Linux 3.11-rc3
[cris-mirror.git] / net / core / skbuff.c
blob20e02d2605ecb2f10f5f74ab6f00cbd8fb852615
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
80 put_page(buf->page);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 get_page(buf->page);
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 return 1;
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * skb_panic - private function for out-of-line support
109 * @skb: buffer
110 * @sz: size
111 * @addr: address
112 * @msg: skb_over_panic or skb_under_panic
114 * Out-of-line support for skb_put() and skb_push().
115 * Called via the wrapper skb_over_panic() or skb_under_panic().
116 * Keep out of line to prevent kernel bloat.
117 * __builtin_return_address is not used because it is not always reliable.
119 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
120 const char msg[])
122 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
123 msg, addr, skb->len, sz, skb->head, skb->data,
124 (unsigned long)skb->tail, (unsigned long)skb->end,
125 skb->dev ? skb->dev->name : "<NULL>");
126 BUG();
129 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
131 skb_panic(skb, sz, addr, __func__);
134 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
136 skb_panic(skb, sz, addr, __func__);
140 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
141 * the caller if emergency pfmemalloc reserves are being used. If it is and
142 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
143 * may be used. Otherwise, the packet data may be discarded until enough
144 * memory is free
146 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
147 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
149 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
150 unsigned long ip, bool *pfmemalloc)
152 void *obj;
153 bool ret_pfmemalloc = false;
156 * Try a regular allocation, when that fails and we're not entitled
157 * to the reserves, fail.
159 obj = kmalloc_node_track_caller(size,
160 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
161 node);
162 if (obj || !(gfp_pfmemalloc_allowed(flags)))
163 goto out;
165 /* Try again but now we are using pfmemalloc reserves */
166 ret_pfmemalloc = true;
167 obj = kmalloc_node_track_caller(size, flags, node);
169 out:
170 if (pfmemalloc)
171 *pfmemalloc = ret_pfmemalloc;
173 return obj;
176 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
177 * 'private' fields and also do memory statistics to find all the
178 * [BEEP] leaks.
182 struct sk_buff *__alloc_skb_head(gfp_t gfp_mask, int node)
184 struct sk_buff *skb;
186 /* Get the HEAD */
187 skb = kmem_cache_alloc_node(skbuff_head_cache,
188 gfp_mask & ~__GFP_DMA, node);
189 if (!skb)
190 goto out;
193 * Only clear those fields we need to clear, not those that we will
194 * actually initialise below. Hence, don't put any more fields after
195 * the tail pointer in struct sk_buff!
197 memset(skb, 0, offsetof(struct sk_buff, tail));
198 skb->head = NULL;
199 skb->truesize = sizeof(struct sk_buff);
200 atomic_set(&skb->users, 1);
202 skb->mac_header = (typeof(skb->mac_header))~0U;
203 out:
204 return skb;
208 * __alloc_skb - allocate a network buffer
209 * @size: size to allocate
210 * @gfp_mask: allocation mask
211 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
212 * instead of head cache and allocate a cloned (child) skb.
213 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
214 * allocations in case the data is required for writeback
215 * @node: numa node to allocate memory on
217 * Allocate a new &sk_buff. The returned buffer has no headroom and a
218 * tail room of at least size bytes. The object has a reference count
219 * of one. The return is the buffer. On a failure the return is %NULL.
221 * Buffers may only be allocated from interrupts using a @gfp_mask of
222 * %GFP_ATOMIC.
224 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
225 int flags, int node)
227 struct kmem_cache *cache;
228 struct skb_shared_info *shinfo;
229 struct sk_buff *skb;
230 u8 *data;
231 bool pfmemalloc;
233 cache = (flags & SKB_ALLOC_FCLONE)
234 ? skbuff_fclone_cache : skbuff_head_cache;
236 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
237 gfp_mask |= __GFP_MEMALLOC;
239 /* Get the HEAD */
240 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
241 if (!skb)
242 goto out;
243 prefetchw(skb);
245 /* We do our best to align skb_shared_info on a separate cache
246 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
247 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
248 * Both skb->head and skb_shared_info are cache line aligned.
250 size = SKB_DATA_ALIGN(size);
251 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
252 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
253 if (!data)
254 goto nodata;
255 /* kmalloc(size) might give us more room than requested.
256 * Put skb_shared_info exactly at the end of allocated zone,
257 * to allow max possible filling before reallocation.
259 size = SKB_WITH_OVERHEAD(ksize(data));
260 prefetchw(data + size);
263 * Only clear those fields we need to clear, not those that we will
264 * actually initialise below. Hence, don't put any more fields after
265 * the tail pointer in struct sk_buff!
267 memset(skb, 0, offsetof(struct sk_buff, tail));
268 /* Account for allocated memory : skb + skb->head */
269 skb->truesize = SKB_TRUESIZE(size);
270 skb->pfmemalloc = pfmemalloc;
271 atomic_set(&skb->users, 1);
272 skb->head = data;
273 skb->data = data;
274 skb_reset_tail_pointer(skb);
275 skb->end = skb->tail + size;
276 skb->mac_header = (typeof(skb->mac_header))~0U;
277 skb->transport_header = (typeof(skb->transport_header))~0U;
279 /* make sure we initialize shinfo sequentially */
280 shinfo = skb_shinfo(skb);
281 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
282 atomic_set(&shinfo->dataref, 1);
283 kmemcheck_annotate_variable(shinfo->destructor_arg);
285 if (flags & SKB_ALLOC_FCLONE) {
286 struct sk_buff *child = skb + 1;
287 atomic_t *fclone_ref = (atomic_t *) (child + 1);
289 kmemcheck_annotate_bitfield(child, flags1);
290 kmemcheck_annotate_bitfield(child, flags2);
291 skb->fclone = SKB_FCLONE_ORIG;
292 atomic_set(fclone_ref, 1);
294 child->fclone = SKB_FCLONE_UNAVAILABLE;
295 child->pfmemalloc = pfmemalloc;
297 out:
298 return skb;
299 nodata:
300 kmem_cache_free(cache, skb);
301 skb = NULL;
302 goto out;
304 EXPORT_SYMBOL(__alloc_skb);
307 * build_skb - build a network buffer
308 * @data: data buffer provided by caller
309 * @frag_size: size of fragment, or 0 if head was kmalloced
311 * Allocate a new &sk_buff. Caller provides space holding head and
312 * skb_shared_info. @data must have been allocated by kmalloc()
313 * The return is the new skb buffer.
314 * On a failure the return is %NULL, and @data is not freed.
315 * Notes :
316 * Before IO, driver allocates only data buffer where NIC put incoming frame
317 * Driver should add room at head (NET_SKB_PAD) and
318 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
319 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
320 * before giving packet to stack.
321 * RX rings only contains data buffers, not full skbs.
323 struct sk_buff *build_skb(void *data, unsigned int frag_size)
325 struct skb_shared_info *shinfo;
326 struct sk_buff *skb;
327 unsigned int size = frag_size ? : ksize(data);
329 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
330 if (!skb)
331 return NULL;
333 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
335 memset(skb, 0, offsetof(struct sk_buff, tail));
336 skb->truesize = SKB_TRUESIZE(size);
337 skb->head_frag = frag_size != 0;
338 atomic_set(&skb->users, 1);
339 skb->head = data;
340 skb->data = data;
341 skb_reset_tail_pointer(skb);
342 skb->end = skb->tail + size;
343 skb->mac_header = (typeof(skb->mac_header))~0U;
344 skb->transport_header = (typeof(skb->transport_header))~0U;
346 /* make sure we initialize shinfo sequentially */
347 shinfo = skb_shinfo(skb);
348 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
349 atomic_set(&shinfo->dataref, 1);
350 kmemcheck_annotate_variable(shinfo->destructor_arg);
352 return skb;
354 EXPORT_SYMBOL(build_skb);
356 struct netdev_alloc_cache {
357 struct page_frag frag;
358 /* we maintain a pagecount bias, so that we dont dirty cache line
359 * containing page->_count every time we allocate a fragment.
361 unsigned int pagecnt_bias;
363 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
365 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
367 struct netdev_alloc_cache *nc;
368 void *data = NULL;
369 int order;
370 unsigned long flags;
372 local_irq_save(flags);
373 nc = &__get_cpu_var(netdev_alloc_cache);
374 if (unlikely(!nc->frag.page)) {
375 refill:
376 for (order = NETDEV_FRAG_PAGE_MAX_ORDER; ;) {
377 gfp_t gfp = gfp_mask;
379 if (order)
380 gfp |= __GFP_COMP | __GFP_NOWARN;
381 nc->frag.page = alloc_pages(gfp, order);
382 if (likely(nc->frag.page))
383 break;
384 if (--order < 0)
385 goto end;
387 nc->frag.size = PAGE_SIZE << order;
388 recycle:
389 atomic_set(&nc->frag.page->_count, NETDEV_PAGECNT_MAX_BIAS);
390 nc->pagecnt_bias = NETDEV_PAGECNT_MAX_BIAS;
391 nc->frag.offset = 0;
394 if (nc->frag.offset + fragsz > nc->frag.size) {
395 /* avoid unnecessary locked operations if possible */
396 if ((atomic_read(&nc->frag.page->_count) == nc->pagecnt_bias) ||
397 atomic_sub_and_test(nc->pagecnt_bias, &nc->frag.page->_count))
398 goto recycle;
399 goto refill;
402 data = page_address(nc->frag.page) + nc->frag.offset;
403 nc->frag.offset += fragsz;
404 nc->pagecnt_bias--;
405 end:
406 local_irq_restore(flags);
407 return data;
411 * netdev_alloc_frag - allocate a page fragment
412 * @fragsz: fragment size
414 * Allocates a frag from a page for receive buffer.
415 * Uses GFP_ATOMIC allocations.
417 void *netdev_alloc_frag(unsigned int fragsz)
419 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
421 EXPORT_SYMBOL(netdev_alloc_frag);
424 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
425 * @dev: network device to receive on
426 * @length: length to allocate
427 * @gfp_mask: get_free_pages mask, passed to alloc_skb
429 * Allocate a new &sk_buff and assign it a usage count of one. The
430 * buffer has unspecified headroom built in. Users should allocate
431 * the headroom they think they need without accounting for the
432 * built in space. The built in space is used for optimisations.
434 * %NULL is returned if there is no free memory.
436 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
437 unsigned int length, gfp_t gfp_mask)
439 struct sk_buff *skb = NULL;
440 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
441 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
443 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
444 void *data;
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
449 data = __netdev_alloc_frag(fragsz, gfp_mask);
451 if (likely(data)) {
452 skb = build_skb(data, fragsz);
453 if (unlikely(!skb))
454 put_page(virt_to_head_page(data));
456 } else {
457 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
458 SKB_ALLOC_RX, NUMA_NO_NODE);
460 if (likely(skb)) {
461 skb_reserve(skb, NET_SKB_PAD);
462 skb->dev = dev;
464 return skb;
466 EXPORT_SYMBOL(__netdev_alloc_skb);
468 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
469 int size, unsigned int truesize)
471 skb_fill_page_desc(skb, i, page, off, size);
472 skb->len += size;
473 skb->data_len += size;
474 skb->truesize += truesize;
476 EXPORT_SYMBOL(skb_add_rx_frag);
478 static void skb_drop_list(struct sk_buff **listp)
480 kfree_skb_list(*listp);
481 *listp = NULL;
484 static inline void skb_drop_fraglist(struct sk_buff *skb)
486 skb_drop_list(&skb_shinfo(skb)->frag_list);
489 static void skb_clone_fraglist(struct sk_buff *skb)
491 struct sk_buff *list;
493 skb_walk_frags(skb, list)
494 skb_get(list);
497 static void skb_free_head(struct sk_buff *skb)
499 if (skb->head_frag)
500 put_page(virt_to_head_page(skb->head));
501 else
502 kfree(skb->head);
505 static void skb_release_data(struct sk_buff *skb)
507 if (!skb->cloned ||
508 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
509 &skb_shinfo(skb)->dataref)) {
510 if (skb_shinfo(skb)->nr_frags) {
511 int i;
512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
513 skb_frag_unref(skb, i);
517 * If skb buf is from userspace, we need to notify the caller
518 * the lower device DMA has done;
520 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
521 struct ubuf_info *uarg;
523 uarg = skb_shinfo(skb)->destructor_arg;
524 if (uarg->callback)
525 uarg->callback(uarg, true);
528 if (skb_has_frag_list(skb))
529 skb_drop_fraglist(skb);
531 skb_free_head(skb);
536 * Free an skbuff by memory without cleaning the state.
