_PL
, ingress_irq
, info
->iqueue
.ring
);
940 /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
941 static void tile_net_init_mpipe_fail(void)
945 /* Do cleanups that require the mpipe context first. */
946 if (small_buffer_stack
>= 0)
947 tile_net_pop_all_buffers(small_buffer_stack
);
948 if (large_buffer_stack
>= 0)
949 tile_net_pop_all_buffers(large_buffer_stack
);
951 /* Destroy mpipe context so the hardware no longer owns any memory. */
952 gxio_mpipe_destroy(&context
);
954 for_each_online_cpu(cpu
) {
955 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
956 free_pages((unsigned long)(info
->comps_for_echannel
[0]),
957 get_order(COMPS_SIZE
));
958 info
->comps_for_echannel
[0] = NULL
;
959 free_pages((unsigned long)(info
->iqueue
.idescs
),
960 get_order(NOTIF_RING_SIZE
));
961 info
->iqueue
.idescs
= NULL
;
964 if (small_buffer_stack_va
)
965 free_pages_exact(small_buffer_stack_va
, buffer_stack_size
);
966 if (large_buffer_stack_va
)
967 free_pages_exact(large_buffer_stack_va
, buffer_stack_size
);
969 small_buffer_stack_va
= NULL
;
970 large_buffer_stack_va
= NULL
;
971 large_buffer_stack
= -1;
972 small_buffer_stack
= -1;
976 /* The first time any tilegx network device is opened, we initialize
977 * the global mpipe state. If this step fails, we fail to open the
978 * device, but if it succeeds, we never need to do it again, and since
979 * tile_net can't be unloaded, we never undo it.
981 * Note that some resources in this path (buffer stack indices,
982 * bindings from init_buffer_stack, etc.) are hypervisor resources
983 * that are freed implicitly by gxio_mpipe_destroy().
985 static int tile_net_init_mpipe(struct net_device
*dev
)
987 int i
, num_buffers
, rc
;
989 int first_ring
, ring
;
990 int network_cpus_count
= cpus_weight(network_cpus_map
);
993 netdev_err(dev
, "Networking requires hash_default!\n");
997 rc
= gxio_mpipe_init(&context
, 0);
999 netdev_err(dev
, "gxio_mpipe_init failed: %d\n", rc
);
1003 /* Set up the buffer stacks. */
1005 network_cpus_count
* (IQUEUE_ENTRIES
+ TILE_NET_BATCH
);
1006 rc
= init_buffer_stacks(dev
, num_buffers
);
1010 /* Provide initial buffers. */
1012 for (i
= 0; i
< num_buffers
; i
++) {
1013 if (!tile_net_provide_buffer(true)) {
1014 netdev_err(dev
, "Cannot allocate initial sk_bufs!\n");
1018 for (i
= 0; i
< num_buffers
; i
++) {
1019 if (!tile_net_provide_buffer(false)) {
1020 netdev_err(dev
, "Cannot allocate initial sk_bufs!\n");
1025 /* Allocate one NotifRing for each network cpu. */
1026 rc
= gxio_mpipe_alloc_notif_rings(&context
, network_cpus_count
, 0, 0);
1028 netdev_err(dev
, "gxio_mpipe_alloc_notif_rings failed %d\n",
1033 /* Init NotifRings per-cpu. */
1036 for_each_online_cpu(cpu
) {
1037 rc
= alloc_percpu_mpipe_resources(dev
, cpu
, ring
);
1043 /* Initialize NotifGroup and buckets. */
1044 rc
= init_notif_group_and_buckets(dev
, first_ring
, network_cpus_count
);
1048 /* Create and enable interrupts. */
1049 rc
= tile_net_setup_interrupts(dev
);
1056 tile_net_init_mpipe_fail();
1060 /* Create persistent egress info for a given egress channel.
1061 * Note that this may be shared between, say, "gbe0" and "xgbe0".
1062 * ISSUE: Defer header allocation until TSO is actually needed?
