1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #include <cluster/masklog.h>
39 #include "blockcheck.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
46 #include "localalloc.h"
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
56 DEFINE_SPINLOCK(trans_inc_lock
);
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 static int ocfs2_force_read_journal(struct inode
*inode
);
61 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
62 int node_num
, int slot_num
);
63 static int __ocfs2_recovery_thread(void *arg
);
64 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
67 int dirty
, int replayed
);
68 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
70 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
72 static int ocfs2_commit_thread(void *arg
);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
75 struct ocfs2_dinode
*la_dinode
,
76 struct ocfs2_dinode
*tl_dinode
,
77 struct ocfs2_quota_recovery
*qrec
);
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
81 return __ocfs2_wait_on_mount(osb
, 0);
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
86 return __ocfs2_wait_on_mount(osb
, 1);
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
94 enum ocfs2_replay_state
{
95 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE
/* Replay was already queued */
100 struct ocfs2_replay_map
{
101 unsigned int rm_slots
;
102 enum ocfs2_replay_state rm_state
;
103 unsigned char rm_replay_slots
[0];
106 void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
108 if (!osb
->replay_map
)
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
115 osb
->replay_map
->rm_state
= state
;
118 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
120 struct ocfs2_replay_map
*replay_map
;
123 /* If replay map is already set, we don't do it again */
127 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
128 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
135 spin_lock(&osb
->osb_lock
);
137 replay_map
->rm_slots
= osb
->max_slots
;
138 replay_map
->rm_state
= REPLAY_UNNEEDED
;
140 /* set rm_replay_slots for offline slot(s) */
141 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
142 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
143 replay_map
->rm_replay_slots
[i
] = 1;
146 osb
->replay_map
= replay_map
;
147 spin_unlock(&osb
->osb_lock
);
151 void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
)
153 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
159 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
162 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
163 if (replay_map
->rm_replay_slots
[i
])
164 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
166 replay_map
->rm_state
= REPLAY_DONE
;
169 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
171 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
173 if (!osb
->replay_map
)
177 osb
->replay_map
= NULL
;
180 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
182 struct ocfs2_recovery_map
*rm
;
184 mutex_init(&osb
->recovery_lock
);
185 osb
->disable_recovery
= 0;
186 osb
->recovery_thread_task
= NULL
;
187 init_waitqueue_head(&osb
->recovery_event
);
189 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
190 osb
->max_slots
* sizeof(unsigned int),
197 rm
->rm_entries
= (unsigned int *)((char *)rm
+
198 sizeof(struct ocfs2_recovery_map
));
199 osb
->recovery_map
= rm
;
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
207 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
210 return osb
->recovery_thread_task
!= NULL
;
213 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
215 struct ocfs2_recovery_map
*rm
;
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb
->recovery_lock
);
220 osb
->disable_recovery
= 1;
221 mutex_unlock(&osb
->recovery_lock
);
222 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
227 flush_workqueue(ocfs2_wq
);
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
233 rm
= osb
->recovery_map
;
234 /* XXX: Should we bug if there are dirty entries? */
239 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
240 unsigned int node_num
)
243 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
245 assert_spin_locked(&osb
->osb_lock
);
247 for (i
= 0; i
< rm
->rm_used
; i
++) {
248 if (rm
->rm_entries
[i
] == node_num
)
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
257 unsigned int node_num
)
259 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
261 spin_lock(&osb
->osb_lock
);
262 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
263 spin_unlock(&osb
->osb_lock
);
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
270 rm
->rm_entries
[rm
->rm_used
] = node_num
;
272 spin_unlock(&osb
->osb_lock
);
277 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
278 unsigned int node_num
)
281 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
283 spin_lock(&osb
->osb_lock
);
285 for (i
= 0; i
< rm
->rm_used
; i
++) {
286 if (rm
->rm_entries
[i
] == node_num
)
290 if (i
< rm
->rm_used
) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
293 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
297 spin_unlock(&osb
->osb_lock
);
300 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
303 unsigned int flushed
;
304 struct ocfs2_journal
*journal
= NULL
;
306 journal
= osb
->journal
;
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal
->j_trans_barrier
);
311 flushed
= atomic_read(&journal
->j_num_trans
);
312 trace_ocfs2_commit_cache_begin(flushed
);
314 up_write(&journal
->j_trans_barrier
);
318 jbd2_journal_lock_updates(journal
->j_journal
);
319 status
= jbd2_journal_flush(journal
->j_journal
);
320 jbd2_journal_unlock_updates(journal
->j_journal
);
322 up_write(&journal
->j_trans_barrier
);
327 ocfs2_inc_trans_id(journal
);
329 flushed
= atomic_read(&journal
->j_num_trans
);
330 atomic_set(&journal
->j_num_trans
, 0);
331 up_write(&journal
->j_trans_barrier
);
333 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
335 ocfs2_wake_downconvert_thread(osb
);
336 wake_up(&journal
->j_checkpointed
);
341 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
343 journal_t
*journal
= osb
->journal
->j_journal
;
346 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
348 if (ocfs2_is_hard_readonly(osb
))
349 return ERR_PTR(-EROFS
);
351 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
352 BUG_ON(max_buffs
<= 0);
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal
, max_buffs
);
358 down_read(&osb
->journal
->j_trans_barrier
);
360 handle
= jbd2_journal_start(journal
, max_buffs
);
361 if (IS_ERR(handle
)) {
362 up_read(&osb
->journal
->j_trans_barrier
);
364 mlog_errno(PTR_ERR(handle
));
366 if (is_journal_aborted(journal
)) {
367 ocfs2_abort(osb
->sb
, "Detected aborted journal");
368 handle
= ERR_PTR(-EROFS
);
371 if (!ocfs2_mount_local(osb
))
372 atomic_inc(&(osb
->journal
->j_num_trans
));
378 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
382 struct ocfs2_journal
*journal
= osb
->journal
;
386 nested
= handle
->h_ref
> 1;
387 ret
= jbd2_journal_stop(handle
);
392 up_read(&journal
->j_trans_barrier
);
398 * 'nblocks' is what you want to add to the current transaction.