538 static void kfree_skbmem(struct sk_buff *skb)
540 struct sk_buff *other;
541 atomic_t *fclone_ref;
543 switch (skb->fclone) {
544 case SKB_FCLONE_UNAVAILABLE:
545 kmem_cache_free(skbuff_head_cache, skb);
546 break;
548 case SKB_FCLONE_ORIG:
549 fclone_ref = (atomic_t *) (skb + 2);
550 if (atomic_dec_and_test(fclone_ref))
551 kmem_cache_free(skbuff_fclone_cache, skb);
552 break;
554 case SKB_FCLONE_CLONE:
555 fclone_ref = (atomic_t *) (skb + 1);
556 other = skb - 1;
558 /* The clone portion is available for
559 * fast-cloning again.
561 skb->fclone = SKB_FCLONE_UNAVAILABLE;
563 if (atomic_dec_and_test(fclone_ref))
564 kmem_cache_free(skbuff_fclone_cache, other);
565 break;
569 static void skb_release_head_state(struct sk_buff *skb)
571 skb_dst_drop(skb);
572 #ifdef CONFIG_XFRM
573 secpath_put(skb->sp);
574 #endif
575 if (skb->destructor) {
576 WARN_ON(in_irq());
577 skb->destructor(skb);
579 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
580 nf_conntrack_put(skb->nfct);
581 #endif
582 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
583 nf_conntrack_put_reasm(skb->nfct_reasm);
584 #endif
585 #ifdef CONFIG_BRIDGE_NETFILTER
586 nf_bridge_put(skb->nf_bridge);
587 #endif
588 /* XXX: IS this still necessary? - JHS */
589 #ifdef CONFIG_NET_SCHED
590 skb->tc_index = 0;
591 #ifdef CONFIG_NET_CLS_ACT
592 skb->tc_verd = 0;
593 #endif
594 #endif
597 /* Free everything but the sk_buff shell. */
598 static void skb_release_all(struct sk_buff *skb)
600 skb_release_head_state(skb);
601 if (likely(skb->head))
602 skb_release_data(skb);
606 * __kfree_skb - private function
607 * @skb: buffer
609 * Free an sk_buff. Release anything attached to the buffer.
610 * Clean the state. This is an internal helper function. Users should
611 * always call kfree_skb
614 void __kfree_skb(struct sk_buff *skb)
616 skb_release_all(skb);
617 kfree_skbmem(skb);
619 EXPORT_SYMBOL(__kfree_skb);
622 * kfree_skb - free an sk_buff
623 * @skb: buffer to free
625 * Drop a reference to the buffer and free it if the usage count has
626 * hit zero.
628 void kfree_skb(struct sk_buff *skb)
630 if (unlikely(!skb))
631 return;
632 if (likely(atomic_read(&skb->users) == 1))
633 smp_rmb();
634 else if (likely(!atomic_dec_and_test(&skb->users)))
635 return;
636 trace_kfree_skb(skb, __builtin_return_address(0));
637 __kfree_skb(skb);
639 EXPORT_SYMBOL(kfree_skb);
641 void kfree_skb_list(struct sk_buff *segs)
643 while (segs) {
644 struct sk_buff *next = segs->next;
646 kfree_skb(segs);
647 segs = next;
650 EXPORT_SYMBOL(kfree_skb_list);
653 * skb_tx_error - report an sk_buff xmit error
654 * @skb: buffer that triggered an error
656 * Report xmit error if a device callback is tracking this skb.
657 * skb must be freed afterwards.
659 void skb_tx_error(struct sk_buff *skb)
661 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
662 struct ubuf_info *uarg;
664 uarg = skb_shinfo(skb)->destructor_arg;
665 if (uarg->callback)
666 uarg->callback(uarg, false);
667 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
670 EXPORT_SYMBOL(skb_tx_error);
673 * consume_skb - free an skbuff
674 * @skb: buffer to free
676 * Drop a ref to the buffer and free it if the usage count has hit zero
677 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
678 * is being dropped after a failure and notes that
680 void consume_skb(struct sk_buff *skb)
682 if (unlikely(!skb))
683 return;
684 if (likely(atomic_read(&skb->users) == 1))
685 smp_rmb();
686 else if (likely(!atomic_dec_and_test(&skb->users)))
687 return;
688 trace_consume_skb(skb);
689 __kfree_skb(skb);
691 EXPORT_SYMBOL(consume_skb);
693 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
695 new->tstamp = old->tstamp;
696 new->dev = old->dev;
697 new->transport_header = old->transport_header;
698 new->network_header = old->network_header;
699 new->mac_header = old->mac_header;
700 new->inner_protocol = old->inner_protocol;
701 new->inner_transport_header = old->inner_transport_header;
702 new->inner_network_header = old->inner_network_header;
703 new->inner_mac_header = old->inner_mac_header;
704 skb_dst_copy(new, old);
705 new->rxhash = old->rxhash;
706 new->ooo_okay = old->ooo_okay;
707 new->l4_rxhash = old->l4_rxhash;
708 new->no_fcs = old->no_fcs;
709 new->encapsulation = old->encapsulation;
710 #ifdef CONFIG_XFRM
711 new->sp = secpath_get(old->sp);
712 #endif
713 memcpy(new->cb, old->cb, sizeof(old->cb));
714 new->csum = old->csum;
715 new->local_df = old->local_df;
716 new->pkt_type = old->pkt_type;
717 new->ip_summed = old->ip_summed;
718 skb_copy_queue_mapping(new, old);
719 new->priority = old->priority;
720 #if IS_ENABLED(CONFIG_IP_VS)
721 new->ipvs_property = old->ipvs_property;
722 #endif
723 new->pfmemalloc = old->pfmemalloc;
724 new->protocol = old->protocol;
725 new->mark = old->mark;
726 new->skb_iif = old->skb_iif;
727 __nf_copy(new, old);
728 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
729 new->nf_trace = old->nf_trace;
730 #endif
731 #ifdef CONFIG_NET_SCHED
732 new->tc_index = old->tc_index;
733 #ifdef CONFIG_NET_CLS_ACT
734 new->tc_verd = old->tc_verd;
735 #endif
736 #endif
737 new->vlan_proto = old->vlan_proto;
738 new->vlan_tci = old->vlan_tci;
740 skb_copy_secmark(new, old);
742 #ifdef CONFIG_NET_LL_RX_POLL
743 new->napi_id = old->napi_id;
744 #endif
748 * You should not add any new code to this function. Add it to
749 * __copy_skb_header above instead.
751 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
753 #define C(x) n->x = skb->x
755 n->next = n->prev = NULL;
756 n->sk = NULL;
757 __copy_skb_header(n, skb);
759 C(len);
760 C(data_len);
761 C(mac_len);
762 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
763 n->cloned = 1;
764 n->nohdr = 0;
765 n->destructor = NULL;
766 C(tail);
767 C(end);
768 C(head);
769 C(head_frag);
770 C(data);
771 C(truesize);
772 atomic_set(&n->users, 1);
774 atomic_inc(&(skb_shinfo(skb)->dataref));
775 skb->cloned = 1;
777 return n;
778 #undef C
782 * skb_morph - morph one skb into another
783 * @dst: the skb to receive the contents
784 * @src: the skb to supply the contents
786 * This is identical to skb_clone except that the target skb is
787 * supplied by the user.
789 * The target skb is returned upon exit.
791 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
793 skb_release_all(dst);
794 return __skb_clone(dst, src);
796 EXPORT_SYMBOL_GPL(skb_morph);
799 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
800 * @skb: the skb to modify
801 * @gfp_mask: allocation priority
803 * This must be called on SKBTX_DEV_ZEROCOPY skb.
804 * It will copy all frags into kernel and drop the reference
805 * to userspace pages.
807 * If this function is called from an interrupt gfp_mask() must be
808 * %GFP_ATOMIC.
810 * Returns 0 on success or a negative error code on failure
811 * to allocate kernel memory to copy to.
813 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
815 int i;
816 int num_frags = skb_shinfo(skb)->nr_frags;
817 struct page *page, *head = NULL;
818 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
820 for (i = 0; i < num_frags; i++) {
821 u8 *vaddr;
822 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
824 page = alloc_page(gfp_mask);
825 if (!page) {
826 while (head) {
827 struct page *next = (struct page *)page_private(head);
828 put_page(head);
829 head = next;
831 return -ENOMEM;
833 vaddr = kmap_atomic(skb_frag_page(f));
834 memcpy(page_address(page),
835 vaddr + f->page_offset, skb_frag_size(f));
836 kunmap_atomic(vaddr);
837 set_page_private(page, (unsigned long)head);
838 head = page;
841 /* skb frags release userspace buffers */
842 for (i = 0; i < num_frags; i++)
843 skb_frag_unref(skb, i);
845 uarg->callback(uarg, false);
847 /* skb frags point to kernel buffers */
848 for (i = num_frags - 1; i >= 0; i--) {
849 __skb_fill_page_desc(skb, i, head, 0,
850 skb_shinfo(skb)->frags[i].size);
851 head = (struct page *)page_private(head);
854 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
855 return 0;
857 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
860 * skb_clone - duplicate an sk_buff
861 * @skb: buffer to clone
862 * @gfp_mask: allocation priority
864 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
865 * copies share the same packet data but not structure. The new
866 * buffer has a reference count of 1. If the allocation fails the
867 * function returns %NULL otherwise the new buffer is returned.
869 * If this function is called from an interrupt gfp_mask() must be
870 * %GFP_ATOMIC.
873 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
875 struct sk_buff *n;
877 if (skb_orphan_frags(skb, gfp_mask))
878 return NULL;
880 n = skb + 1;
881 if (skb->fclone == SKB_FCLONE_ORIG &&
882 n->fclone == SKB_FCLONE_UNAVAILABLE) {
883 atomic_t *fclone_ref = (atomic_t *) (n + 1);
884 n->fclone = SKB_FCLONE_CLONE;
885 atomic_inc(fclone_ref);
886 } else {
887 if (skb_pfmemalloc(skb))
888 gfp_mask |= __GFP_MEMALLOC;
890 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
891 if (!n)
892 return NULL;
894 kmemcheck_annotate_bitfield(n, flags1);
895 kmemcheck_annotate_bitfield(n, flags2);
896 n->fclone = SKB_FCLONE_UNAVAILABLE;
899 return __skb_clone(n, skb);
901 EXPORT_SYMBOL(skb_clone);
903 static void skb_headers_offset_update(struct sk_buff *skb, int off)
905 /* {transport,network,mac}_header and tail are relative to skb->head */
906 skb->transport_header += off;
907 skb->network_header += off;
908 if (skb_mac_header_was_set(skb))
909 skb->mac_header += off;
910 skb->inner_transport_header += off;
911 skb->inner_network_header += off;
912 skb->inner_mac_header += off;
915 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
917 __copy_skb_header(new, old);
919 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
920 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
921 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
924 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
926 if (skb_pfmemalloc(skb))
927 return SKB_ALLOC_RX;
928 return 0;
932 * skb_copy - create private copy of an sk_buff
933 * @skb: buffer to copy
934 * @gfp_mask: allocation priority
936 * Make a copy of both an &sk_buff and its data. This is used when the
937 * caller wishes to modify the data and needs a private copy of the
938 * data to alter. Returns %NULL on failure or the pointer to the buffer
939 * on success. The returned buffer has a reference count of 1.