1064 static int tile_net_init_egress(struct net_device
*dev
, int echannel
)
1066 struct page
*headers_page
, *edescs_page
, *equeue_page
;
1067 gxio_mpipe_edesc_t
*edescs
;
1068 gxio_mpipe_equeue_t
*equeue
;
1069 unsigned char *headers
;
1070 int headers_order
, edescs_order
, equeue_order
;
1075 /* Only initialize once. */
1076 if (egress_for_echannel
[echannel
].equeue
!= NULL
)
1079 /* Allocate memory for the "headers". */
1080 headers_order
= get_order(EQUEUE_ENTRIES
* HEADER_BYTES
);
1081 headers_page
= alloc_pages(GFP_KERNEL
, headers_order
);
1082 if (headers_page
== NULL
) {
1084 "Could not alloc %zd bytes for TSO headers.\n",
1085 PAGE_SIZE
<< headers_order
);
1088 headers
= pfn_to_kaddr(page_to_pfn(headers_page
));
1090 /* Allocate memory for the "edescs". */
1091 edescs_size
= EQUEUE_ENTRIES
* sizeof(*edescs
);
1092 edescs_order
= get_order(edescs_size
);
1093 edescs_page
= alloc_pages(GFP_KERNEL
, edescs_order
);
1094 if (edescs_page
== NULL
) {
1096 "Could not alloc %zd bytes for eDMA ring.\n",
1100 edescs
= pfn_to_kaddr(page_to_pfn(edescs_page
));
1102 /* Allocate memory for the "equeue". */
1103 equeue_order
= get_order(sizeof(*equeue
));
1104 equeue_page
= alloc_pages(GFP_KERNEL
, equeue_order
);
1105 if (equeue_page
== NULL
) {
1107 "Could not alloc %zd bytes for equeue info.\n",
1108 PAGE_SIZE
<< equeue_order
);
1111 equeue
= pfn_to_kaddr(page_to_pfn(equeue_page
));
1113 /* Allocate an edma ring. Note that in practice this can't
1114 * fail, which is good, because we will leak an edma ring if so.
1116 rc
= gxio_mpipe_alloc_edma_rings(&context
, 1, 0, 0);
1118 netdev_warn(dev
, "gxio_mpipe_alloc_edma_rings failed: %d\n",
1124 /* Initialize the equeue. */
1125 rc
= gxio_mpipe_equeue_init(equeue
, &context
, edma
, echannel
,
1126 edescs
, edescs_size
, 0);
1128 netdev_err(dev
, "gxio_mpipe_equeue_init failed: %d\n", rc
);
1133 egress_for_echannel
[echannel
].equeue
= equeue
;
1134 egress_for_echannel
[echannel
].headers
= headers
;
1138 __free_pages(equeue_page
, equeue_order
);
1141 __free_pages(edescs_page
, edescs_order
);
1144 __free_pages(headers_page
, headers_order
);
1150 /* Return channel number for a newly-opened link. */
1151 static int tile_net_link_open(struct net_device
*dev
, gxio_mpipe_link_t
*link
,
1152 const char *link_name
)
1154 int rc
= gxio_mpipe_link_open(link
, &context
, link_name
, 0);
1156 netdev_err(dev
, "Failed to open '%s'\n", link_name
);
1159 rc
= gxio_mpipe_link_channel(link
);
1160 if (rc
< 0 || rc
>= TILE_NET_CHANNELS
) {
1161 netdev_err(dev
, "gxio_mpipe_link_channel bad value: %d\n", rc
);
1162 gxio_mpipe_link_close(link
);
1168 /* Help the kernel activate the given network interface. */
1169 static int tile_net_open(struct net_device
*dev
)
1171 struct tile_net_priv
*priv
= netdev_priv(dev
);
1174 mutex_lock(&tile_net_devs_for_channel_mutex
);
1176 /* Do one-time initialization the first time any device is opened. */
1177 if (ingress_irq
< 0) {
1178 rc
= tile_net_init_mpipe(dev
);
1183 /* Determine if this is the "loopify" device. */