400 * This might call jbd2_journal_restart() which will commit dirty buffers
401 * and then restart the transaction. Before calling
402 * ocfs2_extend_trans(), any changed blocks should have been
403 * dirtied. After calling it, all blocks which need to be changed must
404 * go through another set of journal_access/journal_dirty calls.
406 * WARNING: This will not release any semaphores or disk locks taken
407 * during the transaction, so make sure they were taken *before*
408 * start_trans or we'll have ordering deadlocks.
410 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
411 * good because transaction ids haven't yet been recorded on the
412 * cluster locks associated with this handle.
414 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
416 int status
, old_nblocks
;
424 old_nblocks
= handle
->h_buffer_credits
;
426 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
428 #ifdef CONFIG_OCFS2_DEBUG_FS
431 status
= jbd2_journal_extend(handle
, nblocks
);
439 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
440 status
= jbd2_journal_restart(handle
,
441 old_nblocks
+ nblocks
);
453 struct ocfs2_triggers
{
454 struct jbd2_buffer_trigger_type ot_triggers
;
458 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
460 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
463 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
464 struct buffer_head
*bh
,
465 void *data
, size_t size
)
467 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
470 * We aren't guaranteed to have the superblock here, so we
471 * must unconditionally compute the ecc data.
472 * __ocfs2_journal_access() will only set the triggers if
473 * metaecc is enabled.
475 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
479 * Quota blocks have their own trigger because the struct ocfs2_block_check
480 * offset depends on the blocksize.
482 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
483 struct buffer_head
*bh
,
484 void *data
, size_t size
)
486 struct ocfs2_disk_dqtrailer
*dqt
=
487 ocfs2_block_dqtrailer(size
, data
);
490 * We aren't guaranteed to have the superblock here, so we
491 * must unconditionally compute the ecc data.
492 * __ocfs2_journal_access() will only set the triggers if
493 * metaecc is enabled.
495 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
499 * Directory blocks also have their own trigger because the
500 * struct ocfs2_block_check offset depends on the blocksize.
502 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
503 struct buffer_head
*bh
,
504 void *data
, size_t size
)
506 struct ocfs2_dir_block_trailer
*trailer
=
507 ocfs2_dir_trailer_from_size(size
, data
);
510 * We aren't guaranteed to have the superblock here, so we
511 * must unconditionally compute the ecc data.
512 * __ocfs2_journal_access() will only set the triggers if
513 * metaecc is enabled.
515 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
518 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
519 struct buffer_head
*bh
)
522 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
523 "bh->b_blocknr = %llu\n",
525 (unsigned long long)bh
->b_blocknr
);
527 /* We aren't guaranteed to have the superblock here - but if we
528 * don't, it'll just crash. */
529 ocfs2_error(bh
->b_assoc_map
->host
->i_sb
,
530 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
533 static struct ocfs2_triggers di_triggers
= {
535 .t_frozen
= ocfs2_frozen_trigger
,
536 .t_abort
= ocfs2_abort_trigger
,
538 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
541 static struct ocfs2_triggers eb_triggers
= {
543 .t_frozen
= ocfs2_frozen_trigger
,
544 .t_abort
= ocfs2_abort_trigger
,
546 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
549 static struct ocfs2_triggers rb_triggers
= {
551 .t_frozen
= ocfs2_frozen_trigger
,
552 .t_abort
= ocfs2_abort_trigger
,
554 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
557 static struct ocfs2_triggers gd_triggers
= {
559 .t_frozen
= ocfs2_frozen_trigger
,
560 .t_abort
= ocfs2_abort_trigger
,
562 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
565 static struct ocfs2_triggers db_triggers
= {
567 .t_frozen
= ocfs2_db_frozen_trigger
,
568 .t_abort
= ocfs2_abort_trigger
,
572 static struct ocfs2_triggers xb_triggers
= {
574 .t_frozen
= ocfs2_frozen_trigger
,
575 .t_abort
= ocfs2_abort_trigger
,
577 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
580 static struct ocfs2_triggers dq_triggers
= {
582 .t_frozen
= ocfs2_dq_frozen_trigger
,
583 .t_abort
= ocfs2_abort_trigger
,
587 static struct ocfs2_triggers dr_triggers
= {
589 .t_frozen
= ocfs2_frozen_trigger
,
590 .t_abort
= ocfs2_abort_trigger
,
592 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
595 static struct ocfs2_triggers dl_triggers
= {
597 .t_frozen
= ocfs2_frozen_trigger
,
598 .t_abort
= ocfs2_abort_trigger
,
600 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
603 static int __ocfs2_journal_access(handle_t
*handle
,
604 struct ocfs2_caching_info
*ci
,
605 struct buffer_head
*bh
,
606 struct ocfs2_triggers
*triggers
,
610 struct ocfs2_super
*osb
=
611 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
613 BUG_ON(!ci
|| !ci
->ci_ops
);
617 trace_ocfs2_journal_access(
618 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
619 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
621 /* we can safely remove this assertion after testing. */
622 if (!buffer_uptodate(bh
)) {
623 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
624 mlog(ML_ERROR
, "b_blocknr=%llu\n",
625 (unsigned long long)bh
->b_blocknr
);
629 /* Set the current transaction information on the ci so
630 * that the locking code knows whether it can drop it's locks
631 * on this ci or not. We're protected from the commit
632 * thread updating the current transaction id until
633 * ocfs2_commit_trans() because ocfs2_start_trans() took
634 * j_trans_barrier for us. */
635 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
637 ocfs2_metadata_cache_io_lock(ci
);
639 case OCFS2_JOURNAL_ACCESS_CREATE
:
640 case OCFS2_JOURNAL_ACCESS_WRITE
:
641 status
= jbd2_journal_get_write_access(handle
, bh
);
644 case OCFS2_JOURNAL_ACCESS_UNDO