941 * As by-product this function converts non-linear &sk_buff to linear
942 * one, so that &sk_buff becomes completely private and caller is allowed
943 * to modify all the data of returned buffer. This means that this
944 * function is not recommended for use in circumstances when only
945 * header is going to be modified. Use pskb_copy() instead.
948 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
950 int headerlen = skb_headroom(skb);
951 unsigned int size = skb_end_offset(skb) + skb->data_len;
952 struct sk_buff *n = __alloc_skb(size, gfp_mask,
953 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
955 if (!n)
956 return NULL;
958 /* Set the data pointer */
959 skb_reserve(n, headerlen);
960 /* Set the tail pointer and length */
961 skb_put(n, skb->len);
963 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
964 BUG();
966 copy_skb_header(n, skb);
967 return n;
969 EXPORT_SYMBOL(skb_copy);
972 * __pskb_copy - create copy of an sk_buff with private head.
973 * @skb: buffer to copy
974 * @headroom: headroom of new skb
975 * @gfp_mask: allocation priority
977 * Make a copy of both an &sk_buff and part of its data, located
978 * in header. Fragmented data remain shared. This is used when
979 * the caller wishes to modify only header of &sk_buff and needs
980 * private copy of the header to alter. Returns %NULL on failure
981 * or the pointer to the buffer on success.
982 * The returned buffer has a reference count of 1.
985 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
987 unsigned int size = skb_headlen(skb) + headroom;
988 struct sk_buff *n = __alloc_skb(size, gfp_mask,
989 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
991 if (!n)
992 goto out;
994 /* Set the data pointer */
995 skb_reserve(n, headroom);
996 /* Set the tail pointer and length */
997 skb_put(n, skb_headlen(skb));
998 /* Copy the bytes */
999 skb_copy_from_linear_data(skb, n->data, n->len);
1001 n->truesize += skb->data_len;
1002 n->data_len = skb->data_len;
1003 n->len = skb->len;
1005 if (skb_shinfo(skb)->nr_frags) {
1006 int i;
1008 if (skb_orphan_frags(skb, gfp_mask)) {
1009 kfree_skb(n);
1010 n = NULL;
1011 goto out;
1013 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1014 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1015 skb_frag_ref(skb, i);
1017 skb_shinfo(n)->nr_frags = i;
1020 if (skb_has_frag_list(skb)) {
1021 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1022 skb_clone_fraglist(n);
1025 copy_skb_header(n, skb);
1026 out:
1027 return n;
1029 EXPORT_SYMBOL(__pskb_copy);
1032 * pskb_expand_head - reallocate header of &sk_buff
1033 * @skb: buffer to reallocate
1034 * @nhead: room to add at head
1035 * @ntail: room to add at tail
1036 * @gfp_mask: allocation priority
1038 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1039 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1040 * reference count of 1. Returns zero in the case of success or error,
1041 * if expansion failed. In the last case, &sk_buff is not changed.
1043 * All the pointers pointing into skb header may change and must be
1044 * reloaded after call to this function.
1047 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1048 gfp_t gfp_mask)
1050 int i;
1051 u8 *data;
1052 int size = nhead + skb_end_offset(skb) + ntail;
1053 long off;
1055 BUG_ON(nhead < 0);
1057 if (skb_shared(skb))
1058 BUG();
1060 size = SKB_DATA_ALIGN(size);
1062 if (skb_pfmemalloc(skb))
1063 gfp_mask |= __GFP_MEMALLOC;
1064 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1065 gfp_mask, NUMA_NO_NODE, NULL);
1066 if (!data)
1067 goto nodata;
1068 size = SKB_WITH_OVERHEAD(ksize(data));
1070 /* Copy only real data... and, alas, header. This should be
1071 * optimized for the cases when header is void.
1073 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1075 memcpy((struct skb_shared_info *)(data + size),
1076 skb_shinfo(skb),
1077 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1080 * if shinfo is shared we must drop the old head gracefully, but if it
1081 * is not we can just drop the old head and let the existing refcount
1082 * be since all we did is relocate the values
1084 if (skb_cloned(skb)) {
1085 /* copy this zero copy skb frags */
1086 if (skb_orphan_frags(skb, gfp_mask))
1087 goto nofrags;
1088 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1089 skb_frag_ref(skb, i);
1091 if (skb_has_frag_list(skb))
1092 skb_clone_fraglist(skb);
1094 skb_release_data(skb);
1095 } else {
1096 skb_free_head(skb);
1098 off = (data + nhead) - skb->head;
1100 skb->head = data;
1101 skb->head_frag = 0;
1102 skb->data += off;
1103 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1104 skb->end = size;
1105 off = nhead;
1106 #else
1107 skb->end = skb->head + size;
1108 #endif
1109 skb->tail += off;
1110 skb_headers_offset_update(skb, nhead);
1111 /* Only adjust this if it actually is csum_start rather than csum */
1112 if (skb->ip_summed == CHECKSUM_PARTIAL)
1113 skb->csum_start += nhead;
1114 skb->cloned = 0;
1115 skb->hdr_len = 0;
1116 skb->nohdr = 0;
1117 atomic_set(&skb_shinfo(skb)->dataref, 1);
1118 return 0;
1120 nofrags:
1121 kfree(data);
1122 nodata:
1123 return -ENOMEM;
1125 EXPORT_SYMBOL(pskb_expand_head);
1127 /* Make private copy of skb with writable head and some headroom */
1129 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1131 struct sk_buff *skb2;
1132 int delta = headroom - skb_headroom(skb);
1134 if (delta <= 0)
1135 skb2 = pskb_copy(skb, GFP_ATOMIC);
1136 else {
1137 skb2 = skb_clone(skb, GFP_ATOMIC);
1138 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1139 GFP_ATOMIC)) {
1140 kfree_skb(skb2);
1141 skb2 = NULL;
1144 return skb2;
1146 EXPORT_SYMBOL(skb_realloc_headroom);
1149 * skb_copy_expand - copy and expand sk_buff
1150 * @skb: buffer to copy
1151 * @newheadroom: new free bytes at head
1152 * @newtailroom: new free bytes at tail
1153 * @gfp_mask: allocation priority
1155 * Make a copy of both an &sk_buff and its data and while doing so
1156 * allocate additional space.
1158 * This is used when the caller wishes to modify the data and needs a
1159 * private copy of the data to alter as well as more space for new fields.
1160 * Returns %NULL on failure or the pointer to the buffer
1161 * on success. The returned buffer has a reference count of 1.
1163 * You must pass %GFP_ATOMIC as the allocation priority if this function
1164 * is called from an interrupt.
1166 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1167 int newheadroom, int newtailroom,
1168 gfp_t gfp_mask)
1171 * Allocate the copy buffer
1173 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1174 gfp_mask, skb_alloc_rx_flag(skb),
1175 NUMA_NO_NODE);
1176 int oldheadroom = skb_headroom(skb);
1177 int head_copy_len, head_copy_off;
1178 int off;
1180 if (!n)
1181 return NULL;
1183 skb_reserve(n, newheadroom);
1185 /* Set the tail pointer and length */
1186 skb_put(n, skb->len);
1188 head_copy_len = oldheadroom;
1189 head_copy_off = 0;
1190 if (newheadroom <= head_copy_len)
1191 head_copy_len = newheadroom;
1192 else
1193 head_copy_off = newheadroom - head_copy_len;
1195 /* Copy the linear header and data. */
1196 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1197 skb->len + head_copy_len))
1198 BUG();
1200 copy_skb_header(n, skb);
1202 off = newheadroom - oldheadroom;
1203 if (n->ip_summed == CHECKSUM_PARTIAL)
1204 n->csum_start += off;
1206 skb_headers_offset_update(n, off);
1208 return n;
1210 EXPORT_SYMBOL(skb_copy_expand);
1213 * skb_pad - zero pad the tail of an skb
1214 * @skb: buffer to pad
1215 * @pad: space to pad
1217 * Ensure that a buffer is followed by a padding area that is zero
1218 * filled. Used by network drivers which may DMA or transfer data
1219 * beyond the buffer end onto the wire.
1221 * May return error in out of memory cases. The skb is freed on error.
1224 int skb_pad(struct sk_buff *skb, int pad)
1226 int err;
1227 int ntail;
1229 /* If the skbuff is non linear tailroom is always zero.. */
1230 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1231 memset(skb->data+skb->len, 0, pad);
1232 return 0;
1235 ntail = skb->data_len + pad - (skb->end - skb->tail);
1236 if (likely(skb_cloned(skb) || ntail > 0)) {
1237 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1238 if (unlikely(err))
1239 goto free_skb;
1242 /* FIXME: The use of this function with non-linear skb's really needs
1243 * to be audited.
1245 err = skb_linearize(skb);
1246 if (unlikely(err))
1247 goto free_skb;
1249 memset(skb->data + skb->len, 0, pad);
1250 return 0;
1252 free_skb:
1253 kfree_skb(skb);
1254 return err;
1256 EXPORT_SYMBOL(skb_pad);
1259 * skb_put - add data to a buffer
1260 * @skb: buffer to use
1261 * @len: amount of data to add
1263 * This function extends the used data area of the buffer. If this would
1264 * exceed the total buffer size the kernel will panic. A pointer to the
1265 * first byte of the extra data is returned.
1267 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1269 unsigned char *tmp = skb_tail_pointer(skb);
1270 SKB_LINEAR_ASSERT(skb);
1271 skb->tail += len;
1272 skb->len += len;
1273 if (unlikely(skb->tail > skb->end))
1274 skb_over_panic(skb, len, __builtin_return_address(0));
1275 return tmp;
1277 EXPORT_SYMBOL(skb_put);
1280 * skb_push - add data to the start of a buffer
1281 * @skb: buffer to use
1282 * @len: amount of data to add
1284 * This function extends the used data area of the buffer at the buffer
1285 * start. If this would exceed the total buffer headroom the kernel will
1286 * panic. A pointer to the first byte of the extra data is returned.
1288 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1290 skb->data -= len;
1291 skb->len += len;
1292 if (unlikely(skb->data<skb->head))
1293 skb_under_panic(skb, len, __builtin_return_address(0));
1294 return skb->data;
1296 EXPORT_SYMBOL(skb_push);
1299 * skb_pull - remove data from the start of a buffer
1300 * @skb: buffer to use
1301 * @len: amount of data to remove
1303 * This function removes data from the start of a buffer, returning
1304 * the memory to the headroom. A pointer to the next data in the buffer
1305 * is returned. Once the data has been pulled future pushes will overwrite
1306 * the old data.
1308 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1310 return skb_pull_inline(skb, len);
1312 EXPORT_SYMBOL(skb_pull);
1315 * skb_trim - remove end from a buffer
1316 * @skb: buffer to alter
1317 * @len: new length
1319 * Cut the length of a buffer down by removing data from the tail. If
1320 * the buffer is already under the length specified it is not modified.
1321 * The skb must be linear.
1323 void skb_trim(struct sk_buff *skb, unsigned int len)
1325 if (skb->len > len)
1326 __skb_trim(skb, len);
1328 EXPORT_SYMBOL(skb_trim);
1330 /* Trims skb to length len. It can change skb pointers.