1184 if (unlikely((loopify_link_name
!= NULL
) &&
1185 !strcmp(dev
->name
, loopify_link_name
))) {
1186 rc
= tile_net_link_open(dev
, &priv
->link
, "loop0");
1190 rc
= tile_net_link_open(dev
, &priv
->loopify_link
, "loop1");
1193 priv
->loopify_channel
= rc
;
1194 priv
->echannel
= rc
;
1196 rc
= tile_net_link_open(dev
, &priv
->link
, dev
->name
);
1200 priv
->echannel
= rc
;
1203 /* Initialize egress info (if needed). Once ever, per echannel. */
1204 rc
= tile_net_init_egress(dev
, priv
->echannel
);
1208 tile_net_devs_for_channel
[priv
->channel
] = dev
;
1210 rc
= tile_net_update(dev
);
1214 mutex_unlock(&tile_net_devs_for_channel_mutex
);
1216 /* Initialize the transmit wake timer for this device for each cpu. */
1217 for_each_online_cpu(cpu
) {
1218 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
1219 struct tile_net_tx_wake
*tx_wake
=
1220 &info
->tx_wake
[priv
->echannel
];
1222 hrtimer_init(&tx_wake
->timer
, CLOCK_MONOTONIC
,
1224 tx_wake
->tx_queue_idx
= cpu
;
1225 tx_wake
->timer
.function
= tile_net_handle_tx_wake_timer
;
1229 for_each_online_cpu(cpu
)
1230 netif_start_subqueue(dev
, cpu
);
1231 netif_carrier_on(dev
);
1235 if (priv
->loopify_channel
>= 0) {
1236 if (gxio_mpipe_link_close(&priv
->loopify_link
) != 0)
1237 netdev_warn(dev
, "Failed to close loopify link!\n");
1238 priv
->loopify_channel
= -1;
1240 if (priv
->channel
>= 0) {
1241 if (gxio_mpipe_link_close(&priv
->link
) != 0)
1242 netdev_warn(dev
, "Failed to close link!\n");
1245 priv
->echannel
= -1;
1246 tile_net_devs_for_channel
[priv
->channel
] = NULL
;
1247 mutex_unlock(&tile_net_devs_for_channel_mutex
);
1249 /* Don't return raw gxio error codes to generic Linux. */
1250 return (rc
> -512) ? rc
: -EIO
;
1253 /* Help the kernel deactivate the given network interface. */
1254 static int tile_net_stop(struct net_device
*dev
)
1256 struct tile_net_priv
*priv
= netdev_priv(dev
);
1259 for_each_online_cpu(cpu
) {
1260 struct tile_net_info
*info
= &per_cpu(per_cpu_info
, cpu
);
1261 struct tile_net_tx_wake
*tx_wake
=
1262 &info
->tx_wake
[priv
->echannel
];
1264 hrtimer_cancel(&tx_wake
->timer
);
1265 netif_stop_subqueue(dev
, cpu
);
1268 mutex_lock(&tile_net_devs_for_channel_mutex
);
1269 tile_net_devs_for_channel
[priv
->channel
] = NULL
;
1270 (void)tile_net_update(dev
);
1271 if (priv
->loopify_channel
>= 0) {
1272 if (gxio_mpipe_link_close(&priv
->loopify_link
) != 0)
1273 netdev_warn(dev
, "Failed to close loopify link!\n");
1274 priv
->loopify_channel
= -1;
1276 if (priv
->channel
>= 0) {
1277 if (gxio_mpipe_link_close(&priv
->link
) != 0)
1278 netdev_warn(dev
, "Failed to close link!\n");
1281 priv
->echannel
= -1;
1282 mutex_unlock(&tile_net_devs_for_channel_mutex
);
1287 /* Determine the VA for a fragment. */
1288 static inline void *tile_net_frag_buf(skb_frag_t
*f
)
1290 unsigned long pfn
= page_to_pfn(skb_frag_page(f
));
1291 return pfn_to_kaddr(pfn
) + f
->page_offset
;
1294 /* Acquire a completion entry and an egress slot, or if we can't,
1295 * stop the queue and schedule the tx_wake timer.