:
645 status
= jbd2_journal_get_undo_access(handle
, bh
);
650 mlog(ML_ERROR
, "Unknown access type!\n");
652 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
653 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
654 ocfs2_metadata_cache_io_unlock(ci
);
657 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
663 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
664 struct buffer_head
*bh
, int type
)
666 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
669 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
670 struct buffer_head
*bh
, int type
)
672 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
675 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
676 struct buffer_head
*bh
, int type
)
678 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
682 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
683 struct buffer_head
*bh
, int type
)
685 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
688 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
689 struct buffer_head
*bh
, int type
)
691 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
694 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
695 struct buffer_head
*bh
, int type
)
697 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
700 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
701 struct buffer_head
*bh
, int type
)
703 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
706 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
707 struct buffer_head
*bh
, int type
)
709 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
712 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
713 struct buffer_head
*bh
, int type
)
715 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
718 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
719 struct buffer_head
*bh
, int type
)
721 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
724 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
728 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
730 status
= jbd2_journal_dirty_metadata(handle
, bh
);
734 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
736 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
738 journal_t
*journal
= osb
->journal
->j_journal
;
739 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
741 if (osb
->osb_commit_interval
)
742 commit_interval
= osb
->osb_commit_interval
;
744 write_lock(&journal
->j_state_lock
);
745 journal
->j_commit_interval
= commit_interval
;
746 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
747 journal
->j_flags
|= JBD2_BARRIER
;
749 journal
->j_flags
&= ~JBD2_BARRIER
;
750 write_unlock(&journal
->j_state_lock
);
753 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
756 struct inode
*inode
= NULL
; /* the journal inode */
757 journal_t
*j_journal
= NULL
;
758 struct ocfs2_dinode
*di
= NULL
;
759 struct buffer_head
*bh
= NULL
;
760 struct ocfs2_super
*osb
;
765 osb
= journal
->j_osb
;
767 /* already have the inode for our journal */
768 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
775 if (is_bad_inode(inode
)) {
776 mlog(ML_ERROR
, "access error (bad inode)\n");
783 SET_INODE_JOURNAL(inode
);
784 OCFS2_I(inode
)->ip_open_count
++;
786 /* Skip recovery waits here - journal inode metadata never
787 * changes in a live cluster so it can be considered an
788 * exception to the rule. */
789 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
791 if (status
!= -ERESTARTSYS
)
792 mlog(ML_ERROR
, "Could not get lock on journal!\n");
797 di
= (struct ocfs2_dinode
*)bh
->b_data
;
799 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
800 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
806 trace_ocfs2_journal_init(inode
->i_size
,
807 (unsigned long long)inode
->i_blocks
,
808 OCFS2_I(inode
)->ip_clusters
);
810 /* call the kernels journal init function now */
811 j_journal
= jbd2_journal_init_inode(inode
);
812 if (j_journal
== NULL
) {
813 mlog(ML_ERROR
, "Linux journal layer error\n");
818 trace_ocfs2_journal_init_maxlen(j_journal
->j_maxlen
);
820 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
821 OCFS2_JOURNAL_DIRTY_FL
);
823 journal
->j_journal
= j_journal
;
824 journal
->j_inode
= inode
;
827 ocfs2_set_journal_params(osb
);
829 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
835 ocfs2_inode_unlock(inode
, 1);
838 OCFS2_I(inode
)->ip_open_count
--;
846 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
848 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
851 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
853 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
856 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
857 int dirty
, int replayed
)
861 struct ocfs2_journal
*journal
= osb
->journal
;
862 struct buffer_head
*bh
= journal
->j_bh
;
863 struct ocfs2_dinode
*fe
;
865 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
867 /* The journal bh on the osb always comes from ocfs2_journal_init()
868 * and was validated there inside ocfs2_inode_lock_full(). It's a
869 * code bug if we mess it up. */
870 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
872 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
874 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
876 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
877 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
880 ocfs2_bump_recovery_generation(fe
);
882 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
883 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
891 * If the journal has been kmalloc'd it needs to be freed after this
894 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
896 struct ocfs2_journal
*journal
= NULL
;
898 struct inode
*inode
= NULL
;
899 int num_running_trans
= 0;
903 journal
= osb
->journal
;
907 inode
= journal
->j_inode
;
909 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
912 /* need to inc inode use count - jbd2_journal_destroy will iput. */
916 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
917 trace_ocfs2_journal_shutdown(num_running_trans
);
919 /* Do a commit_cache here. It will flush our journal, *and*
920 * release any locks that are still held.