1333 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1335 struct sk_buff **fragp;
1336 struct sk_buff *frag;
1337 int offset = skb_headlen(skb);
1338 int nfrags = skb_shinfo(skb)->nr_frags;
1339 int i;
1340 int err;
1342 if (skb_cloned(skb) &&
1343 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1344 return err;
1346 i = 0;
1347 if (offset >= len)
1348 goto drop_pages;
1350 for (; i < nfrags; i++) {
1351 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1353 if (end < len) {
1354 offset = end;
1355 continue;
1358 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1360 drop_pages:
1361 skb_shinfo(skb)->nr_frags = i;
1363 for (; i < nfrags; i++)
1364 skb_frag_unref(skb, i);
1366 if (skb_has_frag_list(skb))
1367 skb_drop_fraglist(skb);
1368 goto done;
1371 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1372 fragp = &frag->next) {
1373 int end = offset + frag->len;
1375 if (skb_shared(frag)) {
1376 struct sk_buff *nfrag;
1378 nfrag = skb_clone(frag, GFP_ATOMIC);
1379 if (unlikely(!nfrag))
1380 return -ENOMEM;
1382 nfrag->next = frag->next;
1383 consume_skb(frag);
1384 frag = nfrag;
1385 *fragp = frag;
1388 if (end < len) {
1389 offset = end;
1390 continue;
1393 if (end > len &&
1394 unlikely((err = pskb_trim(frag, len - offset))))
1395 return err;
1397 if (frag->next)
1398 skb_drop_list(&frag->next);
1399 break;
1402 done:
1403 if (len > skb_headlen(skb)) {
1404 skb->data_len -= skb->len - len;
1405 skb->len = len;
1406 } else {
1407 skb->len = len;
1408 skb->data_len = 0;
1409 skb_set_tail_pointer(skb, len);
1412 return 0;
1414 EXPORT_SYMBOL(___pskb_trim);
1417 * __pskb_pull_tail - advance tail of skb header
1418 * @skb: buffer to reallocate
1419 * @delta: number of bytes to advance tail
1421 * The function makes a sense only on a fragmented &sk_buff,
1422 * it expands header moving its tail forward and copying necessary
1423 * data from fragmented part.
1425 * &sk_buff MUST have reference count of 1.
1427 * Returns %NULL (and &sk_buff does not change) if pull failed
1428 * or value of new tail of skb in the case of success.
1430 * All the pointers pointing into skb header may change and must be
1431 * reloaded after call to this function.
1434 /* Moves tail of skb head forward, copying data from fragmented part,
1435 * when it is necessary.
1436 * 1. It may fail due to malloc failure.
1437 * 2. It may change skb pointers.
1439 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1441 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1443 /* If skb has not enough free space at tail, get new one
1444 * plus 128 bytes for future expansions. If we have enough
1445 * room at tail, reallocate without expansion only if skb is cloned.
1447 int i, k, eat = (skb->tail + delta) - skb->end;
1449 if (eat > 0 || skb_cloned(skb)) {
1450 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1451 GFP_ATOMIC))
1452 return NULL;
1455 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1456 BUG();
1458 /* Optimization: no fragments, no reasons to preestimate
1459 * size of pulled pages. Superb.
1461 if (!skb_has_frag_list(skb))
1462 goto pull_pages;
1464 /* Estimate size of pulled pages. */
1465 eat = delta;
1466 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1467 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1469 if (size >= eat)
1470 goto pull_pages;
1471 eat -= size;
1474 /* If we need update frag list, we are in troubles.
1475 * Certainly, it possible to add an offset to skb data,
1476 * but taking into account that pulling is expected to
1477 * be very rare operation, it is worth to fight against
1478 * further bloating skb head and crucify ourselves here instead.
1479 * Pure masohism, indeed. 8)8)
1481 if (eat) {
1482 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1483 struct sk_buff *clone = NULL;
1484 struct sk_buff *insp = NULL;
1486 do {
1487 BUG_ON(!list);
1489 if (list->len <= eat) {
1490 /* Eaten as whole. */
1491 eat -= list->len;
1492 list = list->next;
1493 insp = list;
1494 } else {
1495 /* Eaten partially. */
1497 if (skb_shared(list)) {
1498 /* Sucks! We need to fork list. :-( */
1499 clone = skb_clone(list, GFP_ATOMIC);
1500 if (!clone)
1501 return NULL;
1502 insp = list->next;
1503 list = clone;
1504 } else {
1505 /* This may be pulled without
1506 * problems. */
1507 insp = list;
1509 if (!pskb_pull(list, eat)) {
1510 kfree_skb(clone);
1511 return NULL;
1513 break;
1515 } while (eat);
1517 /* Free pulled out fragments. */
1518 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1519 skb_shinfo(skb)->frag_list = list->next;
1520 kfree_skb(list);
1522 /* And insert new clone at head. */
1523 if (clone) {
1524 clone->next = list;
1525 skb_shinfo(skb)->frag_list = clone;
1528 /* Success! Now we may commit changes to skb data. */
1530 pull_pages:
1531 eat = delta;
1532 k = 0;
1533 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1534 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1536 if (size <= eat) {
1537 skb_frag_unref(skb, i);
1538 eat -= size;
1539 } else {
1540 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1541 if (eat) {
1542 skb_shinfo(skb)->frags[k].page_offset += eat;
1543 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1544 eat = 0;
1546 k++;
1549 skb_shinfo(skb)->nr_frags = k;
1551 skb->tail += delta;
1552 skb->data_len -= delta;
1554 return skb_tail_pointer(skb);
1556 EXPORT_SYMBOL(__pskb_pull_tail);
1559 * skb_copy_bits - copy bits from skb to kernel buffer
1560 * @skb: source skb
1561 * @offset: offset in source
1562 * @to: destination buffer
1563 * @len: number of bytes to copy
1565 * Copy the specified number of bytes from the source skb to the
1566 * destination buffer.
1568 * CAUTION ! :
1569 * If its prototype is ever changed,
1570 * check arch/{*}/net/{*}.S files,
1571 * since it is called from BPF assembly code.
1573 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1575 int start = skb_headlen(skb);
1576 struct sk_buff *frag_iter;
1577 int i, copy;
1579 if (offset > (int)skb->len - len)
1580 goto fault;
1582 /* Copy header. */
1583 if ((copy = start - offset) > 0) {
1584 if (copy > len)
1585 copy = len;
1586 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1587 if ((len -= copy) == 0)
1588 return 0;
1589 offset += copy;
1590 to += copy;
1593 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1594 int end;
1595 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1597 WARN_ON(start > offset + len);
1599 end = start + skb_frag_size(f);
1600 if ((copy = end - offset) > 0) {
1601 u8 *vaddr;
1603 if (copy > len)
1604 copy = len;
1606 vaddr = kmap_atomic(skb_frag_page(f));
1607 memcpy(to,
1608 vaddr + f->page_offset + offset - start,
1609 copy);
1610 kunmap_atomic(vaddr);
1612 if ((len -= copy) == 0)
1613 return 0;
1614 offset += copy;
1615 to += copy;
1617 start = end;
1620 skb_walk_frags(skb, frag_iter) {
1621 int end;
1623 WARN_ON(start > offset + len);
1625 end = start + frag_iter->len;
1626 if ((copy = end - offset) > 0) {
1627 if (copy > len)
1628 copy = len;
1629 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1630 goto fault;
1631 if ((len -= copy) == 0)
1632 return 0;
1633 offset += copy;
1634 to += copy;
1636 start = end;
1639 if (!len)
1640 return 0;
1642 fault:
1643 return -EFAULT;
1645 EXPORT_SYMBOL(skb_copy_bits);
1648 * Callback from splice_to_pipe(), if we need to release some pages
1649 * at the end of the spd in case we error'ed out in filling the pipe.
1651 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1653 put_page(spd->pages[i]);
1656 static struct page *linear_to_page(struct page *page, unsigned int *len,
1657 unsigned int *offset,
1658 struct sock *sk)
1660 struct page_frag *pfrag = sk_page_frag(sk);
1662 if (!sk_page_frag_refill(sk, pfrag))
1663 return NULL;
1665 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
1667 memcpy(page_address(pfrag->page) + pfrag->offset,
1668 page_address(page) + *offset, *len);
1669 *offset = pfrag->offset;
1670 pfrag->offset += *len;
1672 return pfrag->page;
1675 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1676 struct page *page,
1677 unsigned int offset)
1679 return spd->nr_pages &&
1680 spd->pages[spd->nr_pages - 1] == page &&
1681 (spd->partial[spd->nr_pages - 1].offset +
1682 spd->partial[spd->nr_pages - 1].len == offset);
1686 * Fill page/offset/length into spd, if it can hold more pages.
1688 static bool spd_fill_page(struct splice_pipe_desc *spd,
1689 struct pipe_inode_info *pipe, struct page *page,
1690 unsigned int *len, unsigned int offset,
1691 bool linear,
1692 struct sock *sk)
1694 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1695 return true;
1697 if (linear) {
1698 page = linear_to_page(page, len, &offset, sk);
1699 if (!page)
1700 return true;
1702 if (spd_can_coalesce(spd, page, offset)) {
1703 spd->partial[spd->nr_pages - 1].len += *len;
1704 return false;
1706 get_page(page);
1707 spd->pages[spd->nr_pages] = page;
1708 spd->partial[spd->nr_pages].len = *len;
1709 spd->partial[spd->nr_pages].offset = offset;
1710 spd->nr_pages++;
1712 return false;
1715 static bool __splice_segment(struct page *page, unsigned int poff,
1716 unsigned int plen, unsigned int *off,
1717 unsigned int *len,
1718 struct splice_pipe_desc *spd, bool linear,
1719 struct sock *sk,
1720 struct pipe_inode_info *pipe)
1722 if (!*len)
1723 return true;
1725 /* skip this segment if already processed */
1726 if (*off >= plen) {
1727 *off -= plen;
1728 return false;
1731 /* ignore any bits we already processed */
1732 poff += *off;
1733 plen -= *off;
1734 *off = 0;
1736 do {
1737 unsigned int flen = min(*len, plen);
1739 if (spd_fill_page(spd, pipe, page, &flen, poff,
1740 linear, sk))
1741 return true;
1742 poff += flen;
1743 plen -= flen;
1744 *len -= flen;
1745 } while (*len && plen);
1747 return false;
1751 * Map linear and fragment data from the skb to spd. It reports true if the
1752 * pipe is full or if we already spliced the requested length.
1754 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1755 unsigned int *offset, unsigned int *len,
1756 struct splice_pipe_desc *spd, struct sock *sk)
1758 int seg;
1760 /* map the linear part :
1761 * If skb->head_frag is set, this 'linear' part is backed by a
1762 * fragment, and if the head is not shared with any clones then
1763 * we can avoid a copy since we own the head portion of this page.
1765 if (__splice_segment(virt_to_page(skb->data),
1766 (unsigned long) skb->data & (PAGE_SIZE - 1),
1767 skb_headlen(skb),
1768 offset, len, spd,
1769 skb_head_is_locked(skb),
1770 sk, pipe))
1771 return true;
1774 * then map the fragments
1776 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1777 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1779 if (__splice_segment(skb_frag_page(f),
1780 f->page_offset, skb_frag_size(f),
1781 offset, len, spd, false, sk, pipe))
1782 return true;
1785 return false;
1789 * Map data from the skb to a pipe. Should handle both the linear part,
1790 * the fragments, and the frag list. It does NOT handle frag lists within
1791 * the frag list, if such a thing exists. We'd probably need to recurse to
1792 * handle that cleanly.
1794 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1795 struct pipe_inode_info *pipe, unsigned int tlen,
1796 unsigned int flags)
1798 struct partial_page partial[MAX_SKB_FRAGS];
1799 struct page *pages[MAX_SKB_FRAGS];
1800 struct splice_pipe_desc spd = {
1801 .pages = pages,
1802 .partial = partial,
1803 .nr_pages_max = MAX_SKB_FRAGS,
1804 .flags = flags,
1805 .ops = &sock_pipe_buf_ops,
1806 .spd_release = sock_spd_release,
1808 struct sk_buff *frag_iter;
1809 struct sock *sk = skb->sk;
1810 int ret = 0;
1813 * __skb_splice_bits() only fails if the output has no room left,
1814 * so no point in going over the frag_list for the error case.