1297 static s64
tile_net_equeue_try_reserve(struct net_device
*dev
,
1299 struct tile_net_comps
*comps
,
1300 gxio_mpipe_equeue_t
*equeue
,
1303 /* Try to acquire a completion entry. */
1304 if (comps
->comp_next
- comps
->comp_last
< TILE_NET_MAX_COMPS
- 1 ||
1305 tile_net_free_comps(equeue
, comps
, 32, false) != 0) {
1307 /* Try to acquire an egress slot. */
1308 s64 slot
= gxio_mpipe_equeue_try_reserve(equeue
, num_edescs
);
1312 /* Freeing some completions gives the equeue time to drain. */
1313 tile_net_free_comps(equeue
, comps
, TILE_NET_MAX_COMPS
, false);
1315 slot
= gxio_mpipe_equeue_try_reserve(equeue
, num_edescs
);
1320 /* Still nothing; give up and stop the queue for a short while. */
1321 netif_stop_subqueue(dev
, tx_queue_idx
);
1322 tile_net_schedule_tx_wake_timer(dev
, tx_queue_idx
);
1326 /* Determine how many edesc's are needed for TSO.
1328 * Sometimes, if "sendfile()" requires copying, we will be called with
1329 * "data" containing the header and payload, with "frags" being empty.
1330 * Sometimes, for example when using NFS over TCP, a single segment can
1331 * span 3 fragments. This requires special care.
1333 static int tso_count_edescs(struct sk_buff
*skb
)
1335 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1336 unsigned int sh_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1337 unsigned int data_len
= skb
->len
- sh_len
;
1338 unsigned int p_len
= sh
->gso_size
;
1339 long f_id
= -1; /* id of the current fragment */
1340 long f_size
= skb_headlen(skb
) - sh_len
; /* current fragment size */
1341 long f_used
= 0; /* bytes used from the current fragment */
1342 long n
; /* size of the current piece of payload */
1346 for (segment
= 0; segment
< sh
->gso_segs
; segment
++) {
1348 unsigned int p_used
= 0;
1350 /* One edesc for header and for each piece of the payload. */
1351 for (num_edescs
++; p_used
< p_len
; num_edescs
++) {
1353 /* Advance as needed. */
1354 while (f_used
>= f_size
) {
1356 f_size
= skb_frag_size(&sh
->frags
[f_id
]);
1360 /* Use bytes from the current fragment. */
1362 if (n
> f_size
- f_used
)
1363 n
= f_size
- f_used
;
1368 /* The last segment may be less than gso_size. */
1370 if (data_len
< p_len
)
1377 /* Prepare modified copies of the skbuff headers.
1378 * FIXME: add support for IPv6.
1380 static void tso_headers_prepare(struct sk_buff
*skb
, unsigned char *headers
,
1383 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1386 unsigned int sh_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1387 unsigned int data_len
= skb
->len
- sh_len
;
1388 unsigned char *data
= skb
->data
;
1389 unsigned int ih_off
, th_off
, p_len
;
1390 unsigned int isum_seed
, tsum_seed
, id
, seq
;
1391 long f_id
= -1; /* id of the current fragment */
1392 long f_size
= skb_headlen(skb
) - sh_len
; /* current fragment size */
1393 long f_used
= 0; /* bytes used from the current fragment */
1394 long n
; /* size of the current piece of payload */
1397 /* Locate original headers and compute various lengths. */
1400 ih_off
= skb_network_offset(skb
);
1401 th_off
= skb_transport_offset(skb
);
1402 p_len
= sh
->gso_size
;
1404 /* Set up seed values for IP and TCP csum and initialize id and seq. */
1405 isum_seed
= ((0xFFFF - ih
->check
) +
1406 (0xFFFF - ih
->tot_len
) +
1408 tsum_seed
= th
->check
+ (0xFFFF ^ htons(skb
->len
));
1410 seq
= ntohl(th
->seq
);
1412 /* Prepare all the headers. */
1413 for (segment
= 0; segment
< sh
->gso_segs
; segment
++) {
1415 unsigned int p_used
= 0;
1417 /* Copy to the header memory for this segment. */