921 * set the SHUTDOWN flag and release the trans lock.
922 * the commit thread will take the trans lock for us below. */
923 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
925 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
926 * drop the trans_lock (which we want to hold until we
927 * completely destroy the journal. */
928 if (osb
->commit_task
) {
929 /* Wait for the commit thread */
930 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
931 kthread_stop(osb
->commit_task
);
932 osb
->commit_task
= NULL
;
935 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
937 if (ocfs2_mount_local(osb
)) {
938 jbd2_journal_lock_updates(journal
->j_journal
);
939 status
= jbd2_journal_flush(journal
->j_journal
);
940 jbd2_journal_unlock_updates(journal
->j_journal
);
947 * Do not toggle if flush was unsuccessful otherwise
948 * will leave dirty metadata in a "clean" journal
950 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
955 /* Shutdown the kernel journal system */
956 jbd2_journal_destroy(journal
->j_journal
);
957 journal
->j_journal
= NULL
;
959 OCFS2_I(inode
)->ip_open_count
--;
961 /* unlock our journal */
962 ocfs2_inode_unlock(inode
, 1);
964 brelse(journal
->j_bh
);
965 journal
->j_bh
= NULL
;
967 journal
->j_state
= OCFS2_JOURNAL_FREE
;
969 // up_write(&journal->j_trans_barrier);
975 static void ocfs2_clear_journal_error(struct super_block
*sb
,
981 olderr
= jbd2_journal_errno(journal
);
983 mlog(ML_ERROR
, "File system error %d recorded in "
984 "journal %u.\n", olderr
, slot
);
985 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
988 jbd2_journal_ack_err(journal
);
989 jbd2_journal_clear_err(journal
);
993 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
996 struct ocfs2_super
*osb
;
1000 osb
= journal
->j_osb
;
1002 status
= jbd2_journal_load(journal
->j_journal
);
1004 mlog(ML_ERROR
, "Failed to load journal!\n");
1008 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1010 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1016 /* Launch the commit thread */
1018 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1020 if (IS_ERR(osb
->commit_task
)) {
1021 status
= PTR_ERR(osb
->commit_task
);
1022 osb
->commit_task
= NULL
;
1023 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1024 "error=%d", status
);
1028 osb
->commit_task
= NULL
;
1035 /* 'full' flag tells us whether we clear out all blocks or if we just
1036 * mark the journal clean */
1037 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1043 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1049 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1057 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1060 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1062 spin_lock(&osb
->osb_lock
);
1063 empty
= (rm
->rm_used
== 0);
1064 spin_unlock(&osb
->osb_lock
);
1069 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1071 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1075 * JBD Might read a cached version of another nodes journal file. We
1076 * don't want this as this file changes often and we get no
1077 * notification on those changes. The only way to be sure that we've
1078 * got the most up to date version of those blocks then is to force
1079 * read them off disk. Just searching through the buffer cache won't
1080 * work as there may be pages backing this file which are still marked
1081 * up to date. We know things can't change on this file underneath us
1082 * as we have the lock by now :)
1084 static int ocfs2_force_read_journal(struct inode
*inode
)
1088 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1089 #define CONCURRENT_JOURNAL_FILL 32ULL
1090 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1092 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1094 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, inode
->i_size
);
1096 while (v_blkno
< num_blocks
) {
1097 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1098 &p_blkno
, &p_blocks
, NULL
);
1104 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1105 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1107 /* We are reading journal data which should not
1108 * be put in the uptodate cache */
1109 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1110 p_blkno
, p_blocks
, bhs
);
1116 for(i
= 0; i
< p_blocks
; i
++) {
1121 v_blkno
+= p_blocks
;
1125 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1130 struct ocfs2_la_recovery_item
{
1131 struct list_head lri_list
;
1133 struct ocfs2_dinode
*lri_la_dinode
;
1134 struct ocfs2_dinode
*lri_tl_dinode
;
1135 struct ocfs2_quota_recovery
*lri_qrec
;
1138 /* Does the second half of the recovery process. By this point, the
1139 * node is marked clean and can actually be considered recovered,
1140 * hence it's no longer in the recovery map, but there's still some
1141 * cleanup we can do which shouldn't happen within the recovery thread
1142 * as locking in that context becomes very difficult if we are to take
1143 * recovering nodes into account.
1145 * NOTE: This function can and will sleep on recovery of other nodes
1146 * during cluster locking, just like any other ocfs2 process.
