2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
8 * Alan Cox : Fixed the worst of the load
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
46 #include <linux/interrupt.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
64 #include <net/protocol.h>
67 #include <net/checksum.h>
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
74 struct kmem_cache
*skbuff_head_cache __read_mostly
;
75 static struct kmem_cache
*skbuff_fclone_cache __read_mostly
;
77 static void sock_pipe_buf_release(struct pipe_inode_info
*pipe
,
78 struct pipe_buffer
*buf
)
83 static void sock_pipe_buf_get(struct pipe_inode_info
*pipe
,
84 struct pipe_buffer
*buf
)
89 static int sock_pipe_buf_steal(struct pipe_inode_info
*pipe
,
90 struct pipe_buffer
*buf
)
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops
= {
99 .map
= generic_pipe_buf_map
,
100 .unmap
= generic_pipe_buf_unmap
,
101 .confirm
= generic_pipe_buf_confirm
,
102 .release
= sock_pipe_buf_release
,
103 .steal
= sock_pipe_buf_steal
,
104 .get
= sock_pipe_buf_get
,
108 * skb_panic - private function for out-of-line support
112 * @msg: skb_over_panic or skb_under_panic
114 * Out-of-line support for skb_put() and skb_push().
115 * Called via the wrapper skb_over_panic() or skb_under_panic().
116 * Keep out of line to prevent kernel bloat.
117 * __builtin_return_address is not used because it is not always reliable.
119 static void skb_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
,
122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 msg
, addr
, skb
->len
, sz
, skb
->head
, skb
->data
,
124 (unsigned long)skb
->tail
, (unsigned long)skb
->end
,
125 skb
->dev
? skb
->dev
->name
: "<NULL>");
129 static void skb_over_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
131 skb_panic(skb
, sz
, addr
, __func__
);
134 static void skb_under_panic(struct sk_buff
*skb
, unsigned int sz
, void *addr
)
136 skb_panic(skb
, sz
, addr
, __func__
);
140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141 * the caller if emergency pfmemalloc reserves are being used. If it is and
142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143 * may be used. Otherwise, the packet data may be discarded until enough
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
149 static void *__kmalloc_reserve(size_t size
, gfp_t flags
, int node
,
150 unsigned long ip
, bool *pfmemalloc
)
153 bool ret_pfmemalloc
= false;
156 * Try a regular allocation, when that fails and we're not entitled
157 * to the reserves, fail.
159 obj
= kmalloc_node_track_caller(size
,
160 flags
| __GFP_NOMEMALLOC
| __GFP_NOWARN
,
162 if (obj
|| !(gfp_pfmemalloc_allowed(flags
)))
165 /* Try again but now we are using pfmemalloc reserves */
166 ret_pfmemalloc
= true;
167 obj
= kmalloc_node_track_caller(size
, flags
, node
);
171 *pfmemalloc
= ret_pfmemalloc
;
176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
177 * 'private' fields and also do memory statistics to find all the
182 struct sk_buff
*__alloc_skb_head(gfp_t gfp_mask
, int node
)
187 skb
= kmem_cache_alloc_node(skbuff_head_cache
,
188 gfp_mask
& ~__GFP_DMA
, node
);
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
197 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
199 skb
->truesize
= sizeof(struct sk_buff
);
200 atomic_set(&skb
->users
, 1);
202 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
208 * __alloc_skb - allocate a network buffer
209 * @size: size to allocate
210 * @gfp_mask: allocation mask
211 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
212 * instead of head cache and allocate a cloned (child) skb.
213 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
214 * allocations in case the data is required for writeback
215 * @node: numa node to allocate memory on
217 * Allocate a new &sk_buff. The returned buffer has no headroom and a
218 * tail room of at least size bytes. The object has a reference count
219 * of one. The return is the buffer. On a failure the return is %NULL.
221 * Buffers may only be allocated from interrupts using a @gfp_mask of
224 struct sk_buff
*__alloc_skb(unsigned int size
, gfp_t gfp_mask
,
227 struct kmem_cache
*cache
;
228 struct skb_shared_info
*shinfo
;
233 cache
= (flags
& SKB_ALLOC_FCLONE
)
234 ? skbuff_fclone_cache
: skbuff_head_cache
;
236 if (sk_memalloc_socks() && (flags
& SKB_ALLOC_RX
))
237 gfp_mask
|= __GFP_MEMALLOC
;
240 skb
= kmem_cache_alloc_node(cache
, gfp_mask
& ~__GFP_DMA
, node
);
245 /* We do our best to align skb_shared_info on a separate cache
246 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
247 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
248 * Both skb->head and skb_shared_info are cache line aligned.
250 size
= SKB_DATA_ALIGN(size
);
251 size
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
252 data
= kmalloc_reserve(size
, gfp_mask
, node
, &pfmemalloc
);
255 /* kmalloc(size) might give us more room than requested.
256 * Put skb_shared_info exactly at the end of allocated zone,
257 * to allow max possible filling before reallocation.
259 size
= SKB_WITH_OVERHEAD(ksize(data
));
260 prefetchw(data
+ size
);
263 * Only clear those fields we need to clear, not those that we will
264 * actually initialise below. Hence, don't put any more fields after
265 * the tail pointer in struct sk_buff!
267 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
268 /* Account for allocated memory : skb + skb->head */
269 skb
->truesize
= SKB_TRUESIZE(size
);
270 skb
->pfmemalloc
= pfmemalloc
;
271 atomic_set(&skb
->users
, 1);
274 skb_reset_tail_pointer(skb
);
275 skb
->end
= skb
->tail
+ size
;
276 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
277 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
279 /* make sure we initialize shinfo sequentially */
280 shinfo
= skb_shinfo(skb
);
281 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
282 atomic_set(&shinfo
->dataref
, 1);
283 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
285 if (flags
& SKB_ALLOC_FCLONE
) {
286 struct sk_buff
*child
= skb
+ 1;
287 atomic_t
*fclone_ref
= (atomic_t
*) (child
+ 1);
289 kmemcheck_annotate_bitfield(child
, flags1
);
290 kmemcheck_annotate_bitfield(child
, flags2
);
291 skb
->fclone
= SKB_FCLONE_ORIG
;
292 atomic_set(fclone_ref
, 1);
294 child
->fclone
= SKB_FCLONE_UNAVAILABLE
;
295 child
->pfmemalloc
= pfmemalloc
;
300 kmem_cache_free(cache
, skb
);
304 EXPORT_SYMBOL(__alloc_skb
);
307 * build_skb - build a network buffer
308 * @data: data buffer provided by caller
309 * @frag_size: size of fragment, or 0 if head was kmalloced
311 * Allocate a new &sk_buff. Caller provides space holding head and
312 * skb_shared_info. @data must have been allocated by kmalloc()
313 * The return is the new skb buffer.
314 * On a failure the return is %NULL, and @data is not freed.
316 * Before IO, driver allocates only data buffer where NIC put incoming frame
317 * Driver should add room at head (NET_SKB_PAD) and
318 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
319 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
320 * before giving packet to stack.
321 * RX rings only contains data buffers, not full skbs.
323 struct sk_buff
*build_skb(void *data
, unsigned int frag_size
)
325 struct skb_shared_info
*shinfo
;
327 unsigned int size
= frag_size
? : ksize(data
);
329 skb
= kmem_cache_alloc(skbuff_head_cache
, GFP_ATOMIC
);
333 size
-= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
335 memset(skb
, 0, offsetof(struct sk_buff
, tail
));
336 skb
->truesize
= SKB_TRUESIZE(size
);
337 skb
->head_frag
= frag_size
!= 0;
338 atomic_set(&skb
->users
, 1);
341 skb_reset_tail_pointer(skb
);
342 skb
->end
= skb
->tail
+ size
;
343 skb
->mac_header
= (typeof(skb
->mac_header
))~0U;
344 skb
->transport_header
= (typeof(skb
->transport_header
))~0U;
346 /* make sure we initialize shinfo sequentially */
347 shinfo
= skb_shinfo(skb
);
348 memset(shinfo
, 0, offsetof(struct skb_shared_info
, dataref
));
349 atomic_set(&shinfo
->dataref
, 1);
350 kmemcheck_annotate_variable(shinfo
->destructor_arg
);
354 EXPORT_SYMBOL(build_skb
);
356 struct netdev_alloc_cache
{
357 struct page_frag frag
;
358 /* we maintain a pagecount bias, so that we dont dirty cache line
359 * containing page->_count every time we allocate a fragment.
361 unsigned int pagecnt_bias
;
363 static DEFINE_PER_CPU(struct netdev_alloc_cache
, netdev_alloc_cache
);
365 static void *__netdev_alloc_frag(unsigned int fragsz
, gfp_t gfp_mask
)
367 struct netdev_alloc_cache
*nc
;
372 local_irq_save(flags
);
373 nc
= &__get_cpu_var(netdev_alloc_cache
);
374 if (unlikely(!nc
->frag
.page
)) {
376 for (order
= NETDEV_FRAG_PAGE_MAX_ORDER
; ;) {
377 gfp_t gfp
= gfp_mask
;
380 gfp
|= __GFP_COMP
| __GFP_NOWARN
;
381 nc
->frag
.page
= alloc_pages(gfp
, order
);
382 if (likely(nc
->frag
.page
))
387 nc
->frag
.size
= PAGE_SIZE
<< order
;
389 atomic_set(&nc
->frag
.page
->_count
, NETDEV_PAGECNT_MAX_BIAS
);
390 nc
->pagecnt_bias
= NETDEV_PAGECNT_MAX_BIAS
;
394 if (nc
->frag
.offset
+ fragsz
> nc
->frag
.size
) {
395 /* avoid unnecessary locked operations if possible */
396 if ((atomic_read(&nc
->frag
.page
->_count
) == nc
->pagecnt_bias
) ||
397 atomic_sub_and_test(nc
->pagecnt_bias
, &nc
->frag
.page
->_count
))
402 data
= page_address(nc
->frag
.page
) + nc
->frag
.offset
;
403 nc
->frag
.offset
+= fragsz
;
406 local_irq_restore(flags
);
411 * netdev_alloc_frag - allocate a page fragment
412 * @fragsz: fragment size
414 * Allocates a frag from a page for receive buffer.
415 * Uses GFP_ATOMIC allocations.
417 void *netdev_alloc_frag(unsigned int fragsz
)
419 return __netdev_alloc_frag(fragsz
, GFP_ATOMIC
| __GFP_COLD
);
421 EXPORT_SYMBOL(netdev_alloc_frag
);
424 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
425 * @dev: network device to receive on
426 * @length: length to allocate
427 * @gfp_mask: get_free_pages mask, passed to alloc_skb
429 * Allocate a new &sk_buff and assign it a usage count of one. The
430 * buffer has unspecified headroom built in. Users should allocate
431 * the headroom they think they need without accounting for the
432 * built in space. The built in space is used for optimisations.
434 * %NULL is returned if there is no free memory.