1418 buf
= headers
+ (slot
% EQUEUE_ENTRIES
) * HEADER_BYTES
+
1420 memcpy(buf
, data
, sh_len
);
1422 /* Update copied ip header. */
1423 ih
= (struct iphdr
*)(buf
+ ih_off
);
1424 ih
->tot_len
= htons(sh_len
+ p_len
- ih_off
);
1426 ih
->check
= csum_long(isum_seed
+ ih
->tot_len
+
1429 /* Update copied tcp header. */
1430 th
= (struct tcphdr
*)(buf
+ th_off
);
1431 th
->seq
= htonl(seq
);
1432 th
->check
= csum_long(tsum_seed
+ htons(sh_len
+ p_len
));
1433 if (segment
!= sh
->gso_segs
- 1) {
1438 /* Skip past the header. */
1441 /* Skip past the payload. */
1442 while (p_used
< p_len
) {
1444 /* Advance as needed. */
1445 while (f_used
>= f_size
) {
1447 f_size
= skb_frag_size(&sh
->frags
[f_id
]);
1451 /* Use bytes from the current fragment. */
1453 if (n
> f_size
- f_used
)
1454 n
= f_size
- f_used
;
1464 /* The last segment may be less than gso_size. */
1466 if (data_len
< p_len
)
1470 /* Flush the headers so they are ready for hardware DMA. */
1474 /* Pass all the data to mpipe for egress. */
1475 static void tso_egress(struct net_device
*dev
, gxio_mpipe_equeue_t
*equeue
,
1476 struct sk_buff
*skb
, unsigned char *headers
, s64 slot
)
1478 struct tile_net_priv
*priv
= netdev_priv(dev
);
1479 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1480 unsigned int sh_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
1481 unsigned int data_len
= skb
->len
- sh_len
;
1482 unsigned int p_len
= sh
->gso_size
;
1483 gxio_mpipe_edesc_t edesc_head
= { { 0 } };
1484 gxio_mpipe_edesc_t edesc_body
= { { 0 } };
1485 long f_id
= -1; /* id of the current fragment */
1486 long f_size
= skb_headlen(skb
) - sh_len
; /* current fragment size */
1487 long f_used
= 0; /* bytes used from the current fragment */
1488 void *f_data
= skb
->data
+ sh_len
;
1489 long n
; /* size of the current piece of payload */
1490 unsigned long tx_packets
= 0, tx_bytes
= 0;
1491 unsigned int csum_start
;
1494 /* Prepare to egress the headers: set up header edesc. */
1495 csum_start
= skb_checksum_start_offset(skb
);
1496 edesc_head
.csum
= 1;
1497 edesc_head
.csum_start
= csum_start
;
1498 edesc_head
.csum_dest
= csum_start
+ skb
->csum_offset
;
1499 edesc_head
.xfer_size
= sh_len
;
1501 /* This is only used to specify the TLB. */
1502 edesc_head
.stack_idx
= large_buffer_stack
;
1503 edesc_body
.stack_idx
= large_buffer_stack
;
1505 /* Egress all the edescs. */
1506 for (segment
= 0; segment
< sh
->gso_segs
; segment
++) {
1508 unsigned int p_used
= 0;
1510 /* Egress the header. */
1511 buf
= headers
+ (slot
% EQUEUE_ENTRIES
) * HEADER_BYTES
+
1513 edesc_head
.va
= va_to_tile_io_addr(buf
);
1514 gxio_mpipe_equeue_put_at(equeue
, edesc_head
, slot
);
1517 /* Egress the payload. */
1518 while (p_used
< p_len
) {
1521 /* Advance as needed. */
1522 while (f_used
>= f_size
) {
1524 f_size
= skb_frag_size(&sh
->frags
[f_id
]);
1525 f_data
= tile_net_frag_buf(&sh
->frags
[f_id
]);
1529 va
= f_data
+ f_used
;
1531 /* Use bytes from the current fragment. */
1533 if (n
> f_size
- f_used
)
1534 n
= f_size
- f_used
;
1538 /* Egress a piece of the payload. */
1539 edesc_body
.va
= va_to_tile_io_addr(va
);
1540 edesc_body
.xfer_size
= n
;
1541 edesc_body
.bound
= !(p_used
< p_len
);
1542 gxio_mpipe_equeue_put_at(equeue
, edesc_body
, slot
);
1547 tx_bytes
+= sh_len
+ p_len
;
1549 /* The last segment may be less than gso_size. */
1551 if (data_len
< p_len
)
1556 tile_net_stats_add(tx_packets
, &priv
->stats
.tx_packets
);
1557 tile_net_stats_add(tx_bytes
, &priv
->stats
.tx_bytes
);
1560 /* Do "TSO" handling for egress.