1148 void ocfs2_complete_recovery(struct work_struct
*work
)
1151 struct ocfs2_journal
*journal
=
1152 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1153 struct ocfs2_super
*osb
= journal
->j_osb
;
1154 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1155 struct ocfs2_la_recovery_item
*item
, *n
;
1156 struct ocfs2_quota_recovery
*qrec
;
1157 LIST_HEAD(tmp_la_list
);
1159 trace_ocfs2_complete_recovery(
1160 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1162 spin_lock(&journal
->j_lock
);
1163 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1164 spin_unlock(&journal
->j_lock
);
1166 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1167 list_del_init(&item
->lri_list
);
1169 ocfs2_wait_on_quotas(osb
);
1171 la_dinode
= item
->lri_la_dinode
;
1172 tl_dinode
= item
->lri_tl_dinode
;
1173 qrec
= item
->lri_qrec
;
1175 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1176 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1177 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1181 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1190 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1198 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
1203 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1207 /* Recovery info is already freed now */
1213 trace_ocfs2_complete_recovery_end(ret
);
1216 /* NOTE: This function always eats your references to la_dinode and
1217 * tl_dinode, either manually on error, or by passing them to
1218 * ocfs2_complete_recovery */
1219 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1221 struct ocfs2_dinode
*la_dinode
,
1222 struct ocfs2_dinode
*tl_dinode
,
1223 struct ocfs2_quota_recovery
*qrec
)
1225 struct ocfs2_la_recovery_item
*item
;
1227 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1229 /* Though we wish to avoid it, we are in fact safe in
1230 * skipping local alloc cleanup as fsck.ocfs2 is more
1231 * than capable of reclaiming unused space. */
1239 ocfs2_free_quota_recovery(qrec
);
1241 mlog_errno(-ENOMEM
);
1245 INIT_LIST_HEAD(&item
->lri_list
);
1246 item
->lri_la_dinode
= la_dinode
;
1247 item
->lri_slot
= slot_num
;
1248 item
->lri_tl_dinode
= tl_dinode
;
1249 item
->lri_qrec
= qrec
;
1251 spin_lock(&journal
->j_lock
);
1252 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1253 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1254 spin_unlock(&journal
->j_lock
);
1257 /* Called by the mount code to queue recovery the last part of
1258 * recovery for it's own and offline slot(s). */
1259 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1261 struct ocfs2_journal
*journal
= osb
->journal
;
1263 /* No need to queue up our truncate_log as regular cleanup will catch
1265 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1266 osb
->local_alloc_copy
, NULL
, NULL
);
1267 ocfs2_schedule_truncate_log_flush(osb
, 0);
1269 osb
->local_alloc_copy
= NULL
;
1272 /* queue to recover orphan slots for all offline slots */
1273 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1274 ocfs2_queue_replay_slots(osb
);
1275 ocfs2_free_replay_slots(osb
);
1278 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1280 if (osb
->quota_rec
) {
1281 ocfs2_queue_recovery_completion(osb
->journal
,
1286 osb
->quota_rec
= NULL
;
1290 static int __ocfs2_recovery_thread(void *arg
)
1292 int status
, node_num
, slot_num
;
1293 struct ocfs2_super
*osb
= arg
;
1294 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1295 int *rm_quota
= NULL
;
1296 int rm_quota_used
= 0, i
;
1297 struct ocfs2_quota_recovery
*qrec
;
1299 status
= ocfs2_wait_on_mount(osb
);
1304 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1310 status
= ocfs2_super_lock(osb
, 1);
1316 status
= ocfs2_compute_replay_slots(osb
);
1320 /* queue recovery for our own slot */
1321 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1324 spin_lock(&osb
->osb_lock
);
1325 while (rm
->rm_used
) {
1326 /* It's always safe to remove entry zero, as we won't
1327 * clear it until ocfs2_recover_node() has succeeded. */
1328 node_num
= rm
->rm_entries
[0];
1329 spin_unlock(&osb
->osb_lock
);
1330 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1331 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1332 if (slot_num
== -ENOENT
) {
1337 /* It is a bit subtle with quota recovery. We cannot do it
1338 * immediately because we have to obtain cluster locks from
1339 * quota files and we also don't want to just skip it because
1340 * then quota usage would be out of sync until some node takes
1341 * the slot. So we remember which nodes need quota recovery
1342 * and when everything else is done, we recover quotas. */
1343 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1344 if (i
== rm_quota_used
)
1345 rm_quota
[rm_quota_used
++] = slot_num
;
1347 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1350 ocfs2_recovery_map_clear(osb
, node_num
);
1353 "Error %d recovering node %d on device (%u,%u)!\n",
1355 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1356 mlog(ML_ERROR
, "Volume requires unmount.\n");
1359 spin_lock(&osb
->osb_lock
);
1361 spin_unlock(&osb
->osb_lock
);
1362 trace_ocfs2_recovery_thread_end(status
);
1364 /* Refresh all journal recovery generations from disk */
1365 status
= ocfs2_check_journals_nolocks(osb
);
1366 status
= (status
== -EROFS
) ? 0 : status
;
1370 /* Now it is right time to recover quotas... We have to do this under
1371 * superblock lock so that noone can start using the slot (and crash)
1372 * before we recover it */
1373 for (i
= 0; i
< rm_quota_used
; i
++) {
1374 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1376 status
= PTR_ERR(qrec
);
1380 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1384 ocfs2_super_unlock(osb
, 1);
1386 /* queue recovery for offline slots */
1387 ocfs2_queue_replay_slots(osb
);
1390 mutex_lock(&osb
->recovery_lock
);
1391 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1392 mutex_unlock(&osb
->recovery_lock
);
1396 ocfs2_free_replay_slots(osb
);
1397 osb
->recovery_thread_task
= NULL
;
1398 mb(); /* sync with ocfs2_recovery_thread_running */
1399 wake_up(&osb
->recovery_event
);
1401 mutex_unlock(&osb
->recovery_lock
);
1406 /* no one is callint kthread_stop() for us so the kthread() api
1407 * requires that we call do_exit(). And it isn't exported, but
1408 * complete_and_exit() seems to be a minimal wrapper around it. */
1409 complete_and_exit(NULL
, status
);
1413 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1415 mutex_lock(&osb
->recovery_lock
);
1417 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1418 osb
->disable_recovery
, osb
->recovery_thread_task
,
1419 osb
->disable_recovery
?