1816 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1817 goto done;
1818 else if (!tlen)
1819 goto done;
1822 * now see if we have a frag_list to map
1824 skb_walk_frags(skb, frag_iter) {
1825 if (!tlen)
1826 break;
1827 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1828 break;
1831 done:
1832 if (spd.nr_pages) {
1834 * Drop the socket lock, otherwise we have reverse
1835 * locking dependencies between sk_lock and i_mutex
1836 * here as compared to sendfile(). We enter here
1837 * with the socket lock held, and splice_to_pipe() will
1838 * grab the pipe inode lock. For sendfile() emulation,
1839 * we call into ->sendpage() with the i_mutex lock held
1840 * and networking will grab the socket lock.
1842 release_sock(sk);
1843 ret = splice_to_pipe(pipe, &spd);
1844 lock_sock(sk);
1847 return ret;
1851 * skb_store_bits - store bits from kernel buffer to skb
1852 * @skb: destination buffer
1853 * @offset: offset in destination
1854 * @from: source buffer
1855 * @len: number of bytes to copy
1857 * Copy the specified number of bytes from the source buffer to the
1858 * destination skb. This function handles all the messy bits of
1859 * traversing fragment lists and such.
1862 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1864 int start = skb_headlen(skb);
1865 struct sk_buff *frag_iter;
1866 int i, copy;
1868 if (offset > (int)skb->len - len)
1869 goto fault;
1871 if ((copy = start - offset) > 0) {
1872 if (copy > len)
1873 copy = len;
1874 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1875 if ((len -= copy) == 0)
1876 return 0;
1877 offset += copy;
1878 from += copy;
1881 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1882 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1883 int end;
1885 WARN_ON(start > offset + len);
1887 end = start + skb_frag_size(frag);
1888 if ((copy = end - offset) > 0) {
1889 u8 *vaddr;
1891 if (copy > len)
1892 copy = len;
1894 vaddr = kmap_atomic(skb_frag_page(frag));
1895 memcpy(vaddr + frag->page_offset + offset - start,
1896 from, copy);
1897 kunmap_atomic(vaddr);
1899 if ((len -= copy) == 0)
1900 return 0;
1901 offset += copy;
1902 from += copy;
1904 start = end;
1907 skb_walk_frags(skb, frag_iter) {
1908 int end;
1910 WARN_ON(start > offset + len);
1912 end = start + frag_iter->len;
1913 if ((copy = end - offset) > 0) {
1914 if (copy > len)
1915 copy = len;
1916 if (skb_store_bits(frag_iter, offset - start,
1917 from, copy))
1918 goto fault;
1919 if ((len -= copy) == 0)
1920 return 0;
1921 offset += copy;
1922 from += copy;
1924 start = end;
1926 if (!len)
1927 return 0;
1929 fault:
1930 return -EFAULT;
1932 EXPORT_SYMBOL(skb_store_bits);
1934 /* Checksum skb data. */
1936 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1937 int len, __wsum csum)
1939 int start = skb_headlen(skb);
1940 int i, copy = start - offset;
1941 struct sk_buff *frag_iter;
1942 int pos = 0;
1944 /* Checksum header. */
1945 if (copy > 0) {
1946 if (copy > len)
1947 copy = len;
1948 csum = csum_partial(skb->data + offset, copy, csum);
1949 if ((len -= copy) == 0)
1950 return csum;
1951 offset += copy;
1952 pos = copy;
1955 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1956 int end;
1957 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1959 WARN_ON(start > offset + len);
1961 end = start + skb_frag_size(frag);
1962 if ((copy = end - offset) > 0) {
1963 __wsum csum2;
1964 u8 *vaddr;
1966 if (copy > len)
1967 copy = len;
1968 vaddr = kmap_atomic(skb_frag_page(frag));
1969 csum2 = csum_partial(vaddr + frag->page_offset +
1970 offset - start, copy, 0);
1971 kunmap_atomic(vaddr);
1972 csum = csum_block_add(csum, csum2, pos);
1973 if (!(len -= copy))
1974 return csum;
1975 offset += copy;
1976 pos += copy;
1978 start = end;
1981 skb_walk_frags(skb, frag_iter) {
1982 int end;
1984 WARN_ON(start > offset + len);
1986 end = start + frag_iter->len;
1987 if ((copy = end - offset) > 0) {
1988 __wsum csum2;
1989 if (copy > len)
1990 copy = len;
1991 csum2 = skb_checksum(frag_iter, offset - start,
1992 copy, 0);
1993 csum = csum_block_add(csum, csum2, pos);
1994 if ((len -= copy) == 0)
1995 return csum;
1996 offset += copy;
1997 pos += copy;
1999 start = end;
2001 BUG_ON(len);
2003 return csum;
2005 EXPORT_SYMBOL(skb_checksum);
2007 /* Both of above in one bottle. */
2009 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2010 u8 *to, int len, __wsum csum)
2012 int start = skb_headlen(skb);
2013 int i, copy = start - offset;
2014 struct sk_buff *frag_iter;
2015 int pos = 0;
2017 /* Copy header. */
2018 if (copy > 0) {
2019 if (copy > len)
2020 copy = len;
2021 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2022 copy, csum);
2023 if ((len -= copy) == 0)
2024 return csum;
2025 offset += copy;
2026 to += copy;
2027 pos = copy;
2030 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2031 int end;
2033 WARN_ON(start > offset + len);
2035 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2036 if ((copy = end - offset) > 0) {
2037 __wsum csum2;
2038 u8 *vaddr;
2039 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2041 if (copy > len)
2042 copy = len;
2043 vaddr = kmap_atomic(skb_frag_page(frag));
2044 csum2 = csum_partial_copy_nocheck(vaddr +
2045 frag->page_offset +
2046 offset - start, to,
2047 copy, 0);
2048 kunmap_atomic(vaddr);
2049 csum = csum_block_add(csum, csum2, pos);
2050 if (!(len -= copy))
2051 return csum;
2052 offset += copy;
2053 to += copy;
2054 pos += copy;
2056 start = end;
2059 skb_walk_frags(skb, frag_iter) {
2060 __wsum csum2;
2061 int end;
2063 WARN_ON(start > offset + len);
2065 end = start + frag_iter->len;
2066 if ((copy = end - offset) > 0) {
2067 if (copy > len)
2068 copy = len;
2069 csum2 = skb_copy_and_csum_bits(frag_iter,
2070 offset - start,
2071 to, copy, 0);
2072 csum = csum_block_add(csum, csum2, pos);
2073 if ((len -= copy) == 0)
2074 return csum;
2075 offset += copy;
2076 to += copy;
2077 pos += copy;
2079 start = end;
2081 BUG_ON(len);
2082 return csum;
2084 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2086 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2088 __wsum csum;
2089 long csstart;
2091 if (skb->ip_summed == CHECKSUM_PARTIAL)
2092 csstart = skb_checksum_start_offset(skb);
2093 else
2094 csstart = skb_headlen(skb);
2096 BUG_ON(csstart > skb_headlen(skb));
2098 skb_copy_from_linear_data(skb, to, csstart);
2100 csum = 0;
2101 if (csstart != skb->len)
2102 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2103 skb->len - csstart, 0);
2105 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2106 long csstuff = csstart + skb->csum_offset;
2108 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2111 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2114 * skb_dequeue - remove from the head of the queue
2115 * @list: list to dequeue from
2117 * Remove the head of the list. The list lock is taken so the function
2118 * may be used safely with other locking list functions. The head item is
2119 * returned or %NULL if the list is empty.
2122 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2124 unsigned long flags;
2125 struct sk_buff *result;
2127 spin_lock_irqsave(&list->lock, flags);
2128 result = __skb_dequeue(list);
2129 spin_unlock_irqrestore(&list->lock, flags);
2130 return result;
2132 EXPORT_SYMBOL(skb_dequeue);
2135 * skb_dequeue_tail - remove from the tail of the queue
2136 * @list: list to dequeue from
2138 * Remove the tail of the list. The list lock is taken so the function
2139 * may be used safely with other locking list functions. The tail item is
2140 * returned or %NULL if the list is empty.
2142 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2144 unsigned long flags;
2145 struct sk_buff *result;
2147 spin_lock_irqsave(&list->lock, flags);
2148 result = __skb_dequeue_tail(list);
2149 spin_unlock_irqrestore(&list->lock, flags);
2150 return result;
2152 EXPORT_SYMBOL(skb_dequeue_tail);
2155 * skb_queue_purge - empty a list
2156 * @list: list to empty
2158 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2159 * the list and one reference dropped. This function takes the list
2160 * lock and is atomic with respect to other list locking functions.
2162 void skb_queue_purge(struct sk_buff_head *list)
2164 struct sk_buff *skb;
2165 while ((skb = skb_dequeue(list)) != NULL)
2166 kfree_skb(skb);
2168 EXPORT_SYMBOL(skb_queue_purge);
2171 * skb_queue_head - queue a buffer at the list head
2172 * @list: list to use
2173 * @newsk: buffer to queue
2175 * Queue a buffer at the start of the list. This function takes the
2176 * list lock and can be used safely with other locking &sk_buff functions
2177 * safely.
2179 * A buffer cannot be placed on two lists at the same time.
2181 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2183 unsigned long flags;
2185 spin_lock_irqsave(&list->lock, flags);
2186 __skb_queue_head(list, newsk);
2187 spin_unlock_irqrestore(&list->lock, flags);
2189 EXPORT_SYMBOL(skb_queue_head);
2192 * skb_queue_tail - queue a buffer at the list tail
2193 * @list: list to use
2194 * @newsk: buffer to queue
2196 * Queue a buffer at the tail of the list. This function takes the
2197 * list lock and can be used safely with other locking &sk_buff functions
2198 * safely.
2200 * A buffer cannot be placed on two lists at the same time.
2202 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2204 unsigned long flags;
2206 spin_lock_irqsave(&list->lock, flags);
2207 __skb_queue_tail(list, newsk);
2208 spin_unlock_irqrestore(&list->lock, flags);
2210 EXPORT_SYMBOL(skb_queue_tail);
2213 * skb_unlink - remove a buffer from a list
2214 * @skb: buffer to remove
2215 * @list: list to use
2217 * Remove a packet from a list. The list locks are taken and this
2218 * function is atomic with respect to other list locked calls
2220 * You must know what list the SKB is on.
2222 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2224 unsigned long flags;
2226 spin_lock_irqsave(&list->lock, flags);
2227 __skb_unlink(skb, list);
2228 spin_unlock_irqrestore(&list->lock, flags);
2230 EXPORT_SYMBOL(skb_unlink);
2233 * skb_append - append a buffer
2234 * @old: buffer to insert after
2235 * @newsk: buffer to insert
2236 * @list: list to use
2238 * Place a packet after a given packet in a list. The list locks are taken
2239 * and this function is atomic with respect to other list locked calls.
2240 * A buffer cannot be placed on two lists at the same time.
2242 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2244 unsigned long flags;
2246 spin_lock_irqsave(&list->lock, flags);
2247 __skb_queue_after(list, old, newsk);
2248 spin_unlock_irqrestore(&list->lock, flags);
2250 EXPORT_SYMBOL(skb_append);
2253 * skb_insert - insert a buffer
2254 * @old: buffer to insert before
2255 * @newsk: buffer to insert
2256 * @list: list to use
2258 * Place a packet before a given packet in a list. The list locks are
2259 * taken and this function is atomic with respect to other list locked
2260 * calls.