1562 * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1563 * otherwise the stack uses scatter-gather to implement GSO in software.
1564 * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1565 * performance down to around 7.5 Gbps on the 10G interfaces, although
1566 * also dropping cpu utilization way down, to under 8%. But
1567 * implementing "TSO" in the driver brings performance back up to line
1568 * rate, while dropping cpu usage even further, to less than 4%. In
1569 * practice, profiling of GSO shows that skb_segment() is what causes
1570 * the performance overheads; we benefit in the driver from using
1571 * preallocated memory to duplicate the TCP/IP headers.
1573 static int tile_net_tx_tso(struct sk_buff
*skb
, struct net_device
*dev
)
1575 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
1576 struct tile_net_priv
*priv
= netdev_priv(dev
);
1577 int channel
= priv
->echannel
;
1578 struct tile_net_egress
*egress
= &egress_for_echannel
[channel
];
1579 struct tile_net_comps
*comps
= info
->comps_for_echannel
[channel
];
1580 gxio_mpipe_equeue_t
*equeue
= egress
->equeue
;
1581 unsigned long irqflags
;
1585 /* Determine how many mpipe edesc's are needed. */
1586 num_edescs
= tso_count_edescs(skb
);
1588 local_irq_save(irqflags
);
1590 /* Try to acquire a completion entry and an egress slot. */
1591 slot
= tile_net_equeue_try_reserve(dev
, skb
->queue_mapping
, comps
,
1592 equeue
, num_edescs
);
1594 local_irq_restore(irqflags
);
1595 return NETDEV_TX_BUSY
;
1598 /* Set up copies of header data properly. */
1599 tso_headers_prepare(skb
, egress
->headers
, slot
);
1601 /* Actually pass the data to the network hardware. */
1602 tso_egress(dev
, equeue
, skb
, egress
->headers
, slot
);
1604 /* Add a completion record. */
1605 add_comp(equeue
, comps
, slot
+ num_edescs
- 1, skb
);
1607 local_irq_restore(irqflags
);
1609 /* Make sure the egress timer is scheduled. */
1610 tile_net_schedule_egress_timer();
1612 return NETDEV_TX_OK
;
1615 /* Analyze the body and frags for a transmit request. */
1616 static unsigned int tile_net_tx_frags(struct frag
*frags
,
1617 struct sk_buff
*skb
,
1618 void *b_data
, unsigned int b_len
)
1620 unsigned int i
, n
= 0;
1622 struct skb_shared_info
*sh
= skb_shinfo(skb
);
1625 frags
[n
].buf
= b_data
;
1626 frags
[n
++].length
= b_len
;
1629 for (i
= 0; i
< sh
->nr_frags
; i
++) {
1630 skb_frag_t
*f
= &sh
->frags
[i
];
1631 frags
[n
].buf
= tile_net_frag_buf(f
);
1632 frags
[n
++].length
= skb_frag_size(f
);
1638 /* Help the kernel transmit a packet. */
1639 static int tile_net_tx(struct sk_buff
*skb
, struct net_device
*dev
)
1641 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
1642 struct tile_net_priv
*priv
= netdev_priv(dev
);
1643 struct tile_net_egress
*egress
= &egress_for_echannel
[priv
->echannel
];
1644 gxio_mpipe_equeue_t
*equeue
= egress
->equeue
;
1645 struct tile_net_comps
*comps
=
1646 info
->comps_for_echannel
[priv
->echannel
];
1647 unsigned int len
= skb
->len
;
1648 unsigned char *data
= skb
->data
;
1649 unsigned int num_edescs
;
1650 struct frag frags
[MAX_FRAGS
];
1651 gxio_mpipe_edesc_t edescs
[MAX_FRAGS
];
1652 unsigned long irqflags
;
1653 gxio_mpipe_edesc_t edesc
= { { 0 } };