1420 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1422 if (osb
->disable_recovery
)
1425 if (osb
->recovery_thread_task
)
1428 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1430 if (IS_ERR(osb
->recovery_thread_task
)) {
1431 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1432 osb
->recovery_thread_task
= NULL
;
1436 mutex_unlock(&osb
->recovery_lock
);
1437 wake_up(&osb
->recovery_event
);
1440 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1442 struct buffer_head
**bh
,
1443 struct inode
**ret_inode
)
1445 int status
= -EACCES
;
1446 struct inode
*inode
= NULL
;
1448 BUG_ON(slot_num
>= osb
->max_slots
);
1450 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1452 if (!inode
|| is_bad_inode(inode
)) {
1456 SET_INODE_JOURNAL(inode
);
1458 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1468 if (status
|| !ret_inode
)
1476 /* Does the actual journal replay and marks the journal inode as
1477 * clean. Will only replay if the journal inode is marked dirty. */
1478 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1485 struct inode
*inode
= NULL
;
1486 struct ocfs2_dinode
*fe
;
1487 journal_t
*journal
= NULL
;
1488 struct buffer_head
*bh
= NULL
;
1491 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1497 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1498 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1503 * As the fs recovery is asynchronous, there is a small chance that
1504 * another node mounted (and recovered) the slot before the recovery
1505 * thread could get the lock. To handle that, we dirty read the journal
1506 * inode for that slot to get the recovery generation. If it is
1507 * different than what we expected, the slot has been recovered.
1508 * If not, it needs recovery.
1510 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1511 trace_ocfs2_replay_journal_recovered(slot_num
,
1512 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1513 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1518 /* Continue with recovery as the journal has not yet been recovered */
1520 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1522 trace_ocfs2_replay_journal_lock_err(status
);
1523 if (status
!= -ERESTARTSYS
)
1524 mlog(ML_ERROR
, "Could not lock journal!\n");
1529 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1531 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1532 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1534 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1535 trace_ocfs2_replay_journal_skip(node_num
);
1536 /* Refresh recovery generation for the slot */
1537 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1541 /* we need to run complete recovery for offline orphan slots */
1542 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1544 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
1546 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1548 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1550 status
= ocfs2_force_read_journal(inode
);
1556 journal
= jbd2_journal_init_inode(inode
);
1557 if (journal
== NULL
) {
1558 mlog(ML_ERROR
, "Linux journal layer error\n");
1563 status
= jbd2_journal_load(journal
);
1568 jbd2_journal_destroy(journal
);
1572 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1574 /* wipe the journal */
1575 jbd2_journal_lock_updates(journal
);
1576 status
= jbd2_journal_flush(journal
);
1577 jbd2_journal_unlock_updates(journal
);
1581 /* This will mark the node clean */
1582 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1583 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1584 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1586 /* Increment recovery generation to indicate successful recovery */
1587 ocfs2_bump_recovery_generation(fe
);
1588 osb
->slot_recovery_generations
[slot_num
] =
1589 ocfs2_get_recovery_generation(fe
);
1591 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1592 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1599 jbd2_journal_destroy(journal
);
1602 /* drop the lock on this nodes journal */
1604 ocfs2_inode_unlock(inode
, 1);
1615 * Do the most important parts of node recovery:
1616 * - Replay it's journal
1617 * - Stamp a clean local allocator file
1618 * - Stamp a clean truncate log
1619 * - Mark the node clean
1621 * If this function completes without error, a node in OCFS2 can be
1622 * said to have been safely recovered. As a result, failure during the
1623 * second part of a nodes recovery process (local alloc recovery) is
1624 * far less concerning.