436 struct sk_buff
*__netdev_alloc_skb(struct net_device
*dev
,
437 unsigned int length
, gfp_t gfp_mask
)
439 struct sk_buff
*skb
= NULL
;
440 unsigned int fragsz
= SKB_DATA_ALIGN(length
+ NET_SKB_PAD
) +
441 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
443 if (fragsz
<= PAGE_SIZE
&& !(gfp_mask
& (__GFP_WAIT
| GFP_DMA
))) {
446 if (sk_memalloc_socks())
447 gfp_mask
|= __GFP_MEMALLOC
;
449 data
= __netdev_alloc_frag(fragsz
, gfp_mask
);
452 skb
= build_skb(data
, fragsz
);
454 put_page(virt_to_head_page(data
));
457 skb
= __alloc_skb(length
+ NET_SKB_PAD
, gfp_mask
,
458 SKB_ALLOC_RX
, NUMA_NO_NODE
);
461 skb_reserve(skb
, NET_SKB_PAD
);
466 EXPORT_SYMBOL(__netdev_alloc_skb
);
468 void skb_add_rx_frag(struct sk_buff
*skb
, int i
, struct page
*page
, int off
,
469 int size
, unsigned int truesize
)
471 skb_fill_page_desc(skb
, i
, page
, off
, size
);
473 skb
->data_len
+= size
;
474 skb
->truesize
+= truesize
;
476 EXPORT_SYMBOL(skb_add_rx_frag
);
478 static void skb_drop_list(struct sk_buff
**listp
)
480 kfree_skb_list(*listp
);
484 static inline void skb_drop_fraglist(struct sk_buff
*skb
)
486 skb_drop_list(&skb_shinfo(skb
)->frag_list
);
489 static void skb_clone_fraglist(struct sk_buff
*skb
)
491 struct sk_buff
*list
;
493 skb_walk_frags(skb
, list
)
497 static void skb_free_head(struct sk_buff
*skb
)
500 put_page(virt_to_head_page(skb
->head
));
505 static void skb_release_data(struct sk_buff
*skb
)
508 !atomic_sub_return(skb
->nohdr
? (1 << SKB_DATAREF_SHIFT
) + 1 : 1,
509 &skb_shinfo(skb
)->dataref
)) {
510 if (skb_shinfo(skb
)->nr_frags
) {
512 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
513 skb_frag_unref(skb
, i
);
517 * If skb buf is from userspace, we need to notify the caller
518 * the lower device DMA has done;
520 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
521 struct ubuf_info
*uarg
;
523 uarg
= skb_shinfo(skb
)->destructor_arg
;
525 uarg
->callback(uarg
, true);
528 if (skb_has_frag_list(skb
))
529 skb_drop_fraglist(skb
);
536 * Free an skbuff by memory without cleaning the state.
538 static void kfree_skbmem(struct sk_buff
*skb
)
540 struct sk_buff
*other
;
541 atomic_t
*fclone_ref
;
543 switch (skb
->fclone
) {
544 case SKB_FCLONE_UNAVAILABLE
:
545 kmem_cache_free(skbuff_head_cache
, skb
);
548 case SKB_FCLONE_ORIG
:
549 fclone_ref
= (atomic_t
*) (skb
+ 2);
550 if (atomic_dec_and_test(fclone_ref
))
551 kmem_cache_free(skbuff_fclone_cache
, skb
);
554 case SKB_FCLONE_CLONE
:
555 fclone_ref
= (atomic_t
*) (skb
+ 1);
558 /* The clone portion is available for
559 * fast-cloning again.
561 skb
->fclone
= SKB_FCLONE_UNAVAILABLE
;
563 if (atomic_dec_and_test(fclone_ref
))
564 kmem_cache_free(skbuff_fclone_cache
, other
);
569 static void skb_release_head_state(struct sk_buff
*skb
)
573 secpath_put(skb
->sp
);
575 if (skb
->destructor
) {
577 skb
->destructor(skb
);
579 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
580 nf_conntrack_put(skb
->nfct
);
582 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
583 nf_conntrack_put_reasm(skb
->nfct_reasm
);
585 #ifdef CONFIG_BRIDGE_NETFILTER
586 nf_bridge_put(skb
->nf_bridge
);
588 /* XXX: IS this still necessary? - JHS */
589 #ifdef CONFIG_NET_SCHED
591 #ifdef CONFIG_NET_CLS_ACT
597 /* Free everything but the sk_buff shell. */
598 static void skb_release_all(struct sk_buff
*skb
)
600 skb_release_head_state(skb
);
601 if (likely(skb
->head
))
602 skb_release_data(skb
);
606 * __kfree_skb - private function
609 * Free an sk_buff. Release anything attached to the buffer.
610 * Clean the state. This is an internal helper function. Users should
611 * always call kfree_skb
614 void __kfree_skb(struct sk_buff
*skb
)
616 skb_release_all(skb
);
619 EXPORT_SYMBOL(__kfree_skb
);
622 * kfree_skb - free an sk_buff
623 * @skb: buffer to free
625 * Drop a reference to the buffer and free it if the usage count has
628 void kfree_skb(struct sk_buff
*skb
)
632 if (likely(atomic_read(&skb
->users
) == 1))
634 else if (likely(!atomic_dec_and_test(&skb
->users
)))
636 trace_kfree_skb(skb
, __builtin_return_address(0));
639 EXPORT_SYMBOL(kfree_skb
);
641 void kfree_skb_list(struct sk_buff
*segs
)
644 struct sk_buff
*next
= segs
->next
;
650 EXPORT_SYMBOL(kfree_skb_list
);
653 * skb_tx_error - report an sk_buff xmit error
654 * @skb: buffer that triggered an error
656 * Report xmit error if a device callback is tracking this skb.
657 * skb must be freed afterwards.
659 void skb_tx_error(struct sk_buff
*skb
)
661 if (skb_shinfo(skb
)->tx_flags
& SKBTX_DEV_ZEROCOPY
) {
662 struct ubuf_info
*uarg
;
664 uarg
= skb_shinfo(skb
)->destructor_arg
;
666 uarg
->callback(uarg
, false);
667 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
670 EXPORT_SYMBOL(skb_tx_error
);
673 * consume_skb - free an skbuff
674 * @skb: buffer to free
676 * Drop a ref to the buffer and free it if the usage count has hit zero
677 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
678 * is being dropped after a failure and notes that
680 void consume_skb(struct sk_buff
*skb
)
684 if (likely(atomic_read(&skb
->users
) == 1))
686 else if (likely(!atomic_dec_and_test(&skb
->users
)))
688 trace_consume_skb(skb
);
691 EXPORT_SYMBOL(consume_skb
);
693 static void __copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
695 new->tstamp
= old
->tstamp
;
697 new->transport_header
= old
->transport_header
;
698 new->network_header
= old
->network_header
;
699 new->mac_header
= old
->mac_header
;
700 new->inner_protocol
= old
->inner_protocol
;
701 new->inner_transport_header
= old
->inner_transport_header
;
702 new->inner_network_header
= old
->inner_network_header
;
703 new->inner_mac_header
= old
->inner_mac_header
;
704 skb_dst_copy(new, old
);
705 new->rxhash
= old
->rxhash
;
706 new->ooo_okay
= old
->ooo_okay
;
707 new->l4_rxhash
= old
->l4_rxhash
;
708 new->no_fcs
= old
->no_fcs
;
709 new->encapsulation
= old
->encapsulation
;
711 new->sp
= secpath_get(old
->sp
);
713 memcpy(new->cb
, old
->cb
, sizeof(old
->cb
));
714 new->csum
= old
->csum
;
715 new->local_df
= old
->local_df
;
716 new->pkt_type
= old
->pkt_type
;
717 new->ip_summed
= old
->ip_summed
;
718 skb_copy_queue_mapping(new, old
);
719 new->priority
= old
->priority
;
720 #if IS_ENABLED(CONFIG_IP_VS)
721 new->ipvs_property
= old
->ipvs_property
;
723 new->pfmemalloc
= old
->pfmemalloc
;
724 new->protocol
= old
->protocol
;
725 new->mark
= old
->mark
;
726 new->skb_iif
= old
->skb_iif
;
728 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
729 new->nf_trace
= old
->nf_trace
;
731 #ifdef CONFIG_NET_SCHED
732 new->tc_index
= old
->tc_index
;
733 #ifdef CONFIG_NET_CLS_ACT
734 new->tc_verd
= old
->tc_verd
;
737 new->vlan_proto
= old
->vlan_proto
;
738 new->vlan_tci
= old
->vlan_tci
;
740 skb_copy_secmark(new, old
);
742 #ifdef CONFIG_NET_LL_RX_POLL
743 new->napi_id
= old
->napi_id
;
748 * You should not add any new code to this function. Add it to
749 * __copy_skb_header above instead.
751 static struct sk_buff
*__skb_clone(struct sk_buff
*n
, struct sk_buff
*skb
)
753 #define C(x) n->x = skb->x
755 n
->next
= n
->prev
= NULL
;
757 __copy_skb_header(n
, skb
);
762 n
->hdr_len
= skb
->nohdr
? skb_headroom(skb
) : skb
->hdr_len
;
765 n
->destructor
= NULL
;
772 atomic_set(&n
->users
, 1);
774 atomic_inc(&(skb_shinfo(skb
)->dataref
));
782 * skb_morph - morph one skb into another
783 * @dst: the skb to receive the contents
784 * @src: the skb to supply the contents
786 * This is identical to skb_clone except that the target skb is
787 * supplied by the user.
789 * The target skb is returned upon exit.
791 struct sk_buff
*skb_morph(struct sk_buff
*dst
, struct sk_buff
*src
)
793 skb_release_all(dst
);
794 return __skb_clone(dst
, src
);
796 EXPORT_SYMBOL_GPL(skb_morph
);
799 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
800 * @skb: the skb to modify
801 * @gfp_mask: allocation priority
803 * This must be called on SKBTX_DEV_ZEROCOPY skb.
804 * It will copy all frags into kernel and drop the reference
805 * to userspace pages.
807 * If this function is called from an interrupt gfp_mask() must be
810 * Returns 0 on success or a negative error code on failure
811 * to allocate kernel memory to copy to.
813 int skb_copy_ubufs(struct sk_buff
*skb
, gfp_t gfp_mask
)
816 int num_frags
= skb_shinfo(skb
)->nr_frags
;
817 struct page
*page
, *head
= NULL
;
818 struct ubuf_info
*uarg
= skb_shinfo(skb
)->destructor_arg
;
820 for (i
= 0; i
< num_frags
; i
++) {
822 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
824 page
= alloc_page(gfp_mask
);
827 struct page
*next
= (struct page
*)page_private(head
);
833 vaddr
= kmap_atomic(skb_frag_page(f
));
834 memcpy(page_address(page
),
835 vaddr
+ f
->page_offset
, skb_frag_size(f
));
836 kunmap_atomic(vaddr
);
837 set_page_private(page
, (unsigned long)head
);
841 /* skb frags release userspace buffers */
842 for (i
= 0; i
< num_frags
; i
++)
843 skb_frag_unref(skb
, i
);
845 uarg
->callback(uarg
, false);
847 /* skb frags point to kernel buffers */
848 for (i
= num_frags
- 1; i
>= 0; i
--) {
849 __skb_fill_page_desc(skb
, i
, head
, 0,
850 skb_shinfo(skb
)->frags
[i
].size
);
851 head
= (struct page
*)page_private(head
);
854 skb_shinfo(skb
)->tx_flags
&= ~SKBTX_DEV_ZEROCOPY
;
857 EXPORT_SYMBOL_GPL(skb_copy_ubufs
);
860 * skb_clone - duplicate an sk_buff
861 * @skb: buffer to clone
862 * @gfp_mask: allocation priority
864 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
865 * copies share the same packet data but not structure. The new
866 * buffer has a reference count of 1. If the allocation fails the
867 * function returns %NULL otherwise the new buffer is returned.
869 * If this function is called from an interrupt gfp_mask() must be
873 struct sk_buff
*skb_clone(struct sk_buff
*skb
, gfp_t gfp_mask
)
877 if (skb_orphan_frags(skb
, gfp_mask
))
881 if (skb
->fclone
== SKB_FCLONE_ORIG
&&
882 n
->fclone
== SKB_FCLONE_UNAVAILABLE
) {
883 atomic_t
*fclone_ref
= (atomic_t
*) (n
+ 1);
884 n
->fclone
= SKB_FCLONE_CLONE
;
885 atomic_inc(fclone_ref
);
887 if (skb_pfmemalloc(skb
))
888 gfp_mask
|= __GFP_MEMALLOC
;
890 n
= kmem_cache_alloc(skbuff_head_cache
, gfp_mask
);
894 kmemcheck_annotate_bitfield(n
, flags1
);
895 kmemcheck_annotate_bitfield(n
, flags2
);
896 n
->fclone
= SKB_FCLONE_UNAVAILABLE
;
899 return __skb_clone(n
, skb
);
901 EXPORT_SYMBOL(skb_clone
);
903 static void skb_headers_offset_update(struct sk_buff
*skb
, int off
)
905 /* {transport,network,mac}_header and tail are relative to skb->head */
906 skb
->transport_header
+= off
;
907 skb
->network_header
+= off
;
908 if (skb_mac_header_was_set(skb
))
909 skb
->mac_header
+= off
;
910 skb
->inner_transport_header
+= off
;
911 skb
->inner_network_header
+= off
;
912 skb
->inner_mac_header
+= off
;
915 static void copy_skb_header(struct sk_buff
*new, const struct sk_buff
*old
)
917 __copy_skb_header(new, old
);
919 skb_shinfo(new)->gso_size
= skb_shinfo(old
)->gso_size
;
920 skb_shinfo(new)->gso_segs
= skb_shinfo(old
)->gso_segs
;
921 skb_shinfo(new)->gso_type
= skb_shinfo(old
)->gso_type
;
924 static inline int skb_alloc_rx_flag(const struct sk_buff
*skb
)
926 if (skb_pfmemalloc(skb
))
932 * skb_copy - create private copy of an sk_buff
933 * @skb: buffer to copy
934 * @gfp_mask: allocation priority
936 * Make a copy of both an &sk_buff and its data. This is used when the
937 * caller wishes to modify the data and needs a private copy of the
938 * data to alter. Returns %NULL on failure or the pointer to the buffer
939 * on success. The returned buffer has a reference count of 1.