2262 * A buffer cannot be placed on two lists at the same time.
2264 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2266 unsigned long flags;
2268 spin_lock_irqsave(&list->lock, flags);
2269 __skb_insert(newsk, old->prev, old, list);
2270 spin_unlock_irqrestore(&list->lock, flags);
2272 EXPORT_SYMBOL(skb_insert);
2274 static inline void skb_split_inside_header(struct sk_buff *skb,
2275 struct sk_buff* skb1,
2276 const u32 len, const int pos)
2278 int i;
2280 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2281 pos - len);
2282 /* And move data appendix as is. */
2283 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2284 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2286 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2287 skb_shinfo(skb)->nr_frags = 0;
2288 skb1->data_len = skb->data_len;
2289 skb1->len += skb1->data_len;
2290 skb->data_len = 0;
2291 skb->len = len;
2292 skb_set_tail_pointer(skb, len);
2295 static inline void skb_split_no_header(struct sk_buff *skb,
2296 struct sk_buff* skb1,
2297 const u32 len, int pos)
2299 int i, k = 0;
2300 const int nfrags = skb_shinfo(skb)->nr_frags;
2302 skb_shinfo(skb)->nr_frags = 0;
2303 skb1->len = skb1->data_len = skb->len - len;
2304 skb->len = len;
2305 skb->data_len = len - pos;
2307 for (i = 0; i < nfrags; i++) {
2308 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2310 if (pos + size > len) {
2311 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2313 if (pos < len) {
2314 /* Split frag.
2315 * We have two variants in this case:
2316 * 1. Move all the frag to the second
2317 * part, if it is possible. F.e.
2318 * this approach is mandatory for TUX,
2319 * where splitting is expensive.
2320 * 2. Split is accurately. We make this.
2322 skb_frag_ref(skb, i);
2323 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2324 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2325 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2326 skb_shinfo(skb)->nr_frags++;
2328 k++;
2329 } else
2330 skb_shinfo(skb)->nr_frags++;
2331 pos += size;
2333 skb_shinfo(skb1)->nr_frags = k;
2337 * skb_split - Split fragmented skb to two parts at length len.
2338 * @skb: the buffer to split
2339 * @skb1: the buffer to receive the second part
2340 * @len: new length for skb
2342 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2344 int pos = skb_headlen(skb);
2346 skb_shinfo(skb1)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2347 if (len < pos) /* Split line is inside header. */
2348 skb_split_inside_header(skb, skb1, len, pos);
2349 else /* Second chunk has no header, nothing to copy. */
2350 skb_split_no_header(skb, skb1, len, pos);
2352 EXPORT_SYMBOL(skb_split);
2354 /* Shifting from/to a cloned skb is a no-go.
2356 * Caller cannot keep skb_shinfo related pointers past calling here!
2358 static int skb_prepare_for_shift(struct sk_buff *skb)
2360 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2364 * skb_shift - Shifts paged data partially from skb to another
2365 * @tgt: buffer into which tail data gets added
2366 * @skb: buffer from which the paged data comes from
2367 * @shiftlen: shift up to this many bytes
2369 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2370 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2371 * It's up to caller to free skb if everything was shifted.
2373 * If @tgt runs out of frags, the whole operation is aborted.
2375 * Skb cannot include anything else but paged data while tgt is allowed
2376 * to have non-paged data as well.
2378 * TODO: full sized shift could be optimized but that would need
2379 * specialized skb free'er to handle frags without up-to-date nr_frags.
2381 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2383 int from, to, merge, todo;
2384 struct skb_frag_struct *fragfrom, *fragto;
2386 BUG_ON(shiftlen > skb->len);
2387 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2389 todo = shiftlen;
2390 from = 0;
2391 to = skb_shinfo(tgt)->nr_frags;
2392 fragfrom = &skb_shinfo(skb)->frags[from];
2394 /* Actual merge is delayed until the point when we know we can
2395 * commit all, so that we don't have to undo partial changes
2397 if (!to ||
2398 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2399 fragfrom->page_offset)) {
2400 merge = -1;
2401 } else {
2402 merge = to - 1;
2404 todo -= skb_frag_size(fragfrom);
2405 if (todo < 0) {
2406 if (skb_prepare_for_shift(skb) ||
2407 skb_prepare_for_shift(tgt))
2408 return 0;
2410 /* All previous frag pointers might be stale! */
2411 fragfrom = &skb_shinfo(skb)->frags[from];
2412 fragto = &skb_shinfo(tgt)->frags[merge];
2414 skb_frag_size_add(fragto, shiftlen);
2415 skb_frag_size_sub(fragfrom, shiftlen);
2416 fragfrom->page_offset += shiftlen;
2418 goto onlymerged;
2421 from++;
2424 /* Skip full, not-fitting skb to avoid expensive operations */
2425 if ((shiftlen == skb->len) &&
2426 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2427 return 0;
2429 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2430 return 0;
2432 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2433 if (to == MAX_SKB_FRAGS)
2434 return 0;
2436 fragfrom = &skb_shinfo(skb)->frags[from];
2437 fragto = &skb_shinfo(tgt)->frags[to];
2439 if (todo >= skb_frag_size(fragfrom)) {
2440 *fragto = *fragfrom;
2441 todo -= skb_frag_size(fragfrom);
2442 from++;
2443 to++;
2445 } else {
2446 __skb_frag_ref(fragfrom);
2447 fragto->page = fragfrom->page;
2448 fragto->page_offset = fragfrom->page_offset;
2449 skb_frag_size_set(fragto, todo);
2451 fragfrom->page_offset += todo;
2452 skb_frag_size_sub(fragfrom, todo);
2453 todo = 0;
2455 to++;
2456 break;
2460 /* Ready to "commit" this state change to tgt */
2461 skb_shinfo(tgt)->nr_frags = to;
2463 if (merge >= 0) {
2464 fragfrom = &skb_shinfo(skb)->frags[0];
2465 fragto = &skb_shinfo(tgt)->frags[merge];
2467 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2468 __skb_frag_unref(fragfrom);
2471 /* Reposition in the original skb */
2472 to = 0;
2473 while (from < skb_shinfo(skb)->nr_frags)
2474 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2475 skb_shinfo(skb)->nr_frags = to;
2477 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2479 onlymerged:
2480 /* Most likely the tgt won't ever need its checksum anymore, skb on
2481 * the other hand might need it if it needs to be resent
2483 tgt->ip_summed = CHECKSUM_PARTIAL;
2484 skb->ip_summed = CHECKSUM_PARTIAL;
2486 /* Yak, is it really working this way? Some helper please? */
2487 skb->len -= shiftlen;
2488 skb->data_len -= shiftlen;
2489 skb->truesize -= shiftlen;
2490 tgt->len += shiftlen;
2491 tgt->data_len += shiftlen;
2492 tgt->truesize += shiftlen;
2494 return shiftlen;
2498 * skb_prepare_seq_read - Prepare a sequential read of skb data
2499 * @skb: the buffer to read
2500 * @from: lower offset of data to be read
2501 * @to: upper offset of data to be read
2502 * @st: state variable
2504 * Initializes the specified state variable. Must be called before
2505 * invoking skb_seq_read() for the first time.
2507 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2508 unsigned int to, struct skb_seq_state *st)
2510 st->lower_offset = from;
2511 st->upper_offset = to;
2512 st->root_skb = st->cur_skb = skb;
2513 st->frag_idx = st->stepped_offset = 0;
2514 st->frag_data = NULL;
2516 EXPORT_SYMBOL(skb_prepare_seq_read);
2519 * skb_seq_read - Sequentially read skb data
2520 * @consumed: number of bytes consumed by the caller so far
2521 * @data: destination pointer for data to be returned
2522 * @st: state variable
2524 * Reads a block of skb data at &consumed relative to the
2525 * lower offset specified to skb_prepare_seq_read(). Assigns
2526 * the head of the data block to &data and returns the length
2527 * of the block or 0 if the end of the skb data or the upper
2528 * offset has been reached.
2530 * The caller is not required to consume all of the data
2531 * returned, i.e. &consumed is typically set to the number
2532 * of bytes already consumed and the next call to
2533 * skb_seq_read() will return the remaining part of the block.
2535 * Note 1: The size of each block of data returned can be arbitrary,
2536 * this limitation is the cost for zerocopy seqeuental
2537 * reads of potentially non linear data.
2539 * Note 2: Fragment lists within fragments are not implemented
2540 * at the moment, state->root_skb could be replaced with
2541 * a stack for this purpose.
2543 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2544 struct skb_seq_state *st)
2546 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2547 skb_frag_t *frag;
2549 if (unlikely(abs_offset >= st->upper_offset)) {
2550 if (st->frag_data) {
2551 kunmap_atomic(st->frag_data);
2552 st->frag_data = NULL;
2554 return 0;
2557 next_skb:
2558 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2560 if (abs_offset < block_limit && !st->frag_data) {
2561 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2562 return block_limit - abs_offset;
2565 if (st->frag_idx == 0 && !st->frag_data)
2566 st->stepped_offset += skb_headlen(st->cur_skb);
2568 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2569 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2570 block_limit = skb_frag_size(frag) + st->stepped_offset;
2572 if (abs_offset < block_limit) {
2573 if (!st->frag_data)
2574 st->frag_data = kmap_atomic(skb_frag_page(frag));
2576 *data = (u8 *) st->frag_data + frag->page_offset +
2577 (abs_offset - st->stepped_offset);
2579 return block_limit - abs_offset;
2582 if (st->frag_data) {
2583 kunmap_atomic(st->frag_data);
2584 st->frag_data = NULL;
2587 st->frag_idx++;
2588 st->stepped_offset += skb_frag_size(frag);
2591 if (st->frag_data) {
2592 kunmap_atomic(st->frag_data);
2593 st->frag_data = NULL;
2596 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2597 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2598 st->frag_idx = 0;
2599 goto next_skb;
2600 } else if (st->cur_skb->next) {
2601 st->cur_skb = st->cur_skb->next;
2602 st->frag_idx = 0;
2603 goto next_skb;
2606 return 0;
2608 EXPORT_SYMBOL(skb_seq_read);
2611 * skb_abort_seq_read - Abort a sequential read of skb data
2612 * @st: state variable
2614 * Must be called if skb_seq_read() was not called until it
2615 * returned 0.
2617 void skb_abort_seq_read(struct skb_seq_state *st)
2619 if (st->frag_data)
2620 kunmap_atomic(st->frag_data);
2622 EXPORT_SYMBOL(skb_abort_seq_read);
2624 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2626 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2627 struct ts_config *conf,
2628 struct ts_state *state)
2630 return skb_seq_read(offset, text, TS_SKB_CB(state));
2633 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2635 skb_abort_seq_read(TS_SKB_CB(state));
2639 * skb_find_text - Find a text pattern in skb data
2640 * @skb: the buffer to look in
2641 * @from: search offset
2642 * @to: search limit
2643 * @config: textsearch configuration
2644 * @state: uninitialized textsearch state variable
2646 * Finds a pattern in the skb data according to the specified
2647 * textsearch configuration. Use textsearch_next() to retrieve
2648 * subsequent occurrences of the pattern. Returns the offset
2649 * to the first occurrence or UINT_MAX if no match was found.
2651 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2652 unsigned int to, struct ts_config *config,
2653 struct ts_state *state)
2655 unsigned int ret;
2657 config->get_next_block = skb_ts_get_next_block;
2658 config->finish = skb_ts_finish;
2660 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2662 ret = textsearch_find(config, state);
2663 return (ret <= to - from ? ret : UINT_MAX);
2665 EXPORT_SYMBOL(skb_find_text);
2668 * skb_append_datato_frags - append the user data to a skb
2669 * @sk: sock structure
2670 * @skb: skb structure to be appened with user data.