1626 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1627 int node_num
, int slot_num
)
1630 struct ocfs2_dinode
*la_copy
= NULL
;
1631 struct ocfs2_dinode
*tl_copy
= NULL
;
1633 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1635 /* Should not ever be called to recover ourselves -- in that
1636 * case we should've called ocfs2_journal_load instead. */
1637 BUG_ON(osb
->node_num
== node_num
);
1639 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1641 if (status
== -EBUSY
) {
1642 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1650 /* Stamp a clean local alloc file AFTER recovering the journal... */
1651 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1657 /* An error from begin_truncate_log_recovery is not
1658 * serious enough to warrant halting the rest of
1660 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1664 /* Likewise, this would be a strange but ultimately not so
1665 * harmful place to get an error... */
1666 status
= ocfs2_clear_slot(osb
, slot_num
);
1670 /* This will kfree the memory pointed to by la_copy and tl_copy */
1671 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1680 /* Test node liveness by trylocking his journal. If we get the lock,
1681 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1682 * still alive (we couldn't get the lock) and < 0 on error. */
1683 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1687 struct inode
*inode
= NULL
;
1689 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1691 if (inode
== NULL
) {
1692 mlog(ML_ERROR
, "access error\n");
1696 if (is_bad_inode(inode
)) {
1697 mlog(ML_ERROR
, "access error (bad inode)\n");
1703 SET_INODE_JOURNAL(inode
);
1705 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1706 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1708 if (status
!= -EAGAIN
)
1713 ocfs2_inode_unlock(inode
, 1);
1721 /* Call this underneath ocfs2_super_lock. It also assumes that the
1722 * slot info struct has been updated from disk. */
1723 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1725 unsigned int node_num
;
1728 struct buffer_head
*bh
= NULL
;
1729 struct ocfs2_dinode
*di
;
1731 /* This is called with the super block cluster lock, so we
1732 * know that the slot map can't change underneath us. */
1734 for (i
= 0; i
< osb
->max_slots
; i
++) {
1735 /* Read journal inode to get the recovery generation */
1736 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1741 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1742 gen
= ocfs2_get_recovery_generation(di
);
1746 spin_lock(&osb
->osb_lock
);
1747 osb
->slot_recovery_generations
[i
] = gen
;
1749 trace_ocfs2_mark_dead_nodes(i
,
1750 osb
->slot_recovery_generations
[i
]);
1752 if (i
== osb
->slot_num
) {
1753 spin_unlock(&osb
->osb_lock
);
1757 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1758 if (status
== -ENOENT
) {
1759 spin_unlock(&osb
->osb_lock
);
1763 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1764 spin_unlock(&osb
->osb_lock
);
1767 spin_unlock(&osb
->osb_lock
);
1769 /* Ok, we have a slot occupied by another node which
1770 * is not in the recovery map. We trylock his journal
1771 * file here to test if he's alive. */
1772 status
= ocfs2_trylock_journal(osb
, i
);
1774 /* Since we're called from mount, we know that
1775 * the recovery thread can't race us on
1776 * setting / checking the recovery bits. */
1777 ocfs2_recovery_thread(osb
, node_num
);
1778 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1790 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1791 * randomness to the timeout to minimize multple nodes firing the timer at the
1794 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1798 get_random_bytes(&time
, sizeof(time
));
1799 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1800 return msecs_to_jiffies(time
);
1804 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1805 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1806 * is done to catch any orphans that are left over in orphan directories.
1808 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1809 * seconds. It gets an EX lock on os_lockres and checks sequence number
1810 * stored in LVB. If the sequence number has changed, it means some other
1811 * node has done the scan. This node skips the scan and tracks the
1812 * sequence number. If the sequence number didn't change, it means a scan
1813 * hasn't happened. The node queues a scan and increments the
1814 * sequence number in the LVB.
1816 void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1818 struct ocfs2_orphan_scan
*os
;
1822 os
= &osb
->osb_orphan_scan
;
1824 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1827 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
1828 atomic_read(&os
->os_state
));
1830 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1832 if (status
!= -EAGAIN
)
1837 /* Do no queue the tasks if the volume is being umounted */
1838 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1841 if (os
->os_seqno
!= seqno
) {
1842 os
->os_seqno
= seqno
;
1846 for (i
= 0; i
< osb
->max_slots
; i
++)
1847 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1850 * We queued a recovery on orphan slots, increment the sequence
1851 * number and update LVB so other node will skip the scan for a while
1855 os
->os_scantime
= CURRENT_TIME
;
1857 ocfs2_orphan_scan_unlock(osb
, seqno
);
1859 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
1860 atomic_read(&os
->os_state
));
1864 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1865 void ocfs2_orphan_scan_work(struct work_struct
*work
)
1867 struct ocfs2_orphan_scan
*os
;
1868 struct ocfs2_super
*osb
;
1870 os
= container_of(work
, struct ocfs2_orphan_scan
,
1871 os_orphan_scan_work
.work
);
1874 mutex_lock(&os
->os_lock
);
1875 ocfs2_queue_orphan_scan(osb
);
1876 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1877 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1878 ocfs2_orphan_scan_timeout());
1879 mutex_unlock(&os
->os_lock
);
1882 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1884 struct ocfs2_orphan_scan
*os
;
1886 os
= &osb
->osb_orphan_scan
;
1887 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1888 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1889 mutex_lock(&os
->os_lock
);
1890 cancel_delayed_work(&os
->os_orphan_scan_work
);
1891 mutex_unlock(&os
->os_lock
);
1895 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1897 struct ocfs2_orphan_scan
*os
;
1899 os
= &osb
->osb_orphan_scan
;
1903 mutex_init(&os
->os_lock
);
1904 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
1907 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
1909 struct ocfs2_orphan_scan
*os
;
1911 os
= &osb
->osb_orphan_scan
;
1912 os
->os_scantime
= CURRENT_TIME
;
1913 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