941 * As by-product this function converts non-linear &sk_buff to linear
942 * one, so that &sk_buff becomes completely private and caller is allowed
943 * to modify all the data of returned buffer. This means that this
944 * function is not recommended for use in circumstances when only
945 * header is going to be modified. Use pskb_copy() instead.
948 struct sk_buff
*skb_copy(const struct sk_buff
*skb
, gfp_t gfp_mask
)
950 int headerlen
= skb_headroom(skb
);
951 unsigned int size
= skb_end_offset(skb
) + skb
->data_len
;
952 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
953 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
958 /* Set the data pointer */
959 skb_reserve(n
, headerlen
);
960 /* Set the tail pointer and length */
961 skb_put(n
, skb
->len
);
963 if (skb_copy_bits(skb
, -headerlen
, n
->head
, headerlen
+ skb
->len
))
966 copy_skb_header(n
, skb
);
969 EXPORT_SYMBOL(skb_copy
);
972 * __pskb_copy - create copy of an sk_buff with private head.
973 * @skb: buffer to copy
974 * @headroom: headroom of new skb
975 * @gfp_mask: allocation priority
977 * Make a copy of both an &sk_buff and part of its data, located
978 * in header. Fragmented data remain shared. This is used when
979 * the caller wishes to modify only header of &sk_buff and needs
980 * private copy of the header to alter. Returns %NULL on failure
981 * or the pointer to the buffer on success.
982 * The returned buffer has a reference count of 1.
985 struct sk_buff
*__pskb_copy(struct sk_buff
*skb
, int headroom
, gfp_t gfp_mask
)
987 unsigned int size
= skb_headlen(skb
) + headroom
;
988 struct sk_buff
*n
= __alloc_skb(size
, gfp_mask
,
989 skb_alloc_rx_flag(skb
), NUMA_NO_NODE
);
994 /* Set the data pointer */
995 skb_reserve(n
, headroom
);
996 /* Set the tail pointer and length */
997 skb_put(n
, skb_headlen(skb
));
999 skb_copy_from_linear_data(skb
, n
->data
, n
->len
);
1001 n
->truesize
+= skb
->data_len
;
1002 n
->data_len
= skb
->data_len
;
1005 if (skb_shinfo(skb
)->nr_frags
) {
1008 if (skb_orphan_frags(skb
, gfp_mask
)) {
1013 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1014 skb_shinfo(n
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
1015 skb_frag_ref(skb
, i
);
1017 skb_shinfo(n
)->nr_frags
= i
;
1020 if (skb_has_frag_list(skb
)) {
1021 skb_shinfo(n
)->frag_list
= skb_shinfo(skb
)->frag_list
;
1022 skb_clone_fraglist(n
);
1025 copy_skb_header(n
, skb
);
1029 EXPORT_SYMBOL(__pskb_copy
);
1032 * pskb_expand_head - reallocate header of &sk_buff
1033 * @skb: buffer to reallocate
1034 * @nhead: room to add at head
1035 * @ntail: room to add at tail
1036 * @gfp_mask: allocation priority
1038 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1039 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1040 * reference count of 1. Returns zero in the case of success or error,
1041 * if expansion failed. In the last case, &sk_buff is not changed.
1043 * All the pointers pointing into skb header may change and must be
1044 * reloaded after call to this function.
1047 int pskb_expand_head(struct sk_buff
*skb
, int nhead
, int ntail
,
1052 int size
= nhead
+ skb_end_offset(skb
) + ntail
;
1057 if (skb_shared(skb
))
1060 size
= SKB_DATA_ALIGN(size
);
1062 if (skb_pfmemalloc(skb
))
1063 gfp_mask
|= __GFP_MEMALLOC
;
1064 data
= kmalloc_reserve(size
+ SKB_DATA_ALIGN(sizeof(struct skb_shared_info
)),
1065 gfp_mask
, NUMA_NO_NODE
, NULL
);
1068 size
= SKB_WITH_OVERHEAD(ksize(data
));
1070 /* Copy only real data... and, alas, header. This should be
1071 * optimized for the cases when header is void.
1073 memcpy(data
+ nhead
, skb
->head
, skb_tail_pointer(skb
) - skb
->head
);
1075 memcpy((struct skb_shared_info
*)(data
+ size
),
1077 offsetof(struct skb_shared_info
, frags
[skb_shinfo(skb
)->nr_frags
]));
1080 * if shinfo is shared we must drop the old head gracefully, but if it
1081 * is not we can just drop the old head and let the existing refcount
1082 * be since all we did is relocate the values
1084 if (skb_cloned(skb
)) {
1085 /* copy this zero copy skb frags */
1086 if (skb_orphan_frags(skb
, gfp_mask
))
1088 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
1089 skb_frag_ref(skb
, i
);
1091 if (skb_has_frag_list(skb
))
1092 skb_clone_fraglist(skb
);
1094 skb_release_data(skb
);
1098 off
= (data
+ nhead
) - skb
->head
;
1103 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1107 skb
->end
= skb
->head
+ size
;
1110 skb_headers_offset_update(skb
, nhead
);
1111 /* Only adjust this if it actually is csum_start rather than csum */
1112 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1113 skb
->csum_start
+= nhead
;
1117 atomic_set(&skb_shinfo(skb
)->dataref
, 1);
1125 EXPORT_SYMBOL(pskb_expand_head
);
1127 /* Make private copy of skb with writable head and some headroom */
1129 struct sk_buff
*skb_realloc_headroom(struct sk_buff
*skb
, unsigned int headroom
)
1131 struct sk_buff
*skb2
;
1132 int delta
= headroom
- skb_headroom(skb
);
1135 skb2
= pskb_copy(skb
, GFP_ATOMIC
);
1137 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1138 if (skb2
&& pskb_expand_head(skb2
, SKB_DATA_ALIGN(delta
), 0,
1146 EXPORT_SYMBOL(skb_realloc_headroom
);
1149 * skb_copy_expand - copy and expand sk_buff
1150 * @skb: buffer to copy
1151 * @newheadroom: new free bytes at head
1152 * @newtailroom: new free bytes at tail
1153 * @gfp_mask: allocation priority
1155 * Make a copy of both an &sk_buff and its data and while doing so
1156 * allocate additional space.
1158 * This is used when the caller wishes to modify the data and needs a
1159 * private copy of the data to alter as well as more space for new fields.
1160 * Returns %NULL on failure or the pointer to the buffer
1161 * on success. The returned buffer has a reference count of 1.
1163 * You must pass %GFP_ATOMIC as the allocation priority if this function
1164 * is called from an interrupt.
1166 struct sk_buff
*skb_copy_expand(const struct sk_buff
*skb
,
1167 int newheadroom
, int newtailroom
,
1171 * Allocate the copy buffer
1173 struct sk_buff
*n
= __alloc_skb(newheadroom
+ skb
->len
+ newtailroom
,
1174 gfp_mask
, skb_alloc_rx_flag(skb
),
1176 int oldheadroom
= skb_headroom(skb
);
1177 int head_copy_len
, head_copy_off
;
1183 skb_reserve(n
, newheadroom
);
1185 /* Set the tail pointer and length */
1186 skb_put(n
, skb
->len
);
1188 head_copy_len
= oldheadroom
;
1190 if (newheadroom
<= head_copy_len
)
1191 head_copy_len
= newheadroom
;
1193 head_copy_off
= newheadroom
- head_copy_len
;
1195 /* Copy the linear header and data. */
1196 if (skb_copy_bits(skb
, -head_copy_len
, n
->head
+ head_copy_off
,
1197 skb
->len
+ head_copy_len
))
1200 copy_skb_header(n
, skb
);
1202 off
= newheadroom
- oldheadroom
;
1203 if (n
->ip_summed
== CHECKSUM_PARTIAL
)
1204 n
->csum_start
+= off
;
1206 skb_headers_offset_update(n
, off
);
1210 EXPORT_SYMBOL(skb_copy_expand
);
1213 * skb_pad - zero pad the tail of an skb
1214 * @skb: buffer to pad
1215 * @pad: space to pad
1217 * Ensure that a buffer is followed by a padding area that is zero
1218 * filled. Used by network drivers which may DMA or transfer data
1219 * beyond the buffer end onto the wire.
1221 * May return error in out of memory cases. The skb is freed on error.
1224 int skb_pad(struct sk_buff
*skb
, int pad
)
1229 /* If the skbuff is non linear tailroom is always zero.. */
1230 if (!skb_cloned(skb
) && skb_tailroom(skb
) >= pad
) {
1231 memset(skb
->data
+skb
->len
, 0, pad
);
1235 ntail
= skb
->data_len
+ pad
- (skb
->end
- skb
->tail
);
1236 if (likely(skb_cloned(skb
) || ntail
> 0)) {
1237 err
= pskb_expand_head(skb
, 0, ntail
, GFP_ATOMIC
);
1242 /* FIXME: The use of this function with non-linear skb's really needs
1245 err
= skb_linearize(skb
);
1249 memset(skb
->data
+ skb
->len
, 0, pad
);
1256 EXPORT_SYMBOL(skb_pad
);
1259 * skb_put - add data to a buffer
1260 * @skb: buffer to use
1261 * @len: amount of data to add
1263 * This function extends the used data area of the buffer. If this would
1264 * exceed the total buffer size the kernel will panic. A pointer to the
1265 * first byte of the extra data is returned.
1267 unsigned char *skb_put(struct sk_buff
*skb
, unsigned int len
)
1269 unsigned char *tmp
= skb_tail_pointer(skb
);
1270 SKB_LINEAR_ASSERT(skb
);
1273 if (unlikely(skb
->tail
> skb
->end
))
1274 skb_over_panic(skb
, len
, __builtin_return_address(0));
1277 EXPORT_SYMBOL(skb_put
);
1280 * skb_push - add data to the start of a buffer
1281 * @skb: buffer to use
1282 * @len: amount of data to add
1284 * This function extends the used data area of the buffer at the buffer
1285 * start. If this would exceed the total buffer headroom the kernel will
1286 * panic. A pointer to the first byte of the extra data is returned.
1288 unsigned char *skb_push(struct sk_buff
*skb
, unsigned int len
)
1292 if (unlikely(skb
->data
<skb
->head
))
1293 skb_under_panic(skb
, len
, __builtin_return_address(0));
1296 EXPORT_SYMBOL(skb_push
);
1299 * skb_pull - remove data from the start of a buffer
1300 * @skb: buffer to use
1301 * @len: amount of data to remove
1303 * This function removes data from the start of a buffer, returning
1304 * the memory to the headroom. A pointer to the next data in the buffer
1305 * is returned. Once the data has been pulled future pushes will overwrite
1308 unsigned char *skb_pull(struct sk_buff
*skb
, unsigned int len
)
1310 return skb_pull_inline(skb
, len
);
1312 EXPORT_SYMBOL(skb_pull
);
1315 * skb_trim - remove end from a buffer
1316 * @skb: buffer to alter
1319 * Cut the length of a buffer down by removing data from the tail. If
1320 * the buffer is already under the length specified it is not modified.
1321 * The skb must be linear.
1323 void skb_trim(struct sk_buff
*skb
, unsigned int len
)
1326 __skb_trim(skb
, len
);
1328 EXPORT_SYMBOL(skb_trim
);
1330 /* Trims skb to length len. It can change skb pointers.