2671 * @getfrag: call back function to be used for getting the user data
2672 * @from: pointer to user message iov
2673 * @length: length of the iov message
2675 * Description: This procedure append the user data in the fragment part
2676 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2678 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2679 int (*getfrag)(void *from, char *to, int offset,
2680 int len, int odd, struct sk_buff *skb),
2681 void *from, int length)
2683 int frg_cnt = skb_shinfo(skb)->nr_frags;
2684 int copy;
2685 int offset = 0;
2686 int ret;
2687 struct page_frag *pfrag = &current->task_frag;
2689 do {
2690 /* Return error if we don't have space for new frag */
2691 if (frg_cnt >= MAX_SKB_FRAGS)
2692 return -EMSGSIZE;
2694 if (!sk_page_frag_refill(sk, pfrag))
2695 return -ENOMEM;
2697 /* copy the user data to page */
2698 copy = min_t(int, length, pfrag->size - pfrag->offset);
2700 ret = getfrag(from, page_address(pfrag->page) + pfrag->offset,
2701 offset, copy, 0, skb);
2702 if (ret < 0)
2703 return -EFAULT;
2705 /* copy was successful so update the size parameters */
2706 skb_fill_page_desc(skb, frg_cnt, pfrag->page, pfrag->offset,
2707 copy);
2708 frg_cnt++;
2709 pfrag->offset += copy;
2710 get_page(pfrag->page);
2712 skb->truesize += copy;
2713 atomic_add(copy, &sk->sk_wmem_alloc);
2714 skb->len += copy;
2715 skb->data_len += copy;
2716 offset += copy;
2717 length -= copy;
2719 } while (length > 0);
2721 return 0;
2723 EXPORT_SYMBOL(skb_append_datato_frags);
2726 * skb_pull_rcsum - pull skb and update receive checksum
2727 * @skb: buffer to update
2728 * @len: length of data pulled
2730 * This function performs an skb_pull on the packet and updates
2731 * the CHECKSUM_COMPLETE checksum. It should be used on
2732 * receive path processing instead of skb_pull unless you know
2733 * that the checksum difference is zero (e.g., a valid IP header)
2734 * or you are setting ip_summed to CHECKSUM_NONE.
2736 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2738 BUG_ON(len > skb->len);
2739 skb->len -= len;
2740 BUG_ON(skb->len < skb->data_len);
2741 skb_postpull_rcsum(skb, skb->data, len);
2742 return skb->data += len;
2744 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2747 * skb_segment - Perform protocol segmentation on skb.
2748 * @skb: buffer to segment
2749 * @features: features for the output path (see dev->features)
2751 * This function performs segmentation on the given skb. It returns
2752 * a pointer to the first in a list of new skbs for the segments.
2753 * In case of error it returns ERR_PTR(err).
2755 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2757 struct sk_buff *segs = NULL;
2758 struct sk_buff *tail = NULL;
2759 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2760 unsigned int mss = skb_shinfo(skb)->gso_size;
2761 unsigned int doffset = skb->data - skb_mac_header(skb);
2762 unsigned int offset = doffset;
2763 unsigned int tnl_hlen = skb_tnl_header_len(skb);
2764 unsigned int headroom;
2765 unsigned int len;
2766 __be16 proto;
2767 bool csum;
2768 int sg = !!(features & NETIF_F_SG);
2769 int nfrags = skb_shinfo(skb)->nr_frags;
2770 int err = -ENOMEM;
2771 int i = 0;
2772 int pos;
2774 proto = skb_network_protocol(skb);
2775 if (unlikely(!proto))
2776 return ERR_PTR(-EINVAL);
2778 csum = !!can_checksum_protocol(features, proto);
2779 __skb_push(skb, doffset);
2780 headroom = skb_headroom(skb);
2781 pos = skb_headlen(skb);
2783 do {
2784 struct sk_buff *nskb;
2785 skb_frag_t *frag;
2786 int hsize;
2787 int size;
2789 len = skb->len - offset;
2790 if (len > mss)
2791 len = mss;
2793 hsize = skb_headlen(skb) - offset;
2794 if (hsize < 0)
2795 hsize = 0;
2796 if (hsize > len || !sg)
2797 hsize = len;
2799 if (!hsize && i >= nfrags) {
2800 BUG_ON(fskb->len != len);
2802 pos += len;
2803 nskb = skb_clone(fskb, GFP_ATOMIC);
2804 fskb = fskb->next;
2806 if (unlikely(!nskb))
2807 goto err;
2809 hsize = skb_end_offset(nskb);
2810 if (skb_cow_head(nskb, doffset + headroom)) {
2811 kfree_skb(nskb);
2812 goto err;
2815 nskb->truesize += skb_end_offset(nskb) - hsize;
2816 skb_release_head_state(nskb);
2817 __skb_push(nskb, doffset);
2818 } else {
2819 nskb = __alloc_skb(hsize + doffset + headroom,
2820 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2821 NUMA_NO_NODE);
2823 if (unlikely(!nskb))
2824 goto err;
2826 skb_reserve(nskb, headroom);
2827 __skb_put(nskb, doffset);
2830 if (segs)
2831 tail->next = nskb;
2832 else
2833 segs = nskb;
2834 tail = nskb;
2836 __copy_skb_header(nskb, skb);
2837 nskb->mac_len = skb->mac_len;
2839 /* nskb and skb might have different headroom */
2840 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2841 nskb->csum_start += skb_headroom(nskb) - headroom;
2843 skb_reset_mac_header(nskb);
2844 skb_set_network_header(nskb, skb->mac_len);
2845 nskb->transport_header = (nskb->network_header +
2846 skb_network_header_len(skb));
2848 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
2849 nskb->data - tnl_hlen,
2850 doffset + tnl_hlen);
2852 if (fskb != skb_shinfo(skb)->frag_list)
2853 goto perform_csum_check;
2855 if (!sg) {
2856 nskb->ip_summed = CHECKSUM_NONE;
2857 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2858 skb_put(nskb, len),
2859 len, 0);
2860 continue;
2863 frag = skb_shinfo(nskb)->frags;
2865 skb_copy_from_linear_data_offset(skb, offset,
2866 skb_put(nskb, hsize), hsize);
2868 skb_shinfo(nskb)->tx_flags = skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
2870 while (pos < offset + len && i < nfrags) {
2871 *frag = skb_shinfo(skb)->frags[i];
2872 __skb_frag_ref(frag);
2873 size = skb_frag_size(frag);
2875 if (pos < offset) {
2876 frag->page_offset += offset - pos;
2877 skb_frag_size_sub(frag, offset - pos);
2880 skb_shinfo(nskb)->nr_frags++;
2882 if (pos + size <= offset + len) {
2883 i++;
2884 pos += size;
2885 } else {
2886 skb_frag_size_sub(frag, pos + size - (offset + len));
2887 goto skip_fraglist;
2890 frag++;
2893 if (pos < offset + len) {
2894 struct sk_buff *fskb2 = fskb;
2896 BUG_ON(pos + fskb->len != offset + len);
2898 pos += fskb->len;
2899 fskb = fskb->next;
2901 if (fskb2->next) {
2902 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2903 if (!fskb2)
2904 goto err;
2905 } else
2906 skb_get(fskb2);
2908 SKB_FRAG_ASSERT(nskb);
2909 skb_shinfo(nskb)->frag_list = fskb2;
2912 skip_fraglist:
2913 nskb->data_len = len - hsize;
2914 nskb->len += nskb->data_len;
2915 nskb->truesize += nskb->data_len;
2917 perform_csum_check:
2918 if (!csum) {
2919 nskb->csum = skb_checksum(nskb, doffset,
2920 nskb->len - doffset, 0);
2921 nskb->ip_summed = CHECKSUM_NONE;
2923 } while ((offset += len) < skb->len);
2925 return segs;
2927 err:
2928 while ((skb = segs)) {
2929 segs = skb->next;
2930 kfree_skb(skb);
2932 return ERR_PTR(err);
2934 EXPORT_SYMBOL_GPL(skb_segment);
2936 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2938 struct sk_buff *p = *head;
2939 struct sk_buff *nskb;
2940 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2941 struct skb_shared_info *pinfo = skb_shinfo(p);
2942 unsigned int headroom;
2943 unsigned int len = skb_gro_len(skb);
2944 unsigned int offset = skb_gro_offset(skb);
2945 unsigned int headlen = skb_headlen(skb);
2946 unsigned int delta_truesize;
2948 if (p->len + len >= 65536)
2949 return -E2BIG;
2951 if (pinfo->frag_list)
2952 goto merge;
2953 else if (headlen <= offset) {
2954 skb_frag_t *frag;
2955 skb_frag_t *frag2;
2956 int i = skbinfo->nr_frags;
2957 int nr_frags = pinfo->nr_frags + i;
2959 offset -= headlen;
2961 if (nr_frags > MAX_SKB_FRAGS)
2962 return -E2BIG;
2964 pinfo->nr_frags = nr_frags;
2965 skbinfo->nr_frags = 0;
2967 frag = pinfo->frags + nr_frags;
2968 frag2 = skbinfo->frags + i;
2969 do {
2970 *--frag = *--frag2;
2971 } while (--i);
2973 frag->page_offset += offset;
2974 skb_frag_size_sub(frag, offset);
2976 /* all fragments truesize : remove (head size + sk_buff) */
2977 delta_truesize = skb->truesize -
2978 SKB_TRUESIZE(skb_end_offset(skb));
2980 skb->truesize -= skb->data_len;
2981 skb->len -= skb->data_len;
2982 skb->data_len = 0;
2984 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
2985 goto done;
2986 } else if (skb->head_frag) {
2987 int nr_frags = pinfo->nr_frags;
2988 skb_frag_t *frag = pinfo->frags + nr_frags;
2989 struct page *page = virt_to_head_page(skb->head);
2990 unsigned int first_size = headlen - offset;
2991 unsigned int first_offset;
2993 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
2994 return -E2BIG;
2996 first_offset = skb->data -
2997 (unsigned char *)page_address(page) +
2998 offset;
3000 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3002 frag->page.p = page;
3003 frag->page_offset = first_offset;
3004 skb_frag_size_set(frag, first_size);
3006 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3007 /* We dont need to clear skbinfo->nr_frags here */
3009 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3010 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3011 goto done;
3012 } else if (skb_gro_len(p) != pinfo->gso_size)
3013 return -E2BIG;
3015 headroom = skb_headroom(p);
3016 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3017 if (unlikely(!nskb))
3018 return -ENOMEM;
3020 __copy_skb_header(nskb, p);
3021 nskb->mac_len = p->mac_len;
3023 skb_reserve(nskb, headroom);
3024 __skb_put(nskb, skb_gro_offset(p));
3026 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3027 skb_set_network_header(nskb, skb_network_offset(p));
3028 skb_set_transport_header(nskb, skb_transport_offset(p));
3030 __skb_pull(p, skb_gro_offset(p));
3031 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3032 p->data - skb_mac_header(p));
3034 skb_shinfo(nskb)->frag_list = p;
3035 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3036 pinfo->gso_size = 0;
3037 skb_header_release(p);
3038 NAPI_GRO_CB(nskb)->last = p;
3040 nskb->data_len += p->len;
3041 nskb->truesize += p->truesize;
3042 nskb->len += p->len;
3044 *head = nskb;
3045 nskb->next = p->next;
3046 p->next = NULL;
3048 p = nskb;
3050 merge:
3051 delta_truesize = skb->truesize;
3052 if (offset > headlen) {
3053 unsigned int eat = offset - headlen;
3055 skbinfo->frags[0].page_offset += eat;
3056 skb_frag_size_sub(&skbinfo->frags[0], eat);
3057 skb->data_len -= eat;
3058 skb->len -= eat;
3059 offset = headlen;
3062 __skb_pull(skb, offset);
3064 NAPI_GRO_CB(p)->last->next = skb;
3065 NAPI_GRO_CB(p)->last = skb;
3066 skb_header_release(skb);
3068 done:
3069 NAPI_GRO_CB(p)->count++;
3070 p->data_len += len;
3071 p->truesize += delta_truesize;
3072 p->len += len;
3074 NAPI_GRO_CB(skb)->same_flow = 1;
3075 return 0;
3077 EXPORT_SYMBOL_GPL(skb_gro_receive);
3079 void __init skb_init(void)
3081 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3082 sizeof(struct sk_buff),
3084 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3085 NULL);
3086 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3087 (2*sizeof(struct sk_buff)) +
3088 sizeof(atomic_t),
3090 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3091 NULL);
3095 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3096 * @skb: Socket buffer containing the buffers to be mapped
3097 * @sg: The scatter-gather list to map into
3098 * @offset: The offset into the buffer's contents to start mapping
3099 * @len: Length of buffer space to be mapped
3101 * Fill the specified scatter-gather list with mappings/pointers into a
3102 * region of the buffer space attached to a socket buffer.