1657 if (skb_is_gso(skb
))
1658 return tile_net_tx_tso(skb
, dev
);
1660 num_edescs
= tile_net_tx_frags(frags
, skb
, data
, skb_headlen(skb
));
1662 /* This is only used to specify the TLB. */
1663 edesc
.stack_idx
= large_buffer_stack
;
1665 /* Prepare the edescs. */
1666 for (i
= 0; i
< num_edescs
; i
++) {
1667 edesc
.xfer_size
= frags
[i
].length
;
1668 edesc
.va
= va_to_tile_io_addr(frags
[i
].buf
);
1672 /* Mark the final edesc. */
1673 edescs
[num_edescs
- 1].bound
= 1;
1675 /* Add checksum info to the initial edesc, if needed. */
1676 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1677 unsigned int csum_start
= skb_checksum_start_offset(skb
);
1679 edescs
[0].csum_start
= csum_start
;
1680 edescs
[0].csum_dest
= csum_start
+ skb
->csum_offset
;
1683 local_irq_save(irqflags
);
1685 /* Try to acquire a completion entry and an egress slot. */
1686 slot
= tile_net_equeue_try_reserve(dev
, skb
->queue_mapping
, comps
,
1687 equeue
, num_edescs
);
1689 local_irq_restore(irqflags
);
1690 return NETDEV_TX_BUSY
;
1693 for (i
= 0; i
< num_edescs
; i
++)
1694 gxio_mpipe_equeue_put_at(equeue
, edescs
[i
], slot
++);
1696 /* Add a completion record. */
1697 add_comp(equeue
, comps
, slot
- 1, skb
);
1699 /* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
1700 tile_net_stats_add(1, &priv
->stats
.tx_packets
);
1701 tile_net_stats_add(max_t(unsigned int, len
, ETH_ZLEN
),
1702 &priv
->stats
.tx_bytes
);
1704 local_irq_restore(irqflags
);
1706 /* Make sure the egress timer is scheduled. */
1707 tile_net_schedule_egress_timer();
1709 return NETDEV_TX_OK
;
1712 /* Return subqueue id on this core (one per core). */
1713 static u16
tile_net_select_queue(struct net_device
*dev
, struct sk_buff
*skb
)
1715 return smp_processor_id();
1718 /* Deal with a transmit timeout. */
1719 static void tile_net_tx_timeout(struct net_device
*dev
)
1723 for_each_online_cpu(cpu
)
1724 netif_wake_subqueue(dev
, cpu
);
1727 /* Ioctl commands. */
1728 static int tile_net_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1733 /* Get system network statistics for device. */
1734 static struct net_device_stats
*tile_net_get_stats(struct net_device
*dev
)
1736 struct tile_net_priv
*priv
= netdev_priv(dev
);
1737 return &priv
->stats
;
1740 /* Change the MTU. */
1741 static int tile_net_change_mtu(struct net_device
*dev
, int new_mtu
)
1743 if ((new_mtu
< 68) || (new_mtu
> 1500))
1749 /* Change the Ethernet address of the NIC.
1751 * The hypervisor driver does not support changing MAC address. However,
1752 * the hardware does not do anything with the MAC address, so the address
1753 * which gets used on outgoing packets, and which is accepted on incoming
1754 * packets, is completely up to us.
1756 * Returns 0 on success, negative on failure.
1758 static int tile_net_set_mac_address(struct net_device
*dev
, void *p
)
1760 struct sockaddr
*addr
= p
;
1762 if (!is_valid_ether_addr(addr
->sa_data
))
1764 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1768 #ifdef CONFIG_NET_POLL_CONTROLLER
1769 /* Polling 'interrupt' - used by things like netconsole to send skbs
1770 * without having to re-enable interrupts. It's not called while
1771 * the interrupt routine is executing.