1333 int ___pskb_trim(struct sk_buff
*skb
, unsigned int len
)
1335 struct sk_buff
**fragp
;
1336 struct sk_buff
*frag
;
1337 int offset
= skb_headlen(skb
);
1338 int nfrags
= skb_shinfo(skb
)->nr_frags
;
1342 if (skb_cloned(skb
) &&
1343 unlikely((err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))))
1350 for (; i
< nfrags
; i
++) {
1351 int end
= offset
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1358 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
++], len
- offset
);
1361 skb_shinfo(skb
)->nr_frags
= i
;
1363 for (; i
< nfrags
; i
++)
1364 skb_frag_unref(skb
, i
);
1366 if (skb_has_frag_list(skb
))
1367 skb_drop_fraglist(skb
);
1371 for (fragp
= &skb_shinfo(skb
)->frag_list
; (frag
= *fragp
);
1372 fragp
= &frag
->next
) {
1373 int end
= offset
+ frag
->len
;
1375 if (skb_shared(frag
)) {
1376 struct sk_buff
*nfrag
;
1378 nfrag
= skb_clone(frag
, GFP_ATOMIC
);
1379 if (unlikely(!nfrag
))
1382 nfrag
->next
= frag
->next
;
1394 unlikely((err
= pskb_trim(frag
, len
- offset
))))
1398 skb_drop_list(&frag
->next
);
1403 if (len
> skb_headlen(skb
)) {
1404 skb
->data_len
-= skb
->len
- len
;
1409 skb_set_tail_pointer(skb
, len
);
1414 EXPORT_SYMBOL(___pskb_trim
);
1417 * __pskb_pull_tail - advance tail of skb header
1418 * @skb: buffer to reallocate
1419 * @delta: number of bytes to advance tail
1421 * The function makes a sense only on a fragmented &sk_buff,
1422 * it expands header moving its tail forward and copying necessary
1423 * data from fragmented part.
1425 * &sk_buff MUST have reference count of 1.
1427 * Returns %NULL (and &sk_buff does not change) if pull failed
1428 * or value of new tail of skb in the case of success.
1430 * All the pointers pointing into skb header may change and must be
1431 * reloaded after call to this function.
1434 /* Moves tail of skb head forward, copying data from fragmented part,
1435 * when it is necessary.
1436 * 1. It may fail due to malloc failure.
1437 * 2. It may change skb pointers.
1439 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1441 unsigned char *__pskb_pull_tail(struct sk_buff
*skb
, int delta
)
1443 /* If skb has not enough free space at tail, get new one
1444 * plus 128 bytes for future expansions. If we have enough
1445 * room at tail, reallocate without expansion only if skb is cloned.
1447 int i
, k
, eat
= (skb
->tail
+ delta
) - skb
->end
;
1449 if (eat
> 0 || skb_cloned(skb
)) {
1450 if (pskb_expand_head(skb
, 0, eat
> 0 ? eat
+ 128 : 0,
1455 if (skb_copy_bits(skb
, skb_headlen(skb
), skb_tail_pointer(skb
), delta
))
1458 /* Optimization: no fragments, no reasons to preestimate
1459 * size of pulled pages. Superb.
1461 if (!skb_has_frag_list(skb
))
1464 /* Estimate size of pulled pages. */
1466 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1467 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1474 /* If we need update frag list, we are in troubles.
1475 * Certainly, it possible to add an offset to skb data,
1476 * but taking into account that pulling is expected to
1477 * be very rare operation, it is worth to fight against
1478 * further bloating skb head and crucify ourselves here instead.
1479 * Pure masohism, indeed. 8)8)
1482 struct sk_buff
*list
= skb_shinfo(skb
)->frag_list
;
1483 struct sk_buff
*clone
= NULL
;
1484 struct sk_buff
*insp
= NULL
;
1489 if (list
->len
<= eat
) {
1490 /* Eaten as whole. */
1495 /* Eaten partially. */
1497 if (skb_shared(list
)) {
1498 /* Sucks! We need to fork list. :-( */
1499 clone
= skb_clone(list
, GFP_ATOMIC
);
1505 /* This may be pulled without
1509 if (!pskb_pull(list
, eat
)) {
1517 /* Free pulled out fragments. */
1518 while ((list
= skb_shinfo(skb
)->frag_list
) != insp
) {
1519 skb_shinfo(skb
)->frag_list
= list
->next
;
1522 /* And insert new clone at head. */
1525 skb_shinfo(skb
)->frag_list
= clone
;
1528 /* Success! Now we may commit changes to skb data. */
1533 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1534 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
1537 skb_frag_unref(skb
, i
);
1540 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
1542 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
1543 skb_frag_size_sub(&skb_shinfo(skb
)->frags
[k
], eat
);
1549 skb_shinfo(skb
)->nr_frags
= k
;
1552 skb
->data_len
-= delta
;
1554 return skb_tail_pointer(skb
);
1556 EXPORT_SYMBOL(__pskb_pull_tail
);
1559 * skb_copy_bits - copy bits from skb to kernel buffer
1561 * @offset: offset in source
1562 * @to: destination buffer
1563 * @len: number of bytes to copy
1565 * Copy the specified number of bytes from the source skb to the
1566 * destination buffer.
1569 * If its prototype is ever changed,
1570 * check arch/{*}/net/{*}.S files,
1571 * since it is called from BPF assembly code.
1573 int skb_copy_bits(const struct sk_buff
*skb
, int offset
, void *to
, int len
)
1575 int start
= skb_headlen(skb
);
1576 struct sk_buff
*frag_iter
;
1579 if (offset
> (int)skb
->len
- len
)
1583 if ((copy
= start
- offset
) > 0) {
1586 skb_copy_from_linear_data_offset(skb
, offset
, to
, copy
);
1587 if ((len
-= copy
) == 0)
1593 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1595 skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[i
];
1597 WARN_ON(start
> offset
+ len
);
1599 end
= start
+ skb_frag_size(f
);
1600 if ((copy
= end
- offset
) > 0) {
1606 vaddr
= kmap_atomic(skb_frag_page(f
));
1608 vaddr
+ f
->page_offset
+ offset
- start
,
1610 kunmap_atomic(vaddr
);
1612 if ((len
-= copy
) == 0)
1620 skb_walk_frags(skb
, frag_iter
) {
1623 WARN_ON(start
> offset
+ len
);
1625 end
= start
+ frag_iter
->len
;
1626 if ((copy
= end
- offset
) > 0) {
1629 if (skb_copy_bits(frag_iter
, offset
- start
, to
, copy
))
1631 if ((len
-= copy
) == 0)
1645 EXPORT_SYMBOL(skb_copy_bits
);
1648 * Callback from splice_to_pipe(), if we need to release some pages
1649 * at the end of the spd in case we error'ed out in filling the pipe.
1651 static void sock_spd_release(struct splice_pipe_desc
*spd
, unsigned int i
)
1653 put_page(spd
->pages
[i
]);
1656 static struct page
*linear_to_page(struct page
*page
, unsigned int *len
,
1657 unsigned int *offset
,
1660 struct page_frag
*pfrag
= sk_page_frag(sk
);
1662 if (!sk_page_frag_refill(sk
, pfrag
))
1665 *len
= min_t(unsigned int, *len
, pfrag
->size
- pfrag
->offset
);
1667 memcpy(page_address(pfrag
->page
) + pfrag
->offset
,
1668 page_address(page
) + *offset
, *len
);
1669 *offset
= pfrag
->offset
;
1670 pfrag
->offset
+= *len
;
1675 static bool spd_can_coalesce(const struct splice_pipe_desc
*spd
,
1677 unsigned int offset
)
1679 return spd
->nr_pages
&&
1680 spd
->pages
[spd
->nr_pages
- 1] == page
&&
1681 (spd
->partial
[spd
->nr_pages
- 1].offset
+
1682 spd
->partial
[spd
->nr_pages
- 1].len
== offset
);
1686 * Fill page/offset/length into spd, if it can hold more pages.
1688 static bool spd_fill_page(struct splice_pipe_desc
*spd
,
1689 struct pipe_inode_info
*pipe
, struct page
*page
,
1690 unsigned int *len
, unsigned int offset
,
1694 if (unlikely(spd
->nr_pages
== MAX_SKB_FRAGS
))
1698 page
= linear_to_page(page
, len
, &offset
, sk
);
1702 if (spd_can_coalesce(spd
, page
, offset
)) {
1703 spd
->partial
[spd
->nr_pages
- 1].len
+= *len
;
1707 spd
->pages
[spd
->nr_pages
] = page
;
1708 spd
->partial
[spd
->nr_pages
].len
= *len
;
1709 spd
->partial
[spd
->nr_pages
].offset
= offset
;
1715 static bool __splice_segment(struct page
*page
, unsigned int poff
,
1716 unsigned int plen
, unsigned int *off
,
1718 struct splice_pipe_desc
*spd
, bool linear
,
1720 struct pipe_inode_info
*pipe
)
1725 /* skip this segment if already processed */
1731 /* ignore any bits we already processed */
1737 unsigned int flen
= min(*len
, plen
);
1739 if (spd_fill_page(spd
, pipe
, page
, &flen
, poff
,
1745 } while (*len
&& plen
);
1751 * Map linear and fragment data from the skb to spd. It reports true if the
1752 * pipe is full or if we already spliced the requested length.
1754 static bool __skb_splice_bits(struct sk_buff
*skb
, struct pipe_inode_info
*pipe
,
1755 unsigned int *offset
, unsigned int *len
,
1756 struct splice_pipe_desc
*spd
, struct sock
*sk
)
1760 /* map the linear part :
1761 * If skb->head_frag is set, this 'linear' part is backed by a
1762 * fragment, and if the head is not shared with any clones then
1763 * we can avoid a copy since we own the head portion of this page.
1765 if (__splice_segment(virt_to_page(skb
->data
),
1766 (unsigned long) skb
->data
& (PAGE_SIZE
- 1),
1769 skb_head_is_locked(skb
),
1774 * then map the fragments
1776 for (seg
= 0; seg
< skb_shinfo(skb
)->nr_frags
; seg
++) {
1777 const skb_frag_t
*f
= &skb_shinfo(skb
)->frags
[seg
];
1779 if (__splice_segment(skb_frag_page(f
),
1780 f
->page_offset
, skb_frag_size(f
),
1781 offset
, len
, spd
, false, sk
, pipe
))
1789 * Map data from the skb to a pipe. Should handle both the linear part,
1790 * the fragments, and the frag list. It does NOT handle frag lists within
1791 * the frag list, if such a thing exists. We'd probably need to recurse to
1792 * handle that cleanly.
1794 int skb_splice_bits(struct sk_buff
*skb
, unsigned int offset
,
1795 struct pipe_inode_info
*pipe
, unsigned int tlen
,
1798 struct partial_page partial
[MAX_SKB_FRAGS
];
1799 struct page
*pages
[MAX_SKB_FRAGS
];
1800 struct splice_pipe_desc spd
= {
1803 .nr_pages_max
= MAX_SKB_FRAGS
,
1805 .ops
= &sock_pipe_buf_ops
,
1806 .spd_release
= sock_spd_release
,
1808 struct sk_buff
*frag_iter
;
1809 struct sock
*sk
= skb
->sk
;
1813 * __skb_splice_bits() only fails if the output has no room left,
1814 * so no point in going over the frag_list for the error case.
1816 if (__skb_splice_bits(skb
, pipe
, &offset
, &tlen
, &spd
, sk
))
1822 * now see if we have a frag_list to map
1824 skb_walk_frags(skb
, frag_iter
) {
1827 if (__skb_splice_bits(frag_iter
, pipe
, &offset
, &tlen
, &spd
, sk
))
1834 * Drop the socket lock, otherwise we have reverse
1835 * locking dependencies between sk_lock and i_mutex
1836 * here as compared to sendfile(). We enter here
1837 * with the socket lock held, and splice_to_pipe() will
1838 * grab the pipe inode lock. For sendfile() emulation,
1839 * we call into ->sendpage() with the i_mutex lock held
1840 * and networking will grab the socket lock.