3104 static int
3105 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3107 int start = skb_headlen(skb);
3108 int i, copy = start - offset;
3109 struct sk_buff *frag_iter;
3110 int elt = 0;
3112 if (copy > 0) {
3113 if (copy > len)
3114 copy = len;
3115 sg_set_buf(sg, skb->data + offset, copy);
3116 elt++;
3117 if ((len -= copy) == 0)
3118 return elt;
3119 offset += copy;
3122 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3123 int end;
3125 WARN_ON(start > offset + len);
3127 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3128 if ((copy = end - offset) > 0) {
3129 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3131 if (copy > len)
3132 copy = len;
3133 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3134 frag->page_offset+offset-start);
3135 elt++;
3136 if (!(len -= copy))
3137 return elt;
3138 offset += copy;
3140 start = end;
3143 skb_walk_frags(skb, frag_iter) {
3144 int end;
3146 WARN_ON(start > offset + len);
3148 end = start + frag_iter->len;
3149 if ((copy = end - offset) > 0) {
3150 if (copy > len)
3151 copy = len;
3152 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3153 copy);
3154 if ((len -= copy) == 0)
3155 return elt;
3156 offset += copy;
3158 start = end;
3160 BUG_ON(len);
3161 return elt;
3164 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3166 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3168 sg_mark_end(&sg[nsg - 1]);
3170 return nsg;
3172 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3175 * skb_cow_data - Check that a socket buffer's data buffers are writable
3176 * @skb: The socket buffer to check.
3177 * @tailbits: Amount of trailing space to be added
3178 * @trailer: Returned pointer to the skb where the @tailbits space begins
3180 * Make sure that the data buffers attached to a socket buffer are
3181 * writable. If they are not, private copies are made of the data buffers
3182 * and the socket buffer is set to use these instead.
3184 * If @tailbits is given, make sure that there is space to write @tailbits
3185 * bytes of data beyond current end of socket buffer. @trailer will be
3186 * set to point to the skb in which this space begins.
3188 * The number of scatterlist elements required to completely map the
3189 * COW'd and extended socket buffer will be returned.
3191 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3193 int copyflag;
3194 int elt;
3195 struct sk_buff *skb1, **skb_p;
3197 /* If skb is cloned or its head is paged, reallocate
3198 * head pulling out all the pages (pages are considered not writable
3199 * at the moment even if they are anonymous).
3201 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3202 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3203 return -ENOMEM;
3205 /* Easy case. Most of packets will go this way. */
3206 if (!skb_has_frag_list(skb)) {
3207 /* A little of trouble, not enough of space for trailer.
3208 * This should not happen, when stack is tuned to generate
3209 * good frames. OK, on miss we reallocate and reserve even more
3210 * space, 128 bytes is fair. */
3212 if (skb_tailroom(skb) < tailbits &&
3213 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3214 return -ENOMEM;
3216 /* Voila! */
3217 *trailer = skb;
3218 return 1;
3221 /* Misery. We are in troubles, going to mincer fragments... */
3223 elt = 1;
3224 skb_p = &skb_shinfo(skb)->frag_list;
3225 copyflag = 0;
3227 while ((skb1 = *skb_p) != NULL) {
3228 int ntail = 0;
3230 /* The fragment is partially pulled by someone,
3231 * this can happen on input. Copy it and everything
3232 * after it. */
3234 if (skb_shared(skb1))
3235 copyflag = 1;
3237 /* If the skb is the last, worry about trailer. */
3239 if (skb1->next == NULL && tailbits) {
3240 if (skb_shinfo(skb1)->nr_frags ||
3241 skb_has_frag_list(skb1) ||
3242 skb_tailroom(skb1) < tailbits)
3243 ntail = tailbits + 128;
3246 if (copyflag ||
3247 skb_cloned(skb1) ||
3248 ntail ||
3249 skb_shinfo(skb1)->nr_frags ||
3250 skb_has_frag_list(skb1)) {
3251 struct sk_buff *skb2;
3253 /* Fuck, we are miserable poor guys... */
3254 if (ntail == 0)
3255 skb2 = skb_copy(skb1, GFP_ATOMIC);
3256 else
3257 skb2 = skb_copy_expand(skb1,
3258 skb_headroom(skb1),
3259 ntail,
3260 GFP_ATOMIC);
3261 if (unlikely(skb2 == NULL))
3262 return -ENOMEM;
3264 if (skb1->sk)
3265 skb_set_owner_w(skb2, skb1->sk);
3267 /* Looking around. Are we still alive?
3268 * OK, link new skb, drop old one */
3270 skb2->next = skb1->next;
3271 *skb_p = skb2;
3272 kfree_skb(skb1);
3273 skb1 = skb2;
3275 elt++;
3276 *trailer = skb1;
3277 skb_p = &skb1->next;
3280 return elt;
3282 EXPORT_SYMBOL_GPL(skb_cow_data);
3284 static void sock_rmem_free(struct sk_buff *skb)
3286 struct sock *sk = skb->sk;
3288 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3292 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3294 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3296 int len = skb->len;
3298 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3299 (unsigned int)sk->sk_rcvbuf)
3300 return -ENOMEM;
3302 skb_orphan(skb);
3303 skb->sk = sk;
3304 skb->destructor = sock_rmem_free;
3305 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3307 /* before exiting rcu section, make sure dst is refcounted */
3308 skb_dst_force(skb);
3310 skb_queue_tail(&sk->sk_error_queue, skb);
3311 if (!sock_flag(sk, SOCK_DEAD))
3312 sk->sk_data_ready(sk, len);
3313 return 0;
3315 EXPORT_SYMBOL(sock_queue_err_skb);
3317 void skb_tstamp_tx(struct sk_buff *orig_skb,
3318 struct skb_shared_hwtstamps *hwtstamps)
3320 struct sock *sk = orig_skb->sk;
3321 struct sock_exterr_skb *serr;
3322 struct sk_buff *skb;
3323 int err;
3325 if (!sk)
3326 return;
3328 if (hwtstamps) {
3329 *skb_hwtstamps(orig_skb) =
3330 *hwtstamps;
3331 } else {
3333 * no hardware time stamps available,
3334 * so keep the shared tx_flags and only
3335 * store software time stamp
3337 orig_skb->tstamp = ktime_get_real();
3340 skb = skb_clone(orig_skb, GFP_ATOMIC);
3341 if (!skb)
3342 return;
3344 serr = SKB_EXT_ERR(skb);
3345 memset(serr, 0, sizeof(*serr));
3346 serr->ee.ee_errno = ENOMSG;
3347 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3349 err = sock_queue_err_skb(sk, skb);
3351 if (err)
3352 kfree_skb(skb);
3354 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3356 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3358 struct sock *sk = skb->sk;
3359 struct sock_exterr_skb *serr;
3360 int err;
3362 skb->wifi_acked_valid = 1;
3363 skb->wifi_acked = acked;
3365 serr = SKB_EXT_ERR(skb);
3366 memset(serr, 0, sizeof(*serr));
3367 serr->ee.ee_errno = ENOMSG;
3368 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3370 err = sock_queue_err_skb(sk, skb);
3371 if (err)
3372 kfree_skb(skb);
3374 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3378 * skb_partial_csum_set - set up and verify partial csum values for packet
3379 * @skb: the skb to set
3380 * @start: the number of bytes after skb->data to start checksumming.
3381 * @off: the offset from start to place the checksum.
3383 * For untrusted partially-checksummed packets, we need to make sure the values
3384 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3386 * This function checks and sets those values and skb->ip_summed: if this
3387 * returns false you should drop the packet.
3389 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3391 if (unlikely(start > skb_headlen(skb)) ||
3392 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3393 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3394 start, off, skb_headlen(skb));
3395 return false;
3397 skb->ip_summed = CHECKSUM_PARTIAL;
3398 skb->csum_start = skb_headroom(skb) + start;
3399 skb->csum_offset = off;
3400 skb_set_transport_header(skb, start);
3401 return true;
3403 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3405 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3407 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3408 skb->dev->name);
3410 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3412 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3414 if (head_stolen) {
3415 skb_release_head_state(skb);
3416 kmem_cache_free(skbuff_head_cache, skb);
3417 } else {
3418 __kfree_skb(skb);
3421 EXPORT_SYMBOL(kfree_skb_partial);
3424 * skb_try_coalesce - try to merge skb to prior one
3425 * @to: prior buffer
3426 * @from: buffer to add
3427 * @fragstolen: pointer to boolean
3428 * @delta_truesize: how much more was allocated than was requested
3430 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3431 bool *fragstolen, int *delta_truesize)
3433 int i, delta, len = from->len;
3435 *fragstolen = false;
3437 if (skb_cloned(to))
3438 return false;
3440 if (len <= skb_tailroom(to)) {
3441 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3442 *delta_truesize = 0;
3443 return true;
3446 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3447 return false;
3449 if (skb_headlen(from) != 0) {
3450 struct page *page;
3451 unsigned int offset;
3453 if (skb_shinfo(to)->nr_frags +
3454 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3455 return false;
3457 if (skb_head_is_locked(from))
3458 return false;
3460 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3462 page = virt_to_head_page(from->head);
3463 offset = from->data - (unsigned char *)page_address(page);
3465 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3466 page, offset, skb_headlen(from));
3467 *fragstolen = true;
3468 } else {
3469 if (skb_shinfo(to)->nr_frags +
3470 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3471 return false;
3473 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
3476 WARN_ON_ONCE(delta < len);
3478 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3479 skb_shinfo(from)->frags,
3480 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3481 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3483 if (!skb_cloned(from))
3484 skb_shinfo(from)->nr_frags = 0;
3486 /* if the skb is not cloned this does nothing
3487 * since we set nr_frags to 0.
3489 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3490 skb_frag_ref(from, i);
3492 to->truesize += delta;
3493 to->len += len;
3494 to->data_len += len;
3496 *delta_truesize = delta;
3497 return true;
3499 EXPORT_SYMBOL(skb_try_coalesce);
3502 * skb_scrub_packet - scrub an skb before sending it to another netns
3504 * @skb: buffer to clean
3506 * skb_scrub_packet can be used to clean an skb before injecting it in
3507 * another namespace. We have to clear all information in the skb that
3508 * could impact namespace isolation.
3510 void skb_scrub_packet(struct sk_buff *skb)
3512 skb_orphan(skb);
3513 skb->tstamp.tv64 = 0;
3514 skb->pkt_type = PACKET_HOST;
3515 skb->skb_iif = 0;
3516 skb_dst_drop(skb);
3517 skb->mark = 0;
3518 secpath_reset(skb);
3519 nf_reset(skb);
3520 nf_reset_trace(skb);
3522 EXPORT_SYMBOL_GPL(skb_scrub_packet);