1773 static void tile_net_netpoll(struct net_device
*dev
)
1775 disable_percpu_irq(ingress_irq
);
1776 tile_net_handle_ingress_irq(ingress_irq
, NULL
);
1777 enable_percpu_irq(ingress_irq
, 0);
1781 static const struct net_device_ops tile_net_ops
= {
1782 .ndo_open
= tile_net_open
,
1783 .ndo_stop
= tile_net_stop
,
1784 .ndo_start_xmit
= tile_net_tx
,
1785 .ndo_select_queue
= tile_net_select_queue
,
1786 .ndo_do_ioctl
= tile_net_ioctl
,
1787 .ndo_get_stats
= tile_net_get_stats
,
1788 .ndo_change_mtu
= tile_net_change_mtu
,
1789 .ndo_tx_timeout
= tile_net_tx_timeout
,
1790 .ndo_set_mac_address
= tile_net_set_mac_address
,
1791 #ifdef CONFIG_NET_POLL_CONTROLLER
1792 .ndo_poll_controller
= tile_net_netpoll
,
1796 /* The setup function.
1798 * This uses ether_setup() to assign various fields in dev, including
1799 * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
1801 static void tile_net_setup(struct net_device
*dev
)
1804 dev
->netdev_ops
= &tile_net_ops
;
1805 dev
->watchdog_timeo
= TILE_NET_TIMEOUT
;
1806 dev
->features
|= NETIF_F_LLTX
;
1807 dev
->features
|= NETIF_F_HW_CSUM
;
1808 dev
->features
|= NETIF_F_SG
;
1809 dev
->features
|= NETIF_F_TSO
;
1813 /* Allocate the device structure, register the device, and obtain the
1814 * MAC address from the hypervisor.
1816 static void tile_net_dev_init(const char *name
, const uint8_t *mac
)
1821 struct net_device
*dev
;
1822 struct tile_net_priv
*priv
;
1824 /* HACK: Ignore "loop" links. */
1825 if (strncmp(name
, "loop", 4) == 0)
1828 /* Allocate the device structure. Normally, "name" is a
1829 * template, instantiated by register_netdev(), but not for us.
1831 dev
= alloc_netdev_mqs(sizeof(*priv
), name
, tile_net_setup
,
1834 pr_err("alloc_netdev_mqs(%s) failed\n", name
);
1838 /* Initialize "priv". */
1839 priv
= netdev_priv(dev
);
1840 memset(priv
, 0, sizeof(*priv
));
1843 priv
->loopify_channel
= -1;
1844 priv
->echannel
= -1;
1846 /* Get the MAC address and set it in the device struct; this must
1847 * be done before the device is opened. If the MAC is all zeroes,
1848 * we use a random address, since we're probably on the simulator.
1850 for (i
= 0; i
< 6; i
++)
1854 memcpy(dev
->dev_addr
, mac
, 6);
1857 eth_hw_addr_random(dev
);
1860 /* Register the network device. */
1861 ret
= register_netdev(dev
);
1863 netdev_err(dev
, "register_netdev failed %d\n", ret
);
1869 /* Per-cpu module initialization. */
1870 static void tile_net_init_module_percpu(void *unused
)
1872 struct tile_net_info
*info
= &__get_cpu_var(per_cpu_info
);
1873 int my_cpu
= smp_processor_id();
1875 info
->has_iqueue
= false;
1877 info
->my_cpu
= my_cpu
;
1879 /* Initialize the egress timer. */
1880 hrtimer_init(&info
->egress_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1881 info
->egress_timer
.function
= tile_net_handle_egress_timer
;
1884 /* Module initialization. */
1885 static int __init
tile_net_init_module(void)
1888 char name
[GXIO_MPIPE_LINK_NAME_LEN
];
1891 pr_info("Tilera Network Driver\n");
1893 mutex_init(&tile_net_devs_for_channel_mutex
);
1895 /* Initialize each CPU. */
1896 on_each_cpu(tile_net_init_module_percpu
, NULL
, 1);
1898 /* Find out what devices we have, and initialize them. */
1899 for (i
= 0; gxio_mpipe_link_enumerate_mac(i
, name
, mac
) >= 0; i
++)
1900 tile_net_dev_init(name
, mac
);
1902 if (!network_cpus_init())
1903 network_cpus_map
= *cpu_online_mask
;
1908 module_init(tile_net_init_module
);