1843 ret
= splice_to_pipe(pipe
, &spd
);
1851 * skb_store_bits - store bits from kernel buffer to skb
1852 * @skb: destination buffer
1853 * @offset: offset in destination
1854 * @from: source buffer
1855 * @len: number of bytes to copy
1857 * Copy the specified number of bytes from the source buffer to the
1858 * destination skb. This function handles all the messy bits of
1859 * traversing fragment lists and such.
1862 int skb_store_bits(struct sk_buff
*skb
, int offset
, const void *from
, int len
)
1864 int start
= skb_headlen(skb
);
1865 struct sk_buff
*frag_iter
;
1868 if (offset
> (int)skb
->len
- len
)
1871 if ((copy
= start
- offset
) > 0) {
1874 skb_copy_to_linear_data_offset(skb
, offset
, from
, copy
);
1875 if ((len
-= copy
) == 0)
1881 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1882 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1885 WARN_ON(start
> offset
+ len
);
1887 end
= start
+ skb_frag_size(frag
);
1888 if ((copy
= end
- offset
) > 0) {
1894 vaddr
= kmap_atomic(skb_frag_page(frag
));
1895 memcpy(vaddr
+ frag
->page_offset
+ offset
- start
,
1897 kunmap_atomic(vaddr
);
1899 if ((len
-= copy
) == 0)
1907 skb_walk_frags(skb
, frag_iter
) {
1910 WARN_ON(start
> offset
+ len
);
1912 end
= start
+ frag_iter
->len
;
1913 if ((copy
= end
- offset
) > 0) {
1916 if (skb_store_bits(frag_iter
, offset
- start
,
1919 if ((len
-= copy
) == 0)
1932 EXPORT_SYMBOL(skb_store_bits
);
1934 /* Checksum skb data. */
1936 __wsum
skb_checksum(const struct sk_buff
*skb
, int offset
,
1937 int len
, __wsum csum
)
1939 int start
= skb_headlen(skb
);
1940 int i
, copy
= start
- offset
;
1941 struct sk_buff
*frag_iter
;
1944 /* Checksum header. */
1948 csum
= csum_partial(skb
->data
+ offset
, copy
, csum
);
1949 if ((len
-= copy
) == 0)
1955 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
1957 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
1959 WARN_ON(start
> offset
+ len
);
1961 end
= start
+ skb_frag_size(frag
);
1962 if ((copy
= end
- offset
) > 0) {
1968 vaddr
= kmap_atomic(skb_frag_page(frag
));
1969 csum2
= csum_partial(vaddr
+ frag
->page_offset
+
1970 offset
- start
, copy
, 0);
1971 kunmap_atomic(vaddr
);
1972 csum
= csum_block_add(csum
, csum2
, pos
);
1981 skb_walk_frags(skb
, frag_iter
) {
1984 WARN_ON(start
> offset
+ len
);
1986 end
= start
+ frag_iter
->len
;
1987 if ((copy
= end
- offset
) > 0) {
1991 csum2
= skb_checksum(frag_iter
, offset
- start
,
1993 csum
= csum_block_add(csum
, csum2
, pos
);
1994 if ((len
-= copy
) == 0)
2005 EXPORT_SYMBOL(skb_checksum
);
2007 /* Both of above in one bottle. */
2009 __wsum
skb_copy_and_csum_bits(const struct sk_buff
*skb
, int offset
,
2010 u8
*to
, int len
, __wsum csum
)
2012 int start
= skb_headlen(skb
);
2013 int i
, copy
= start
- offset
;
2014 struct sk_buff
*frag_iter
;
2021 csum
= csum_partial_copy_nocheck(skb
->data
+ offset
, to
,
2023 if ((len
-= copy
) == 0)
2030 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2033 WARN_ON(start
> offset
+ len
);
2035 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2036 if ((copy
= end
- offset
) > 0) {
2039 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2043 vaddr
= kmap_atomic(skb_frag_page(frag
));
2044 csum2
= csum_partial_copy_nocheck(vaddr
+
2048 kunmap_atomic(vaddr
);
2049 csum
= csum_block_add(csum
, csum2
, pos
);
2059 skb_walk_frags(skb
, frag_iter
) {
2063 WARN_ON(start
> offset
+ len
);
2065 end
= start
+ frag_iter
->len
;
2066 if ((copy
= end
- offset
) > 0) {
2069 csum2
= skb_copy_and_csum_bits(frag_iter
,
2072 csum
= csum_block_add(csum
, csum2
, pos
);
2073 if ((len
-= copy
) == 0)
2084 EXPORT_SYMBOL(skb_copy_and_csum_bits
);
2086 void skb_copy_and_csum_dev(const struct sk_buff
*skb
, u8
*to
)
2091 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2092 csstart
= skb_checksum_start_offset(skb
);
2094 csstart
= skb_headlen(skb
);
2096 BUG_ON(csstart
> skb_headlen(skb
));
2098 skb_copy_from_linear_data(skb
, to
, csstart
);
2101 if (csstart
!= skb
->len
)
2102 csum
= skb_copy_and_csum_bits(skb
, csstart
, to
+ csstart
,
2103 skb
->len
- csstart
, 0);
2105 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2106 long csstuff
= csstart
+ skb
->csum_offset
;
2108 *((__sum16
*)(to
+ csstuff
)) = csum_fold(csum
);
2111 EXPORT_SYMBOL(skb_copy_and_csum_dev
);
2114 * skb_dequeue - remove from the head of the queue
2115 * @list: list to dequeue from
2117 * Remove the head of the list. The list lock is taken so the function
2118 * may be used safely with other locking list functions. The head item is
2119 * returned or %NULL if the list is empty.
2122 struct sk_buff
*skb_dequeue(struct sk_buff_head
*list
)
2124 unsigned long flags
;
2125 struct sk_buff
*result
;
2127 spin_lock_irqsave(&list
->lock
, flags
);
2128 result
= __skb_dequeue(list
);
2129 spin_unlock_irqrestore(&list
->lock
, flags
);
2132 EXPORT_SYMBOL(skb_dequeue
);
2135 * skb_dequeue_tail - remove from the tail of the queue
2136 * @list: list to dequeue from
2138 * Remove the tail of the list. The list lock is taken so the function
2139 * may be used safely with other locking list functions. The tail item is
2140 * returned or %NULL if the list is empty.
2142 struct sk_buff
*skb_dequeue_tail(struct sk_buff_head
*list
)
2144 unsigned long flags
;
2145 struct sk_buff
*result
;
2147 spin_lock_irqsave(&list
->lock
, flags
);
2148 result
= __skb_dequeue_tail(list
);
2149 spin_unlock_irqrestore(&list
->lock
, flags
);
2152 EXPORT_SYMBOL(skb_dequeue_tail
);
2155 * skb_queue_purge - empty a list
2156 * @list: list to empty
2158 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2159 * the list and one reference dropped. This function takes the list
2160 * lock and is atomic with respect to other list locking functions.
2162 void skb_queue_purge(struct sk_buff_head
*list
)
2164 struct sk_buff
*skb
;
2165 while ((skb
= skb_dequeue(list
)) != NULL
)
2168 EXPORT_SYMBOL(skb_queue_purge
);
2171 * skb_queue_head - queue a buffer at the list head
2172 * @list: list to use
2173 * @newsk: buffer to queue
2175 * Queue a buffer at the start of the list. This function takes the
2176 * list lock and can be used safely with other locking &sk_buff functions
2179 * A buffer cannot be placed on two lists at the same time.
2181 void skb_queue_head(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2183 unsigned long flags
;
2185 spin_lock_irqsave(&list
->lock
, flags
);
2186 __skb_queue_head(list
, newsk
);
2187 spin_unlock_irqrestore(&list
->lock
, flags
);
2189 EXPORT_SYMBOL(skb_queue_head
);
2192 * skb_queue_tail - queue a buffer at the list tail
2193 * @list: list to use
2194 * @newsk: buffer to queue
2196 * Queue a buffer at the tail of the list. This function takes the
2197 * list lock and can be used safely with other locking &sk_buff functions
2200 * A buffer cannot be placed on two lists at the same time.
2202 void skb_queue_tail(struct sk_buff_head
*list
, struct sk_buff
*newsk
)
2204 unsigned long flags
;
2206 spin_lock_irqsave(&list
->lock
, flags
);
2207 __skb_queue_tail(list
, newsk
);
2208 spin_unlock_irqrestore(&list
->lock
, flags
);
2210 EXPORT_SYMBOL(skb_queue_tail
);
2213 * skb_unlink - remove a buffer from a list
2214 * @skb: buffer to remove
2215 * @list: list to use
2217 * Remove a packet from a list. The list locks are taken and this
2218 * function is atomic with respect to other list locked calls
2220 * You must know what list the SKB is on.
2222 void skb_unlink(struct sk_buff
*skb
, struct sk_buff_head
*list
)
2224 unsigned long flags
;
2226 spin_lock_irqsave(&list
->lock
, flags
);
2227 __skb_unlink(skb
, list
);
2228 spin_unlock_irqrestore(&list
->lock
, flags
);
2230 EXPORT_SYMBOL(skb_unlink
);
2233 * skb_append - append a buffer
2234 * @old: buffer to insert after
2235 * @newsk: buffer to insert
2236 * @list: list to use
2238 * Place a packet after a given packet in a list. The list locks are taken
2239 * and this function is atomic with respect to other list locked calls.
2240 * A buffer cannot be placed on two lists at the same time.
2242 void skb_append(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2244 unsigned long flags
;
2246 spin_lock_irqsave(&list
->lock
, flags
);
2247 __skb_queue_after(list
, old
, newsk
);
2248 spin_unlock_irqrestore(&list
->lock
, flags
);
2250 EXPORT_SYMBOL(skb_append
);
2253 * skb_insert - insert a buffer
2254 * @old: buffer to insert before
2255 * @newsk: buffer to insert
2256 * @list: list to use
2258 * Place a packet before a given packet in a list. The list locks are
2259 * taken and this function is atomic with respect to other list locked
2262 * A buffer cannot be placed on two lists at the same time.
2264 void skb_insert(struct sk_buff
*old
, struct sk_buff
*newsk
, struct sk_buff_head
*list
)
2266 unsigned long flags
;
2268 spin_lock_irqsave(&list
->lock
, flags
);
2269 __skb_insert(newsk
, old
->prev
, old
, list
);
2270 spin_unlock_irqrestore(&list
->lock
, flags
);
2272 EXPORT_SYMBOL(skb_insert
);
2274 static inline void skb_split_inside_header(struct sk_buff
*skb
,
2275 struct sk_buff
* skb1
,
2276 const u32 len
, const int pos
)
2280 skb_copy_from_linear_data_offset(skb
, len
, skb_put(skb1
, pos
- len
),
2282 /* And move data appendix as is. */
2283 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++)
2284 skb_shinfo(skb1
)->frags
[i
] = skb_shinfo(skb
)->frags
[i
];
2286 skb_shinfo(skb1
)->nr_frags
= skb_shinfo(skb
)->nr_frags
;
2287 skb_shinfo(skb
)->nr_frags
= 0;
2288 skb1
->data_len
= skb
->data_len
;
2289 skb1
->len
+= skb1
->data_len
;
2292 skb_set_tail_pointer(skb
, len
);
2295 static inline void skb_split_no_header(struct sk_buff
*skb
,
2296 struct sk_buff
* skb1
,
2297 const u32 len
, int pos
)
2300 const int nfrags
= skb_shinfo(skb
)->nr_frags
;
2302 skb_shinfo(skb
)->nr_frags
= 0;
2303 skb1
->len
= skb1
->data_len
= skb
->len
- len
;
2305 skb
->data_len
= len
- pos
;
2307 for (i
= 0; i
< nfrags
; i
++) {
2308 int size
= skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
2310 if (pos
+ size
> len
) {
2311 skb_shinfo(skb1
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
2315 * We have two variants in this case:
2316 * 1. Move all the frag to the second
2317 * part, if it is possible. F.e.
2318 * this approach is mandatory for TUX,
2319 * where splitting is expensive.
2320 * 2. Split is accurately. We make this.
2322 skb_frag_ref(skb
, i
);
2323 skb_shinfo(skb1
)->frags
[0].page_offset
+= len
- pos
;
2324 skb_frag_size_sub(&skb_shinfo(skb1
)->frags
[0], len
- pos
);
2325 skb_frag_size_set(&skb_shinfo(skb
)->frags
[i
], len
- pos
);
2326 skb_shinfo(skb
)->nr_frags
++;
2330 skb_shinfo(skb
)->nr_frags
++;
2333 skb_shinfo(skb1
)->nr_frags
= k
;
2337 * skb_split - Split fragmented skb to two parts at length len.