1914 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1916 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
1917 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1918 ocfs2_orphan_scan_timeout());
1922 struct ocfs2_orphan_filldir_priv
{
1924 struct ocfs2_super
*osb
;
1927 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1928 loff_t pos
, u64 ino
, unsigned type
)
1930 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1933 if (name_len
== 1 && !strncmp(".", name
, 1))
1935 if (name_len
== 2 && !strncmp("..", name
, 2))
1938 /* Skip bad inodes so that recovery can continue */
1939 iter
= ocfs2_iget(p
->osb
, ino
,
1940 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
1944 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
1945 /* No locking is required for the next_orphan queue as there
1946 * is only ever a single process doing orphan recovery. */
1947 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
1953 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
1955 struct inode
**head
)
1958 struct inode
*orphan_dir_inode
= NULL
;
1959 struct ocfs2_orphan_filldir_priv priv
;
1965 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
1966 ORPHAN_DIR_SYSTEM_INODE
,
1968 if (!orphan_dir_inode
) {
1974 mutex_lock(&orphan_dir_inode
->i_mutex
);
1975 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
1981 status
= ocfs2_dir_foreach(orphan_dir_inode
, &pos
, &priv
,
1982 ocfs2_orphan_filldir
);
1991 ocfs2_inode_unlock(orphan_dir_inode
, 0);
1993 mutex_unlock(&orphan_dir_inode
->i_mutex
);
1994 iput(orphan_dir_inode
);
1998 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2003 spin_lock(&osb
->osb_lock
);
2004 ret
= !osb
->osb_orphan_wipes
[slot
];
2005 spin_unlock(&osb
->osb_lock
);
2009 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2012 spin_lock(&osb
->osb_lock
);
2013 /* Mark ourselves such that new processes in delete_inode()
2014 * know to quit early. */
2015 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2016 while (osb
->osb_orphan_wipes
[slot
]) {
2017 /* If any processes are already in the middle of an
2018 * orphan wipe on this dir, then we need to wait for
2020 spin_unlock(&osb
->osb_lock
);
2021 wait_event_interruptible(osb
->osb_wipe_event
,
2022 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2023 spin_lock(&osb
->osb_lock
);
2025 spin_unlock(&osb
->osb_lock
);
2028 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2031 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2035 * Orphan recovery. Each mounted node has it's own orphan dir which we
2036 * must run during recovery. Our strategy here is to build a list of
2037 * the inodes in the orphan dir and iget/iput them. The VFS does
2038 * (most) of the rest of the work.
2040 * Orphan recovery can happen at any time, not just mount so we have a
2041 * couple of extra considerations.
2043 * - We grab as many inodes as we can under the orphan dir lock -
2044 * doing iget() outside the orphan dir risks getting a reference on
2046 * - We must be sure not to deadlock with other processes on the
2047 * system wanting to run delete_inode(). This can happen when they go
2048 * to lock the orphan dir and the orphan recovery process attempts to
2049 * iget() inside the orphan dir lock. This can be avoided by
2050 * advertising our state to ocfs2_delete_inode().
2052 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2056 struct inode
*inode
= NULL
;
2058 struct ocfs2_inode_info
*oi
;
2060 trace_ocfs2_recover_orphans(slot
);
2062 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2063 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
2064 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2066 /* Error here should be noted, but we want to continue with as
2067 * many queued inodes as we've got. */
2072 oi
= OCFS2_I(inode
);
2073 trace_ocfs2_recover_orphans_iput(
2074 (unsigned long long)oi
->ip_blkno
);
2076 iter
= oi
->ip_next_orphan
;
2078 spin_lock(&oi
->ip_lock
);
2079 /* The remote delete code may have set these on the
2080 * assumption that the other node would wipe them
2081 * successfully. If they are still in the node's
2082 * orphan dir, we need to reset that state. */
2083 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
2085 /* Set the proper information to get us going into
2086 * ocfs2_delete_inode. */
2087 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2088 spin_unlock(&oi
->ip_lock
);
2098 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2100 /* This check is good because ocfs2 will wait on our recovery
2101 * thread before changing it to something other than MOUNTED
2103 wait_event(osb
->osb_mount_event
,
2104 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2105 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2106 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2108 /* If there's an error on mount, then we may never get to the
2109 * MOUNTED flag, but this is set right before
2110 * dismount_volume() so we can trust it. */
2111 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2112 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2113 mlog(0, "mount error, exiting!\n");
2120 static int ocfs2_commit_thread(void *arg
)
2123 struct ocfs2_super
*osb
= arg
;
2124 struct ocfs2_journal
*journal
= osb
->journal
;
2126 /* we can trust j_num_trans here because _should_stop() is only set in
2127 * shutdown and nobody other than ourselves should be able to start
2128 * transactions. committing on shutdown might take a few iterations
2129 * as final transactions put deleted inodes on the list */
2130 while (!(kthread_should_stop() &&
2131 atomic_read(&journal
->j_num_trans
) == 0)) {
2133 wait_event_interruptible(osb
->checkpoint_event
,
2134 atomic_read(&journal
->j_num_trans
)
2135 || kthread_should_stop());
2137 status
= ocfs2_commit_cache(osb
);
2141 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2143 "commit_thread: %u transactions pending on "
2145 atomic_read(&journal
->j_num_trans
));
2152 /* Reads all the journal inodes without taking any cluster locks. Used
2153 * for hard readonly access to determine whether any journal requires
2154 * recovery. Also used to refresh the recovery generation numbers after
2155 * a journal has been recovered by another node.
2157 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2161 struct buffer_head
*di_bh
= NULL
;
2162 struct ocfs2_dinode
*di
;
2163 int journal_dirty
= 0;
2165 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2166 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2172 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2174 osb
->slot_recovery_generations
[slot
] =
2175 ocfs2_get_recovery_generation(di
);
2177 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2178 OCFS2_JOURNAL_DIRTY_FL
)