2338 * @skb: the buffer to split
2339 * @skb1: the buffer to receive the second part
2340 * @len: new length for skb
2342 void skb_split(struct sk_buff
*skb
, struct sk_buff
*skb1
, const u32 len
)
2344 int pos
= skb_headlen(skb
);
2346 skb_shinfo(skb1
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2347 if (len
< pos
) /* Split line is inside header. */
2348 skb_split_inside_header(skb
, skb1
, len
, pos
);
2349 else /* Second chunk has no header, nothing to copy. */
2350 skb_split_no_header(skb
, skb1
, len
, pos
);
2352 EXPORT_SYMBOL(skb_split
);
2354 /* Shifting from/to a cloned skb is a no-go.
2356 * Caller cannot keep skb_shinfo related pointers past calling here!
2358 static int skb_prepare_for_shift(struct sk_buff
*skb
)
2360 return skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2364 * skb_shift - Shifts paged data partially from skb to another
2365 * @tgt: buffer into which tail data gets added
2366 * @skb: buffer from which the paged data comes from
2367 * @shiftlen: shift up to this many bytes
2369 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2370 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2371 * It's up to caller to free skb if everything was shifted.
2373 * If @tgt runs out of frags, the whole operation is aborted.
2375 * Skb cannot include anything else but paged data while tgt is allowed
2376 * to have non-paged data as well.
2378 * TODO: full sized shift could be optimized but that would need
2379 * specialized skb free'er to handle frags without up-to-date nr_frags.
2381 int skb_shift(struct sk_buff
*tgt
, struct sk_buff
*skb
, int shiftlen
)
2383 int from
, to
, merge
, todo
;
2384 struct skb_frag_struct
*fragfrom
, *fragto
;
2386 BUG_ON(shiftlen
> skb
->len
);
2387 BUG_ON(skb_headlen(skb
)); /* Would corrupt stream */
2391 to
= skb_shinfo(tgt
)->nr_frags
;
2392 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2394 /* Actual merge is delayed until the point when we know we can
2395 * commit all, so that we don't have to undo partial changes
2398 !skb_can_coalesce(tgt
, to
, skb_frag_page(fragfrom
),
2399 fragfrom
->page_offset
)) {
2404 todo
-= skb_frag_size(fragfrom
);
2406 if (skb_prepare_for_shift(skb
) ||
2407 skb_prepare_for_shift(tgt
))
2410 /* All previous frag pointers might be stale! */
2411 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2412 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2414 skb_frag_size_add(fragto
, shiftlen
);
2415 skb_frag_size_sub(fragfrom
, shiftlen
);
2416 fragfrom
->page_offset
+= shiftlen
;
2424 /* Skip full, not-fitting skb to avoid expensive operations */
2425 if ((shiftlen
== skb
->len
) &&
2426 (skb_shinfo(skb
)->nr_frags
- from
) > (MAX_SKB_FRAGS
- to
))
2429 if (skb_prepare_for_shift(skb
) || skb_prepare_for_shift(tgt
))
2432 while ((todo
> 0) && (from
< skb_shinfo(skb
)->nr_frags
)) {
2433 if (to
== MAX_SKB_FRAGS
)
2436 fragfrom
= &skb_shinfo(skb
)->frags
[from
];
2437 fragto
= &skb_shinfo(tgt
)->frags
[to
];
2439 if (todo
>= skb_frag_size(fragfrom
)) {
2440 *fragto
= *fragfrom
;
2441 todo
-= skb_frag_size(fragfrom
);
2446 __skb_frag_ref(fragfrom
);
2447 fragto
->page
= fragfrom
->page
;
2448 fragto
->page_offset
= fragfrom
->page_offset
;
2449 skb_frag_size_set(fragto
, todo
);
2451 fragfrom
->page_offset
+= todo
;
2452 skb_frag_size_sub(fragfrom
, todo
);
2460 /* Ready to "commit" this state change to tgt */
2461 skb_shinfo(tgt
)->nr_frags
= to
;
2464 fragfrom
= &skb_shinfo(skb
)->frags
[0];
2465 fragto
= &skb_shinfo(tgt
)->frags
[merge
];
2467 skb_frag_size_add(fragto
, skb_frag_size(fragfrom
));
2468 __skb_frag_unref(fragfrom
);
2471 /* Reposition in the original skb */
2473 while (from
< skb_shinfo(skb
)->nr_frags
)
2474 skb_shinfo(skb
)->frags
[to
++] = skb_shinfo(skb
)->frags
[from
++];
2475 skb_shinfo(skb
)->nr_frags
= to
;
2477 BUG_ON(todo
> 0 && !skb_shinfo(skb
)->nr_frags
);
2480 /* Most likely the tgt won't ever need its checksum anymore, skb on
2481 * the other hand might need it if it needs to be resent
2483 tgt
->ip_summed
= CHECKSUM_PARTIAL
;
2484 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2486 /* Yak, is it really working this way? Some helper please? */
2487 skb
->len
-= shiftlen
;
2488 skb
->data_len
-= shiftlen
;
2489 skb
->truesize
-= shiftlen
;
2490 tgt
->len
+= shiftlen
;
2491 tgt
->data_len
+= shiftlen
;
2492 tgt
->truesize
+= shiftlen
;
2498 * skb_prepare_seq_read - Prepare a sequential read of skb data
2499 * @skb: the buffer to read
2500 * @from: lower offset of data to be read
2501 * @to: upper offset of data to be read
2502 * @st: state variable
2504 * Initializes the specified state variable. Must be called before
2505 * invoking skb_seq_read() for the first time.
2507 void skb_prepare_seq_read(struct sk_buff
*skb
, unsigned int from
,
2508 unsigned int to
, struct skb_seq_state
*st
)
2510 st
->lower_offset
= from
;
2511 st
->upper_offset
= to
;
2512 st
->root_skb
= st
->cur_skb
= skb
;
2513 st
->frag_idx
= st
->stepped_offset
= 0;
2514 st
->frag_data
= NULL
;
2516 EXPORT_SYMBOL(skb_prepare_seq_read
);
2519 * skb_seq_read - Sequentially read skb data
2520 * @consumed: number of bytes consumed by the caller so far
2521 * @data: destination pointer for data to be returned
2522 * @st: state variable
2524 * Reads a block of skb data at &consumed relative to the
2525 * lower offset specified to skb_prepare_seq_read(). Assigns
2526 * the head of the data block to &data and returns the length
2527 * of the block or 0 if the end of the skb data or the upper
2528 * offset has been reached.
2530 * The caller is not required to consume all of the data
2531 * returned, i.e. &consumed is typically set to the number
2532 * of bytes already consumed and the next call to
2533 * skb_seq_read() will return the remaining part of the block.
2535 * Note 1: The size of each block of data returned can be arbitrary,
2536 * this limitation is the cost for zerocopy seqeuental
2537 * reads of potentially non linear data.
2539 * Note 2: Fragment lists within fragments are not implemented
2540 * at the moment, state->root_skb could be replaced with
2541 * a stack for this purpose.
2543 unsigned int skb_seq_read(unsigned int consumed
, const u8
**data
,
2544 struct skb_seq_state
*st
)
2546 unsigned int block_limit
, abs_offset
= consumed
+ st
->lower_offset
;
2549 if (unlikely(abs_offset
>= st
->upper_offset
)) {
2550 if (st
->frag_data
) {
2551 kunmap_atomic(st
->frag_data
);
2552 st
->frag_data
= NULL
;
2558 block_limit
= skb_headlen(st
->cur_skb
) + st
->stepped_offset
;
2560 if (abs_offset
< block_limit
&& !st
->frag_data
) {
2561 *data
= st
->cur_skb
->data
+ (abs_offset
- st
->stepped_offset
);
2562 return block_limit
- abs_offset
;
2565 if (st
->frag_idx
== 0 && !st
->frag_data
)
2566 st
->stepped_offset
+= skb_headlen(st
->cur_skb
);
2568 while (st
->frag_idx
< skb_shinfo(st
->cur_skb
)->nr_frags
) {
2569 frag
= &skb_shinfo(st
->cur_skb
)->frags
[st
->frag_idx
];
2570 block_limit
= skb_frag_size(frag
) + st
->stepped_offset
;
2572 if (abs_offset
< block_limit
) {
2574 st
->frag_data
= kmap_atomic(skb_frag_page(frag
));
2576 *data
= (u8
*) st
->frag_data
+ frag
->page_offset
+
2577 (abs_offset
- st
->stepped_offset
);
2579 return block_limit
- abs_offset
;
2582 if (st
->frag_data
) {
2583 kunmap_atomic(st
->frag_data
);
2584 st
->frag_data
= NULL
;
2588 st
->stepped_offset
+= skb_frag_size(frag
);
2591 if (st
->frag_data
) {
2592 kunmap_atomic(st
->frag_data
);
2593 st
->frag_data
= NULL
;
2596 if (st
->root_skb
== st
->cur_skb
&& skb_has_frag_list(st
->root_skb
)) {
2597 st
->cur_skb
= skb_shinfo(st
->root_skb
)->frag_list
;
2600 } else if (st
->cur_skb
->next
) {
2601 st
->cur_skb
= st
->cur_skb
->next
;
2608 EXPORT_SYMBOL(skb_seq_read
);
2611 * skb_abort_seq_read - Abort a sequential read of skb data
2612 * @st: state variable
2614 * Must be called if skb_seq_read() was not called until it
2617 void skb_abort_seq_read(struct skb_seq_state
*st
)
2620 kunmap_atomic(st
->frag_data
);
2622 EXPORT_SYMBOL(skb_abort_seq_read
);
2624 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2626 static unsigned int skb_ts_get_next_block(unsigned int offset
, const u8
**text
,
2627 struct ts_config
*conf
,
2628 struct ts_state
*state
)
2630 return skb_seq_read(offset
, text
, TS_SKB_CB(state
));
2633 static void skb_ts_finish(struct ts_config
*conf
, struct ts_state
*state
)
2635 skb_abort_seq_read(TS_SKB_CB(state
));
2639 * skb_find_text - Find a text pattern in skb data
2640 * @skb: the buffer to look in
2641 * @from: search offset
2643 * @config: textsearch configuration
2644 * @state: uninitialized textsearch state variable
2646 * Finds a pattern in the skb data according to the specified
2647 * textsearch configuration. Use textsearch_next() to retrieve
2648 * subsequent occurrences of the pattern. Returns the offset
2649 * to the first occurrence or UINT_MAX if no match was found.
2651 unsigned int skb_find_text(struct sk_buff
*skb
, unsigned int from
,
2652 unsigned int to
, struct ts_config
*config
,
2653 struct ts_state
*state
)
2657 config
->get_next_block
= skb_ts_get_next_block
;
2658 config
->finish
= skb_ts_finish
;
2660 skb_prepare_seq_read(skb
, from
, to
, TS_SKB_CB(state
));
2662 ret
= textsearch_find(config
, state
);
2663 return (ret
<= to
- from
? ret
: UINT_MAX
);
2665 EXPORT_SYMBOL(skb_find_text
);
2668 * skb_append_datato_frags - append the user data to a skb
2669 * @sk: sock structure
2670 * @skb: skb structure to be appened with user data.
2671 * @getfrag: call back function to be used for getting the user data
2672 * @from: pointer to user message iov
2673 * @length: length of the iov message
2675 * Description: This procedure append the user data in the fragment part
2676 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2678 int skb_append_datato_frags(struct sock
*sk
, struct sk_buff
*skb
,
2679 int (*getfrag
)(void *from
, char *to
, int offset
,
2680 int len
, int odd
, struct sk_buff
*skb
),
2681 void *from
, int length
)
2683 int frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2687 struct page_frag
*pfrag
= ¤t
->task_frag
;
2690 /* Return error if we don't have space for new frag */
2691 if (frg_cnt
>= MAX_SKB_FRAGS
)
2694 if (!sk_page_frag_refill(sk
, pfrag
))
2697 /* copy the user data to page */
2698 copy
= min_t(int, length
, pfrag
->size
- pfrag
->offset
);
2700 ret
= getfrag(from
, page_address(pfrag
->page
) + pfrag
->offset
,
2701 offset
, copy
, 0, skb
);
2705 /* copy was successful so update the size parameters */
2706 skb_fill_page_desc(skb
, frg_cnt
, pfrag
->page
, pfrag
->offset
,
2709 pfrag
->offset
+= copy
;
2710 get_page(pfrag
->page
);
2712 skb
->truesize
+= copy
;
2713 atomic_add(copy
, &sk
->sk_wmem_alloc
);
2715 skb
->data_len
+= copy
;
2719 } while (length
> 0);
2723 EXPORT_SYMBOL(skb_append_datato_frags
);
2726 * skb_pull_rcsum - pull skb and update receive checksum
2727 * @skb: buffer to update
2728 * @len: length of data pulled
2730 * This function performs an skb_pull on the packet and updates
2731 * the CHECKSUM_COMPLETE checksum. It should be used on
2732 * receive path processing instead of skb_pull unless you know
2733 * that the checksum difference is zero (e.g., a valid IP header)
2734 * or you are setting ip_summed to CHECKSUM_NONE.
2736 unsigned char *skb_pull_rcsum(struct sk_buff
*skb
, unsigned int len
)
2738 BUG_ON(len
> skb
->len
);
2740 BUG_ON(skb
->len
< skb
->data_len
);
2741 skb_postpull_rcsum(skb
, skb
->data
, len
);
2742 return skb
->data
+= len
;
2744 EXPORT_SYMBOL_GPL(skb_pull_rcsum
);
2747 * skb_segment - Perform protocol segmentation on skb.
2748 * @skb: buffer to segment
2749 * @features: features for the output path (see dev->features)
2751 * This function performs segmentation on the given skb. It returns
2752 * a pointer to the first in a list of new skbs for the segments.
2753 * In case of error it returns ERR_PTR(err).
2755 struct sk_buff
*skb_segment(struct sk_buff
*skb
, netdev_features_t features
)
2757 struct sk_buff
*segs
= NULL
;
2758 struct sk_buff
*tail
= NULL
;
2759 struct sk_buff
*fskb
= skb_shinfo(skb
)->frag_list
;
2760 unsigned int mss
= skb_shinfo(skb
)->gso_size
;
2761 unsigned int doffset
= skb
->data
- skb_mac_header(skb
);
2762 unsigned int offset
= doffset
;
2763 unsigned int tnl_hlen
= skb_tnl_header_len(skb
);
2764 unsigned int headroom
;
2768 int sg
= !!(features
& NETIF_F_SG
);
2769 int nfrags
= skb_shinfo(skb
)->nr_frags
;
2774 proto
= skb_network_protocol(skb
);
2775 if (unlikely(!proto
))
2776 return ERR_PTR(-EINVAL
);
2778 csum
= !!can_checksum_protocol(features
, proto
);
2779 __skb_push(skb
, doffset
);
2780 headroom
= skb_headroom(skb
);
2781 pos
= skb_headlen(skb
);
2784 struct sk_buff
*nskb
;
2789 len
= skb
->len
- offset
;
2793 hsize
= skb_headlen(skb
) - offset
;
2796 if (hsize
> len
|| !sg
)
2799 if (!hsize
&& i
>= nfrags
) {
2800 BUG_ON(fskb
->len
!= len
);
2803 nskb
= skb_clone(fskb
, GFP_ATOMIC
);
2806 if (unlikely(!nskb
))
2809 hsize
= skb_end_offset(nskb
);
2810 if (skb_cow_head(nskb
, doffset
+ headroom
)) {
2815 nskb
->truesize
+= skb_end_offset(nskb
) - hsize
;
2816 skb_release_head_state(nskb
);
2817 __skb_push(nskb
, doffset
);
2819 nskb
= __alloc_skb(hsize
+ doffset
+ headroom
,
2820 GFP_ATOMIC
, skb_alloc_rx_flag(skb
),
2823 if (unlikely(!nskb
))
2826 skb_reserve(nskb
, headroom
);
2827 __skb_put(nskb
, doffset
);
2836 __copy_skb_header(nskb
, skb
);
2837 nskb
->mac_len
= skb
->mac_len
;
2839 /* nskb and skb might have different headroom */
2840 if (nskb
->ip_summed
== CHECKSUM_PARTIAL
)
2841 nskb
->csum_start
+= skb_headroom(nskb
) - headroom
;
2843 skb_reset_mac_header(nskb
);
2844 skb_set_network_header(nskb
, skb
->mac_len
);
2845 nskb
->transport_header
= (nskb
->network_header
+
2846 skb_network_header_len(skb
));
2848 skb_copy_from_linear_data_offset(skb
, -tnl_hlen
,
2849 nskb
->data
- tnl_hlen
,
2850 doffset
+ tnl_hlen
);
2852 if (fskb
!= skb_shinfo(skb
)->frag_list
)
2853 goto perform_csum_check
;
2856 nskb
->ip_summed
= CHECKSUM_NONE
;
2857 nskb
->csum
= skb_copy_and_csum_bits(skb
, offset
,
2863 frag
= skb_shinfo(nskb
)->frags
;
2865 skb_copy_from_linear_data_offset(skb
, offset
,
2866 skb_put(nskb
, hsize
), hsize
);
2868 skb_shinfo(nskb
)->tx_flags
= skb_shinfo(skb
)->tx_flags
& SKBTX_SHARED_FRAG
;
2870 while (pos
< offset
+ len
&& i
< nfrags
) {
2871 *frag
= skb_shinfo(skb
)->frags
[i
];
2872 __skb_frag_ref(frag
);
2873 size
= skb_frag_size(frag
);
2876 frag
->page_offset
+= offset
- pos
;
2877 skb_frag_size_sub(frag
, offset
- pos
);
2880 skb_shinfo(nskb
)->nr_frags
++;
2882 if (pos
+ size
<= offset
+ len
) {
2886 skb_frag_size_sub(frag
, pos
+ size
- (offset
+ len
));
2893 if (pos
< offset
+ len
) {
2894 struct sk_buff
*fskb2
= fskb
;
2896 BUG_ON(pos
+ fskb
->len
!= offset
+ len
);
2902 fskb2
= skb_clone(fskb2
, GFP_ATOMIC
);
2908 SKB_FRAG_ASSERT(nskb
);
2909 skb_shinfo(nskb
)->frag_list
= fskb2
;
2913 nskb
->data_len
= len
- hsize
;
2914 nskb
->len
+= nskb
->data_len
;
2915 nskb
->truesize
+= nskb
->data_len
;
2919 nskb
->csum
= skb_checksum(nskb
, doffset
,
2920 nskb
->len
- doffset
, 0);
2921 nskb
->ip_summed
= CHECKSUM_NONE
;
2923 } while ((offset
+= len
) < skb
->len
);
2928 while ((skb
= segs
)) {
2932 return ERR_PTR(err
);
2934 EXPORT_SYMBOL_GPL(skb_segment
);
2936 int skb_gro_receive(struct sk_buff
**head
, struct sk_buff
*skb
)
2938 struct sk_buff
*p
= *head
;
2939 struct sk_buff
*nskb
;
2940 struct skb_shared_info
*skbinfo
= skb_shinfo(skb
);
2941 struct skb_shared_info
*pinfo
= skb_shinfo(p
);
2942 unsigned int headroom
;
2943 unsigned int len
= skb_gro_len(skb
);
2944 unsigned int offset
= skb_gro_offset(skb
);
2945 unsigned int headlen
= skb_headlen(skb
);
2946 unsigned int delta_truesize
;
2948 if (p
->len
+ len
>= 65536)
2951 if (pinfo
->frag_list
)
2953 else if (headlen
<= offset
) {
2956 int i
= skbinfo
->nr_frags
;
2957 int nr_frags
= pinfo
->nr_frags
+ i
;
2961 if (nr_frags
> MAX_SKB_FRAGS
)
2964 pinfo
->nr_frags
= nr_frags
;
2965 skbinfo
->nr_frags
= 0;
2967 frag
= pinfo
->frags
+ nr_frags
;
2968 frag2
= skbinfo
->frags
+ i
;
2973 frag
->page_offset
+= offset
;
2974 skb_frag_size_sub(frag
, offset
);
2976 /* all fragments truesize : remove (head size + sk_buff) */
2977 delta_truesize
= skb
->truesize
-
2978 SKB_TRUESIZE(skb_end_offset(skb
));
2980 skb
->truesize
-= skb
->data_len
;
2981 skb
->len
-= skb
->data_len
;
2984 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE
;
2986 } else if (skb
->head_frag
) {
2987 int nr_frags
= pinfo
->nr_frags
;
2988 skb_frag_t
*frag
= pinfo
->frags
+ nr_frags
;
2989 struct page
*page
= virt_to_head_page(skb
->head
);
2990 unsigned int first_size
= headlen
- offset
;
2991 unsigned int first_offset
;
2993 if (nr_frags
+ 1 + skbinfo
->nr_frags
> MAX_SKB_FRAGS
)
2996 first_offset
= skb
->data
-
2997 (unsigned char *)page_address(page
) +
3000 pinfo
->nr_frags
= nr_frags
+ 1 + skbinfo
->nr_frags
;
3002 frag
->page
.p
= page
;
3003 frag
->page_offset
= first_offset
;
3004 skb_frag_size_set(frag
, first_size
);
3006 memcpy(frag
+ 1, skbinfo
->frags
, sizeof(*frag
) * skbinfo
->nr_frags
);
3007 /* We dont need to clear skbinfo->nr_frags here */
3009 delta_truesize
= skb
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3010 NAPI_GRO_CB(skb
)->free
= NAPI_GRO_FREE_STOLEN_HEAD
;
3012 } else if (skb_gro_len(p
) != pinfo
->gso_size
)
3015 headroom
= skb_headroom(p
);
3016 nskb
= alloc_skb(headroom
+ skb_gro_offset(p
), GFP_ATOMIC
);
3017 if (unlikely(!nskb
))
3020 __copy_skb_header(nskb
, p
);
3021 nskb
->mac_len
= p
->mac_len
;
3023 skb_reserve(nskb
, headroom
);
3024 __skb_put(nskb
, skb_gro_offset(p
));
3026 skb_set_mac_header(nskb
, skb_mac_header(p
) - p
->data
);
3027 skb_set_network_header(nskb
, skb_network_offset(p
));
3028 skb_set_transport_header(nskb
, skb_transport_offset(p
));
3030 __skb_pull(p
, skb_gro_offset(p
));
3031 memcpy(skb_mac_header(nskb
), skb_mac_header(p
),
3032 p
->data
- skb_mac_header(p
));
3034 skb_shinfo(nskb
)->frag_list
= p
;
3035 skb_shinfo(nskb
)->gso_size
= pinfo
->gso_size
;
3036 pinfo
->gso_size
= 0;
3037 skb_header_release(p
);
3038 NAPI_GRO_CB(nskb
)->last
= p
;
3040 nskb
->data_len
+= p
->len
;
3041 nskb
->truesize
+= p
->truesize
;
3042 nskb
->len
+= p
->len
;
3045 nskb
->next
= p
->next
;
3051 delta_truesize
= skb
->truesize
;
3052 if (offset
> headlen
) {
3053 unsigned int eat
= offset
- headlen
;
3055 skbinfo
->frags
[0].page_offset
+= eat
;
3056 skb_frag_size_sub(&skbinfo
->frags
[0], eat
);
3057 skb
->data_len
-= eat
;
3062 __skb_pull(skb
, offset
);
3064 NAPI_GRO_CB(p
)->last
->next
= skb
;
3065 NAPI_GRO_CB(p
)->last
= skb
;
3066 skb_header_release(skb
);
3069 NAPI_GRO_CB(p
)->count
++;
3071 p
->truesize
+= delta_truesize
;
3074 NAPI_GRO_CB(skb
)->same_flow
= 1;
3077 EXPORT_SYMBOL_GPL(skb_gro_receive
);
3079 void __init
skb_init(void)
3081 skbuff_head_cache
= kmem_cache_create("skbuff_head_cache",
3082 sizeof(struct sk_buff
),
3084 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3086 skbuff_fclone_cache
= kmem_cache_create("skbuff_fclone_cache",
3087 (2*sizeof(struct sk_buff
)) +
3090 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
3095 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3096 * @skb: Socket buffer containing the buffers to be mapped
3097 * @sg: The scatter-gather list to map into
3098 * @offset: The offset into the buffer's contents to start mapping
3099 * @len: Length of buffer space to be mapped
3101 * Fill the specified scatter-gather list with mappings/pointers into a
3102 * region of the buffer space attached to a socket buffer.
3105 __skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3107 int start
= skb_headlen(skb
);
3108 int i
, copy
= start
- offset
;
3109 struct sk_buff
*frag_iter
;
3115 sg_set_buf(sg
, skb
->data
+ offset
, copy
);
3117 if ((len
-= copy
) == 0)
3122 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3125 WARN_ON(start
> offset
+ len
);
3127 end
= start
+ skb_frag_size(&skb_shinfo(skb
)->frags
[i
]);
3128 if ((copy
= end
- offset
) > 0) {
3129 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3133 sg_set_page(&sg
[elt
], skb_frag_page(frag
), copy
,
3134 frag
->page_offset
+offset
-start
);
3143 skb_walk_frags(skb
, frag_iter
) {
3146 WARN_ON(start
> offset
+ len
);
3148 end
= start
+ frag_iter
->len
;
3149 if ((copy
= end
- offset
) > 0) {
3152 elt
+= __skb_to_sgvec(frag_iter
, sg
+elt
, offset
- start
,
3154 if ((len
-= copy
) == 0)
3164 int skb_to_sgvec(struct sk_buff
*skb
, struct scatterlist
*sg
, int offset
, int len
)
3166 int nsg
= __skb_to_sgvec(skb
, sg
, offset
, len
);
3168 sg_mark_end(&sg
[nsg
- 1]);
3172 EXPORT_SYMBOL_GPL(skb_to_sgvec
);
3175 * skb_cow_data - Check that a socket buffer's data buffers are writable
3176 * @skb: The socket buffer to check.
3177 * @tailbits: Amount of trailing space to be added
3178 * @trailer: Returned pointer to the skb where the @tailbits space begins
3180 * Make sure that the data buffers attached to a socket buffer are
3181 * writable. If they are not, private copies are made of the data buffers
3182 * and the socket buffer is set to use these instead.
3184 * If @tailbits is given, make sure that there is space to write @tailbits
3185 * bytes of data beyond current end of socket buffer. @trailer will be
3186 * set to point to the skb in which this space begins.
3188 * The number of scatterlist elements required to completely map the
3189 * COW'd and extended socket buffer will be returned.
3191 int skb_cow_data(struct sk_buff
*skb
, int tailbits
, struct sk_buff
**trailer
)
3195 struct sk_buff
*skb1
, **skb_p
;
3197 /* If skb is cloned or its head is paged, reallocate
3198 * head pulling out all the pages (pages are considered not writable
3199 * at the moment even if they are anonymous).
3201 if ((skb_cloned(skb
) || skb_shinfo(skb
)->nr_frags
) &&
3202 __pskb_pull_tail(skb
, skb_pagelen(skb
)-skb_headlen(skb
)) == NULL
)
3205 /* Easy case. Most of packets will go this way. */
3206 if (!skb_has_frag_list(skb
)) {
3207 /* A little of trouble, not enough of space for trailer.
3208 * This should not happen, when stack is tuned to generate
3209 * good frames. OK, on miss we reallocate and reserve even more
3210 * space, 128 bytes is fair. */
3212 if (skb_tailroom(skb
) < tailbits
&&
3213 pskb_expand_head(skb
, 0, tailbits
-skb_tailroom(skb
)+128, GFP_ATOMIC
))
3221 /* Misery. We are in troubles, going to mincer fragments... */
3224 skb_p
= &skb_shinfo(skb
)->frag_list
;
3227 while ((skb1
= *skb_p
) != NULL
) {
3230 /* The fragment is partially pulled by someone,
3231 * this can happen on input. Copy it and everything
3234 if (skb_shared(skb1
))
3237 /* If the skb is the last, worry about trailer. */
3239 if (skb1
->next
== NULL
&& tailbits
) {
3240 if (skb_shinfo(skb1
)->nr_frags
||
3241 skb_has_frag_list(skb1
) ||
3242 skb_tailroom(skb1
) < tailbits
)
3243 ntail
= tailbits
+ 128;
3249 skb_shinfo(skb1
)->nr_frags
||
3250 skb_has_frag_list(skb1
)) {
3251 struct sk_buff
*skb2
;
3253 /* Fuck, we are miserable poor guys... */
3255 skb2
= skb_copy(skb1
, GFP_ATOMIC
);
3257 skb2
= skb_copy_expand(skb1
,
3261 if (unlikely(skb2
== NULL
))
3265 skb_set_owner_w(skb2
, skb1
->sk
);
3267 /* Looking around. Are we still alive?
3268 * OK, link new skb, drop old one */
3270 skb2
->next
= skb1
->next
;
3277 skb_p
= &skb1
->next
;
3282 EXPORT_SYMBOL_GPL(skb_cow_data
);
3284 static void sock_rmem_free(struct sk_buff
*skb
)
3286 struct sock
*sk
= skb
->sk
;
3288 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
3292 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3294 int sock_queue_err_skb(struct sock
*sk
, struct sk_buff
*skb
)
3298 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
3299 (unsigned int)sk
->sk_rcvbuf
)
3304 skb
->destructor
= sock_rmem_free
;
3305 atomic_add(skb
->truesize
, &sk
->sk_rmem_alloc
);
3307 /* before exiting rcu section, make sure dst is refcounted */
3310 skb_queue_tail(&sk
->sk_error_queue
, skb
);
3311 if (!sock_flag(sk
, SOCK_DEAD
))
3312 sk
->sk_data_ready(sk
, len
);
3315 EXPORT_SYMBOL(sock_queue_err_skb
);
3317 void skb_tstamp_tx(struct sk_buff
*orig_skb
,
3318 struct skb_shared_hwtstamps
*hwtstamps
)
3320 struct sock
*sk
= orig_skb
->sk
;
3321 struct sock_exterr_skb
*serr
;
3322 struct sk_buff
*skb
;
3329 *skb_hwtstamps(orig_skb
) =
3333 * no hardware time stamps available,
3334 * so keep the shared tx_flags and only
3335 * store software time stamp
3337 orig_skb
->tstamp
= ktime_get_real();
3340 skb
= skb_clone(orig_skb
, GFP_ATOMIC
);
3344 serr
= SKB_EXT_ERR(skb
);
3345 memset(serr
, 0, sizeof(*serr
));
3346 serr
->ee
.ee_errno
= ENOMSG
;
3347 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TIMESTAMPING
;
3349 err
= sock_queue_err_skb(sk
, skb
);
3354 EXPORT_SYMBOL_GPL(skb_tstamp_tx
);
3356 void skb_complete_wifi_ack(struct sk_buff
*skb
, bool acked
)
3358 struct sock
*sk
= skb
->sk
;
3359 struct sock_exterr_skb
*serr
;
3362 skb
->wifi_acked_valid
= 1;
3363 skb
->wifi_acked
= acked
;
3365 serr
= SKB_EXT_ERR(skb
);
3366 memset(serr
, 0, sizeof(*serr
));
3367 serr
->ee
.ee_errno
= ENOMSG
;
3368 serr
->ee
.ee_origin
= SO_EE_ORIGIN_TXSTATUS
;
3370 err
= sock_queue_err_skb(sk
, skb
);
3374 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack
);
3378 * skb_partial_csum_set - set up and verify partial csum values for packet
3379 * @skb: the skb to set
3380 * @start: the number of bytes after skb->data to start checksumming.
3381 * @off: the offset from start to place the checksum.
3383 * For untrusted partially-checksummed packets, we need to make sure the values
3384 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3386 * This function checks and sets those values and skb->ip_summed: if this
3387 * returns false you should drop the packet.
3389 bool skb_partial_csum_set(struct sk_buff
*skb
, u16 start
, u16 off
)
3391 if (unlikely(start
> skb_headlen(skb
)) ||
3392 unlikely((int)start
+ off
> skb_headlen(skb
) - 2)) {
3393 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3394 start
, off
, skb_headlen(skb
));
3397 skb
->ip_summed
= CHECKSUM_PARTIAL
;
3398 skb
->csum_start
= skb_headroom(skb
) + start
;
3399 skb
->csum_offset
= off
;
3400 skb_set_transport_header(skb
, start
);
3403 EXPORT_SYMBOL_GPL(skb_partial_csum_set
);
3405 void __skb_warn_lro_forwarding(const struct sk_buff
*skb
)
3407 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3410 EXPORT_SYMBOL(__skb_warn_lro_forwarding
);
3412 void kfree_skb_partial(struct sk_buff
*skb
, bool head_stolen
)
3415 skb_release_head_state(skb
);
3416 kmem_cache_free(skbuff_head_cache
, skb
);
3421 EXPORT_SYMBOL(kfree_skb_partial
);
3424 * skb_try_coalesce - try to merge skb to prior one
3426 * @from: buffer to add
3427 * @fragstolen: pointer to boolean
3428 * @delta_truesize: how much more was allocated than was requested
3430 bool skb_try_coalesce(struct sk_buff
*to
, struct sk_buff
*from
,
3431 bool *fragstolen
, int *delta_truesize
)
3433 int i
, delta
, len
= from
->len
;
3435 *fragstolen
= false;
3440 if (len
<= skb_tailroom(to
)) {
3441 BUG_ON(skb_copy_bits(from
, 0, skb_put(to
, len
), len
));
3442 *delta_truesize
= 0;
3446 if (skb_has_frag_list(to
) || skb_has_frag_list(from
))
3449 if (skb_headlen(from
) != 0) {
3451 unsigned int offset
;
3453 if (skb_shinfo(to
)->nr_frags
+
3454 skb_shinfo(from
)->nr_frags
>= MAX_SKB_FRAGS
)
3457 if (skb_head_is_locked(from
))
3460 delta
= from
->truesize
- SKB_DATA_ALIGN(sizeof(struct sk_buff
));
3462 page
= virt_to_head_page(from
->head
);
3463 offset
= from
->data
- (unsigned char *)page_address(page
);
3465 skb_fill_page_desc(to
, skb_shinfo(to
)->nr_frags
,
3466 page
, offset
, skb_headlen(from
));
3469 if (skb_shinfo(to
)->nr_frags
+
3470 skb_shinfo(from
)->nr_frags
> MAX_SKB_FRAGS
)
3473 delta
= from
->truesize
- SKB_TRUESIZE(skb_end_offset(from
));
3476 WARN_ON_ONCE(delta
< len
);
3478 memcpy(skb_shinfo(to
)->frags
+ skb_shinfo(to
)->nr_frags
,
3479 skb_shinfo(from
)->frags
,
3480 skb_shinfo(from
)->nr_frags
* sizeof(skb_frag_t
));
3481 skb_shinfo(to
)->nr_frags
+= skb_shinfo(from
)->nr_frags
;
3483 if (!skb_cloned(from
))
3484 skb_shinfo(from
)->nr_frags
= 0;
3486 /* if the skb is not cloned this does nothing
3487 * since we set nr_frags to 0.
3489 for (i
= 0; i
< skb_shinfo(from
)->nr_frags
; i
++)
3490 skb_frag_ref(from
, i
);
3492 to
->truesize
+= delta
;
3494 to
->data_len
+= len
;
3496 *delta_truesize
= delta
;
3499 EXPORT_SYMBOL(skb_try_coalesce
);
3502 * skb_scrub_packet - scrub an skb before sending it to another netns
3504 * @skb: buffer to clean
3506 * skb_scrub_packet can be used to clean an skb before injecting it in
3507 * another namespace. We have to clear all information in the skb that
3508 * could impact namespace isolation.
3510 void skb_scrub_packet(struct sk_buff
*skb
)
3513 skb
->tstamp
.tv64
= 0;
3514 skb
->pkt_type
= PACKET_HOST
;
3520 nf_reset_trace(skb
);
3522 EXPORT_SYMBOL_GPL(skb_scrub_packet
);